33
Ab initio Molecular Dynamics Born-Oppenheimer and beyond

Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Embed Size (px)

Citation preview

Page 1: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio Molecular DynamicsBorn­Oppenheimer and beyond

Page 2: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Reminder, reliability of MD

MD trajectories are chaotic (exponential divergence with respect to initial conditions), BUT....

With a good integrator (e.g., Verlet or velocity Verlet) the discrete trajectory, with the same initial and final point as the exact analytical one, can be made infinitely close to the latter (shadow theorem/hypothesis).So: the dynamical information are reliable.What about the ensemble averages?

The ergodic theorem/hypothesis tells us that time and ensemble averages are equivalent (at the limit of infinite sampling time). Not true for all systems, though (indeed called non­ergodic).

 

Page 3: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio MD, general formalism

Schrödringer equation for a system of N nuclei and n electrons:

acts on nuclei acts on electrons

Page 4: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio MD, general formalism

Suppose the solutions of the time independent electronic Schrödinger equation are known

: correction to the adiabatic eigenvalue of 

Page 5: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio MD, Born­Oppenheimer approximation

If all     are negligble:

Adiabatic approximation (Born­Oppenheimer):

Valid in many cases, but, notably, not for electron transfer, photoisomerisation, ...

Page 6: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio MD, semi­classical approach

adiabatic eigenfunctions

classical trajectory

: probability of finding the system in adiabatic state i at time t

Page 7: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio MD, validity of the BO approximation

Massay parameter

characteristic length

velocity of the nuclei

time scale of electronic motion

Page 8: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ab initio MD, semi­classical BO approximation

The system, when prepared in one adiabatic state i stays there forever 

Nuclei move according to Newton's equations:

Page 9: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Non adiabatic: mean field (Ehrenfest) dynamics 

The atoms evolve on an effective potential representing an average over the adiabatic states weighted by their state populations

Forces: Hellmann­Feynman theorem:

non­adiabatic coupling vectors

Page 10: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ehrenfest dynamics 

­ A system that was initially prepared in a pure adiabatic state will be in a mixed state when leaving the region of strong nonadiabatic coupling. ­ The pure adiabatic character of the wavefunction cannot be recovered even in the asymptotic regions of configuration space. 

­ The total wavefunction may contain significant contributions from adiabatic states that are energetically inaccessible.

Page 11: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Ehrnefest dynamics , violation of microