65
Affine Group Scheme Xtt (1) tx 23 ( 2010 D 2 1 / 28

A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Scheme의 이해 (1)

이 인 석

제 23차 대수캠프

2010년 2월

1 / 28

Page 2: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

차례

Equivalent Categories

Classical Language

Scheme Language

꿈FRepresentable Functors

Yoneda’s Lemma

Affine Schemes; 꿍꿍이

Affine Group Schemes

Hopf Algebras

Epilogue; (Group) Schemes

2 / 28

Page 3: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

서론

Scheme Language ; 왜 어떤 꿈F을 갖고 태어났는가 ?

Scheme Language의 (한때의) 경쟁자들

대수기하에서 제일 싫은 (무서운) 말

“k가 algebraically closed일 때만 설명하면 충분하다”

(다음 기회에)

예를 들어, SLn : k-Alg → Group을 functor로 이해해야

SLn : Ring → Group ??

3 / 28

Page 4: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

전문용어해설

“다음 기회에” 혹은 “기회가 있으면”

= “(다행히) 다음 기회는 없다”

“오늘의 주제는 아니므로 생략”

= “좀 알지만 잘은 모른다”

“시간이 없어 생략”

= “잘 모르니 더 캐물으면 미워할 것이다”

오늘 모든 ring과 algebra는 commutative with 1,

homomorphism : 1 7→ 1

4 / 28

Page 5: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Equivalent Categories

Category Theory

Natural Transformation

Isomorphic Categories

Category of k-algebras

Equivalent Categories

Axiom of Choice

Small Categories

5 / 28

Page 6: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category Theory

categories C,D, objects A, B ∈ Cfull subcategory

small category

morphism f : A → B or f ∈ MorC(A,B)

isomorphism

(covariant) functors F , E : C → D, contravariant functor

functor들의 합성

full and faithful functor

6 / 28

Page 7: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Natural Transformation

natural transformation α : F → E

F (B) E (B)αB

//

F (A)

F (B)

F (f )

²²

F (A) E (A)αA // E (A)

E (B)

E(f )

²²© (f : A → B)

α : F∼−→E ; natural equivalence if αA ; isomorphism

functor category

objects are functors

morphisms are natural transformations

7 / 28

Page 8: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Isomorphic Categories

C ≈ D if there exist F : C → D, E : D → C such that

F ◦ E = idD, E ◦ F = idC

Examples

Ab ≈ Z-Mod , Ring = Z-Alg

k-Alg ≈ Ak (다음 슬라이드)

꿈F들≈ representable functors (다음 시간)

(대개) 너무 자명 (재미 없다)

8 / 28

Page 9: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

k-Alg ≈ Ak

k는 fixed ring (base ring)

Ak의 object는 화살표 (ring homomorphism) kα→A

ϕ : (kα→A) → (k

β→B) is an Ak -morphism

if ϕ is a ring homomorphism such that

A Bϕ//

k

A

α

ÄÄÄÄÄÄ

ÄÄÄÄ

ÄÄÄÄ

k

B

β

ÂÂ???

????

????

?

©

Lang은 항상 k-algebra를 이렇게 삼각형으로 정의

왜 ? (내일)

9 / 28

Page 10: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Equivalent Categories

C is equivalent to D if there exist F : C → D, E : D → Csuch that F ◦ E

∼−→idD, E ◦ F∼−→idC

표기법 ; C ≈−→D ( C ≈−−−−→anti

D )

examples

CyclicGr≈−→{Z/nZ | 0 ≤ n ∈ Z}

오늘과 내일 여러 non-trivial (anti-)equivalence들 구경

(다음 슬라이드에 예고편)

이렇게 정의하면,≈−→는 당연히 equivalence relation

10 / 28

Page 11: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

예고편

category of

representable

functors over k

≈←−−−−anti

k-Alg≈−−−−→

anti

category of

affine schemes

over k

꿈F‖

Homk-Alg (A,−)

←→ (k → A) ←→ 꿍꿍이 over k

(Spec A → Spec k)

11 / 28

Page 12: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Equivalent Categories

명제 : C ≈−→D if and only if there exist F : C → D such that

(1) F is full and faithful

(2) for each D ∈ D, there exists C ∈ C such that D ≈ F (C )

이 명제 포함하는 책 많지 않음

Proof (⇐) : Want E : D → C. For D ∈ D, choose C ∈ Csuch that D ≈ F (C ) · · · · · ·

Axiom of Choice의 적용 범위 ??

12 / 28

Page 13: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Small Categories

Category Theory에서 제일 골치 아픈 말 ;

“골치 아프면 (전부) small category로 생각해도 좋다”

foundation (axiom system) of category theory

set theoretic axiom system과는 좀 (많이) 다름

그냥 아는 척하면 됨 !

오늘의 주제가 아니므로 · · · · · ·시간도 없고

13 / 28

Page 14: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Classical Language (‘Ancient Language’ ??)

Zariski Topology on An

Affine Coordinate Ring

Category of Algebraic Sets ??

Sheaves

Sheaf of Regular Functions

Category of Ringed Spaces, Category of Affine Varieties

Main Theorem : an Anti-equivalence

Stalks (and Germs)

Products

Linear Algebraic Groups14 / 28

Page 15: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Zariski Topology on An

k ; fixed algebraically closed field, write kn = An

want only polynomial functions are continuous

i.e., want only zero sets(loci) of polynomials are closed

Euclidean topology ; exp, log, sin, cosh, Γ, ζ, · · · · · ·

정의 ; [closed set in An] = V(S), where S ⊆ k[T ]

V(S) = {x ∈ An | f (x) = 0 for all f ∈ S}k[T ] = k[T1, . . . , Tn]

call V(S) an algebraic set in An

An and its subspaces are usually not Housdorff

15 / 28

Page 16: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Coordinate Ring

enough to consider V(I ) for ideals I of k[T ]

V(S) = V(〈S〉)Hilbert’s Finite Basis Theorem ; I is finitely generated

for Y ⊆ An, put I(Y ) = {f ∈ k[T ] | f (x) = 0 for all x ∈ Y }Hilbert’s Nullstellensatz ; I(V(I )) =

√I = · · · · · ·

for an algebraic set X ⊆ An, define

k[X ] = k[T ]/I(X )

= the affine coordinate ring of X

= the k-algebra of polynomial functions on X

ring= algebra ?? basis = generator ?? 16 / 28

Page 17: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Algebraic Sets ??

k − {0} is not an algebraic set (open in A1)

but, want to ‘identify’ k − {0} ≈ X = {(a, b) ∈ A2 | ab = 1}polynomial functions on X ↔ rational functions on k −{0}

C∞-manifold에서의 경험을 생각 · · · · · ·sheaf, germ, stalk, · · · · · ·

17 / 28

Page 18: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Sheaf F on a Topological Space X

an abelian group F(U), for each open subset U in X

sheaf of abelian groups, sheaf of k-algebras, · · · · · ·F(∅) = 0

a homomorphism ρUV : F(U) → F(V ), for each inclusion

V ⊆ U of open subsets in X

ρUU = idF(U), ρV

W ◦ ρUV = ρU

W , if W ⊆ V ⊆ U

ρUV is called a restriction map, write ρU

V (s) = s|Vif U ; open, {Vi} ; open covering of U, si ∈ F(Vi ),

si |Vi∩Vj= sj |Vi∩Vj

for all i , j ,

then there exists a unique s ∈ F(U) s.t. s|Vi= si for all i

i.e., every s ∈ F(U) is “locally defined”

18 / 28

Page 19: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Sheaves on X

category of sheaves on X

sheaf morphisms ϕ : F → Gdirect image sheaf f∗Fdirect limit lim→

오늘 밤 예습 복습

19 / 28

Page 20: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Sheaf of Regular Functions

sheaf of continuous (differentiable, C∞, analytic) functions on

a manifold

정의 : f : Y → k is regular at y , (where y ∈ Y ⊆ An)

iff f is “locally” a rational function

i.e., iff there exist an open nhd U ⊆ Y of y and g , h ∈ k[Y ]

such that f = g/h on U

정의 : sheaf of regular functions OX on X ⊆ An

OX (U) = {f : U → k | f is regular on U}OX is a sheaf of k-algebras

20 / 28

Page 21: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Ringed Spaces

정의 : (X ,FX ) is a ringed space iff

(1) X is a topological space

(2) FX is a sheaf of k-algebras on X

(3) FX (U) consists of k-valued functions on U

정의 : ϕ : (X ,FX ) → (Y ,FY ) ; morphism of ringed spaces iff

(1) ϕ : X → Y is continuous

(2) for each open V ⊆ Y , ϕ induces

ϕ∗V : FY (V ) → FX (ϕ−1(V )), ϕ∗V (f ) = f ◦ ϕ|ϕ−1(V )

내일 등장할 morphism of locally ringed spaces와는 좀 다름

21 / 28

Page 22: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Affine Varieties

정의 : X ⊆ An is an affine variety iff

(X ,OX ) ≈ (Y ,OY ) as ringed spaces for some Y ⊆ Am,

where O is the sheaf of regular functions

affine var is nothing but a new(fancy) name for algebraic set

정의 : Aff Var is a full subcategory of RingedSp

22 / 28

Page 23: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Coordinate Ring

Let X ⊆ An be an algebraic set (affine variety)

recall : k[X ] is only defined for algebraic set X

for an ideal I ≤ k[X ] and P ∈ X , define

VX (I ) = {x ∈ X | f (x) = 0 for all f ∈ I}MP = {f ∈ k[X ] | f (P) = 0}

정리 : k[X ] ≈ OX (X )

X is not necessarily irreducible

see Springer (Linear Algebraic Group) or Hartshorne (p. 72)

23 / 28

Page 24: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Dictionary

affine var (X ,OX ) k-algebra k[X ]

irreducible ⇔ integral domain

closed subsets VX (I ) ↔ radical ideals I

DCC on closed subsets ⇔ ACC on ideals

point P ∈ X ↔ maximal ideal MP

P ∈ VX (I ) ⇔ I ≤ MP

OX (X ) = k[X ]

stalk OP = localization k[X ]MP

OX (D(f )) = k[X ]f...

......

24 / 28

Page 25: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Main Theorem : an Anti-equivalence

k[X ] is reduced (has no non-zero nilpotent element)

if f r ∈ I(X ), then f ∈ I(X )

정리 : Aff Var≈−−−−→

anti[category of f.g. reduced k-algebras]

X 7→ k[X ]

Mor(X ,Y )bij−→ Homk-alg(k[Y ], k[X ]), ϕ 7→ ϕ∗

note : OX (X ) ≈ k[X ]

every algebra is a quotient of a free algebra (=poly algebra)

if A/I is reduced, then I =√

I = IV(I )

25 / 28

Page 26: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Stalks (and Germs)

F ; sheaf on X , P ∈ X

(U, f ) ∼ (V , g) if f |W = g |W for some W ⊆ U ∩ V

P ∈ W ⊆ U ∩ V , U, V , W ; open, f ∈ F(U), g ∈ F(V )

an equivalence class [U, f ] is called a germ at P

the set of all germs is called the stalk at P

i.e., FP ={[U, f ] | P ∈ U, U is open, f ∈ F(U)

}

better to understand FP = lim→ F(U)

direct limit of abelian groups (k-algebras · · · · · · )

OX ,P is a local ring, if (X ,OX ) is an affine variety

26 / 28

Page 27: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Products

identify Am × An = Am+n

if X = V(R), Y = V(S)

where R ⊆ k[S1, . . . , Sm], S ⊆ k[T1, . . . , Tn]

consider R ∪ S ⊆ k[S1, . . . , Sm,T1, . . . , Tn]

define X × Y = V(R ∪ S) ⊆ Am+n

this is indeed the categorical product of affine varieties

the usual product topology is finer than ours

k[X × Y ] ≈ k[X ]⊗k k[Y ]

k[X ]⊗k k[Y ] is the categorical coproduct of k-algebras

27 / 28

Page 28: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Linear Algebraic Groups

(약식)정의 : G is an linear algebraic group iff

(G ,OG ) is an affine variety

G is a group

mult : G × G → G , inv : G → G are morphisms of affine vars

a few ‘separation axioms’

linear algebraic group은 topological group ? NO ! (why ?)

k, k× × k×, GLn(k), SLn(k), On(k), Spn(k), · · · · · ·

정리 : every linear algebraic group is isomorphic to

a closed subgroup of GLn(k) for some n

28 / 28

Page 29: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine (Group) Scheme의 이해 (2)

이 인 석

제 23차 대수캠프

2010년 2월

1 / 19

Page 30: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Scheme Language

꿈F

Representable Functors

Yoneda’s Lemma

Affine Schemes; 꿍꿍이

Spectrum

Locally Ringed Spaces

Affine Schemes over k

Affine Group Schemes over k

2 / 19

Page 31: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

서론

예를 들어, 다음을 생각

SLn(R) = {(rij) ∈ Rn2 | det(rij)− 1 = 0}On(R) = {(rij) ∈ Rn2 | t(rij) · (rij)− I = 0}µn(R) = {r ∈ R | rn − 1 = 0}E(R) = {(r , s) ∈ R2 | s2 − 5r3 +

√2r − 1 = 0}

우리의 꿈F은SLn, On, µn(R), E 등을 functor로 이해

이 functor 각각에 ‘어떤’ geometric structure를 정의

5,√

2가 사는 곳 = 다항식들이 정의된 곳 = base ring = k

R은 결국 k-algebra일 수밖에

functor들 (즉, 꿈F들) : k-Alg → Set

classical language와의 차이 · · · · · · !3 / 19

Page 32: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

꿈F들의 Category

하나의 꿈 F : k-Alg → Set는 다음 data

I ; an index set

Xi ; an indeterminate, (단, i ∈ I )

T ; a subset of the polynomial algebra k[{Xi}i∈I ]

for a k-algebra R, define

F(R) =

{(ri ) ∈

∏i∈I R

∣∣∣∣ f ((ri )) = 0 for all f ∈ T

}

for ξ ∈ Homk-Alg (R, S), define ftn F(ξ) : F(R) → F(S) by

F(ξ) : (ri ) 7→ (ξ(ri )), ( (ri ) ∈ F(R) )

꿈F들의 category는 functor category

즉, 꿈F들 간의 morphism은 natural transformation

4 / 19

Page 33: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Representable Functors over k

정의 : F : k-Alg → Set is a representable functor (over k)

iff there exists a k-algebra A s.t. F ≈ Homk-Alg (A,−)

say “A represents F”

주의 : functor category이므로, ‘≈’와 ‘∼−→’는 같은 의미

정리 :

[꿈F들의category

]=

category of

representable

functors over k

꿈F F ←→ Homk-Alg (A,−)

A = k[{Xi}i∈I ] / 〈T 〉5 / 19

Page 34: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Yoneda’s Lemma and k-algebras

[꿈F들의category

]=

category of

representable

functors over k

≈←−−−−anti

k-Alg

꿈F F ←→ Homk-Alg (A,−) ←→ A

Yoneda’s Lemma는 (정말 妙한) abstract non-sense

No geometric structure yet ! 꿍꿍이가등장할차례

6 / 19

Page 35: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

(다시) 서론

지금까지는 전부 abstract non-sense (철학 ?)

affine variety 제외하고

이제, 구름 위로 · · · · · ·

지금까지의 story는사실 神話 시대에는널리알려진내용

요즘은 · · · · · · ?

神話 시대의 관심사는 꿍꿍이 (즉, geometric structure)

scheme = (1) 계획, (2) 음모, 꿍꿍이

scheme의 경쟁자들 · · · · · ·7 / 19

Page 36: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Spec A

여기서는 A는 ring (즉, Z-algebra)

Spec A = {p | p is a prime ideal of A}

topology on SpecA

closed sets ; V(a) = {p | a ≤ p}, (a ; ideal of A)

8 / 19

Page 37: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Structure Sheaf on Spec A

notations

p ∈ Spec A, V , U ; open in Spec A

Ap = localization of A at p, (Ap is a local ring)

OSpec A(U) is the set of functions s : U → ∐p∈U Ap s.t.

s(p) ∈ Ap for each p ∈ U

for p ∈ U, there exist V with p ∈ V ⊆ U, and a, f ∈ A

s.t. f /∈ q and s(q) = a/f ∈ Aq for each q ∈ V

i.e., s is locally a quotient of elements of A

(Spec A,OSpec A) is called the spectrum of A

OSpec A is a sheaf of rings

9 / 19

Page 38: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Spectrum

정의 : for f ∈ A, define D(f ) = SpecA− V(〈f 〉)D(f ) is called a principal open set

principal open sets form a base for the topology of Spec A

명제 : write O = OSpec A

(a) Op ≈ Ap for any p ∈ Spec A

(b) O(D(f )) ≈ Af for any f ∈ A

(c) O(Spec A) ≈ A

10 / 19

Page 39: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Direct Image Sheaf

F ; sheaf on X , f : X → Y ; continuous

direct image sheaf f∗F on Y is defined by

(f∗F)(V ) = F(f −1(V )), (V is open inY )

inverse image sheaf f −1Gneed sheafification · · · · · ·

11 / 19

Page 40: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Sheaves on X

X is a fixed topological space

objects are sheaves (of abelian groups) F ,G on X

morphism ϕ : F → G is a set

{ϕ(U) ∈ HomAb(F(U),G(U)) | U is open in X} s.t.

F(V ) G(V )ϕ(V )

//

F(U)

F(V )

ρUV

²²

F(U) G(U)ϕ(U) // G(U)

G(V )

ρ′UV²²

© (V ⊆ U)

12 / 19

Page 41: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Locally Ringed Spaces

정의 : (X ,OX ) is a locally ringed space iff

X is a topological space with a sheaf OX of rings

stalk OX ,P is a local ring if P ∈ X

spectrum (SpecA,OSpec A) is a locally ringed space

정의 : (f , f #) : (X ,OX ) → (Y ,OY ) is a morphism of

locally ringed spaces iff

f : X → Y is a continuous map

f # : OY → f∗OX is a morphism of sheaves on Y

f #은 f 와 무관

induced map f #P : OY ,f (P) → OX ,P is a local homomorphism

13 / 19

Page 42: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Morphism of Locally Ringed Spaces (LRS)

왜 이렇게 (골치 아프게) 정의 ?

첫째 (유일한 ?) 이유

want : MorRing (A, B)one-to-one−−−−−−→ MorLRS(Spec B, Spec A)

ϕ : A → B induces f : Spec B → Spec A, f (p) = ϕ−1(p)

즉, 우리의 꿈F을 이루기 위해서 !

다른 이유들은 (만약 다른 이유가 있다면) 다음 기회에

14 / 19

Page 43: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

비교

classical scheme

ringed space locally ringed space

f : (X ,OX ) → (Y ,OY ) (f , f #) : (X ,OX ) → (Y ,OY )

f induces f ∗V f #은 f 와무관

f # : OY → f∗OX

f ∗V : OY (V ) → OX (f −1(V )) f #(V ) : OY (V ) → OX (f −1(V ))

f ∗V (s) = s ◦ f |f −1(V )

f # induces f #P : OY ,f (P) → OX ,P

15 / 19

Page 44: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Affine Schemes

정의 : X ,OX is an affine scheme (꿍꿍이) iff

(X ,OX ) ≈ (SpecA,OSpecA) as LRS for some ring A

정확히는 [affine scheme] = [affine scheme over Z]

정의 : Aff Sch is a full subcategory of LRS

정리 : Ring≈−−−−→

antiAff Sch

16 / 19

Page 45: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Category of Affine Schemes over k

정의 : ((X , OX ), (f , f ])) is an affine Scheme over k iff

(X , OX ) ; 꿍꿍이, (f , f ]) : X → Spec k ; morphism of LRS

간단히 화살표 (Xf−→Spec k) 로 표기

정의 : (h, h]) ∈ MorAff Sch/k((Yg−→Spec k), (X

f−→Spec k))

iff (h, h]) : (Y , OY ) → (X , OX ) is a morphism of LRS s.t.

Y

Spec k

(g ,g])

ÂÂ???

????

????

?Y X(h,h]) // X

Spec k

(f ,f ])

ÄÄÄÄÄÄ

ÄÄÄÄ

ÄÄÄÄ

©

17 / 19

Page 46: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

k-algebras and Affine Schemes over k

A Bϕ//

k

A

α

ÄÄÄÄÄÄ

ÄÄÄÄ

ÄÄÄÄ

k

B

β

ÂÂ???

????

????

?

©

Spec B

Spec k

(g ,g])ÂÂ?

????

????

???Spec B Spec A

(h,h]) // Spec A

Spec k

(f ,f ])ÄÄÄÄ

ÄÄÄÄ

ÄÄÄÄ

ÄÄ

©

18 / 19

Page 47: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Conclusion

category of

representable

functors over k

≈←−−−−anti

k-Alg≈−−−−→

anti

category of

affine schemes

over k

꿈F‖

Homk-Alg (A,−)

←→ (k → A) ←→ 꿍꿍이 over k

(Spec A → Spec k)

19 / 19

Page 48: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Scheme의 이해 (3)

이 인 석

제 23차 대수캠프

2010년 2월

1 / 18

Page 49: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Schemes

Affine Group Schemes over k

Hopf Algebras

Epilogue ; (Group) Scheme (over k)

2 / 18

Page 50: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Schemes

affine scheme/k는 여러 가지 개념의 mixture

꿈F, representable functor, k-algebra, spectrum

affine group scheme도 마찬가지

functor G : k-Alg → Group is an affine group scheme over k

iff G is representable functor over k such that

mult : G× G → G, unit : e → G, inv : G → G ; morphisms

affine scheme = “set functor”,

affine group scheme = “group functor”

3 / 18

Page 51: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Schemes

k-alg A가 G를 represent하면, Homk-Alg (A, R)는 group

Homk-Alg (A,R)의 natural abel group structure와는 무관

if ξ : R → S is an k-algebra homomorphism,

then G(ξ) : G(R) → G(S) is a group homomorphism

if Φ : G → H is a morphism of affine group scheme over k,

then ΦR : G(R) → H(R) is a group homomorphism

4 / 18

Page 52: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Product of Affine Schemes over k

명제 : E,F가 A, B에 의해 represent될 때,

categorical product E× F는 다음과 같이 주어진다

(E× F)(R) = E(R)× F(R), (R은 k-algebra)

E(R)× F(R)은 (집합들의) cartesian product

꿈F의 입장에서는 변수 개수 늘린 것E× F는 당연히 A⊗k B에 의해 represent

5 / 18

Page 53: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Scheme G over k

G(S)× G(S) G(S)multS

//

G(R)× G(R)

G(S)× G(S)

G(ξ)×G(ξ)

²²

G(R)× G(R) G(R)multR // G(R)

G(S)

G(ξ)

²²© (ξ ∈ Homk-Alg (R,S))

mult : G× G → G는 natural transformation

6 / 18

Page 54: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Group Laws

associativity

G× G Gmult

//

G× G× G

G× G

mult×id

²²

G× G× G G× Gid×mult // G× G

G

mult

²²©

7 / 18

Page 55: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Trivial Group Functor e

e(R) = {e} = trivial group

note : |f(R)| = 1 for all R, then e ≈ f

e(S) f(S)≈//

e(R)

e(S)

e(ξ)

²²

e(R) f(R)≈ // f(R)

f(S)

f(ξ)

²²© (ξ : R → S)

8 / 18

Page 56: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Group Laws

마찬가지로

G× G Gmult

//

e× G

G× G

unit×id

²²

e× G G≈ // G

G

||²²

©

e Gunit

//

G

e²²

G G× Ginv×id // G× G

G

mult

²²©

역으로, 이다섯 (둘은생략) diagram이 G를결정

9 / 18

Page 57: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Examples

k[x ] represents the additive group scheme Ga

Ga(R) = (R, +) = {r ∈ R | no condition}

k[x , y ]/ 〈xy − 1〉 ↔ the multiplicative group scheme Gm

Gm(R) = R×

k[xij , y ]/ 〈y · det(xij)− 1〉 ↔ GLn

10 / 18

Page 58: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

화살표뒤집기

A represents G

A⊗k A A⊗k A⊗k Aid⊗∆

//

A

A⊗k A

²²

A A⊗k A∆ // A⊗k A

A⊗k A⊗k A

∆⊗id

²²©

A k ⊗k A≈//

A

A

||²²

A A⊗k A∆ // A⊗k A

k ⊗k A

ε⊗id

²²©

A⊗k A AS⊗id

//

A

A⊗k A

²²

A kε // k

A²²

©

11 / 18

Page 59: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Hopf Algebras

앞 다섯 diagram 만족하는 k-algebra는 Hopf algebra

∆ : A → A⊗k A ; comultiplication

ε : A → k ; augmentation

S : A → A ; antipode

정리 : Aff GrSchk≈−−−−→

antiHopfAlgk

12 / 18

Page 60: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Example

the additive group scheme Ga

Ga(R) = (R, +)

Ga ≈ Homk-Alg (k[x ],−)

∆(x) = x ⊗ 1 + 1⊗ x

ε(x) = 0

S(x) = −x

Yoneda’s Lemma !

13 / 18

Page 61: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

용어남용

大家들의 용어 남용 ;

[ group ] = [ affine group scheme ] = [ Hopf algebra ]

[ group ] = [ group algebra ] = [ Hopf algebra ]

그래서, Hopf algebra이지만, 애당초 group일 수 없는

quantum group을 ‘group’으로 명명

14 / 18

Page 62: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Cocommutative Hopf algebras

정의 : G is a commutative affine group scheme iff

G(R) are commutative for all R, 즉

G G=//

G× G

G

mult

²²

G× G G× Gtwist // G× G

G

mult

²²©

정의 : A is a cocommutative Hopf algebra iff

A⊗ A A⊗ Atwist

//

A

A⊗ A

²²

A A= // A

A⊗ A

²²©

15 / 18

Page 63: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Cocommutative Hopf algebras

명제 ; A가 G를 represent하면,

G is commutative ⇔ A is cocommutative

대개

affine group scheme ; commutative but non-cocommutative

group algebra ; non-commutative but cocommutative

최초로 발견된 non-commutative and non-cocommutative

Hopf algebra 가 바로 quantum group

16 / 18

Page 64: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Affine Group Schemes

명제 ; G의 linear representation은 (즉, G-module은)

Hopf algebra A의 comodule에 대응

· · · · · ·

정리 : 만약 k가 field이면, 모든 affine group scheme은

어떤 GLn의 closed subgroup과 isomorphic

geometry 필요 · · · · · ·

17 / 18

Page 65: A–ne Group Scheme Xt (1)islee/ags.pdf · every algebra is a quotient of a free algebra(=poly algebra) if A=I is reduced, then I = p I = IV(I) 25/28. Stalks (and Germs) F; sheaf

Epilogue

projective variety, projective scheme · · · · · ·

scheme = LRS which “locally looks like an affine scheme”

schemes over k · · · · · ·

group scheme ? “locally group” ??

다음을 만나도 쫄지 않기를 !

“elliptic curve is a group scheme”

“Soit G un schema en groupe (affine)”

18 / 18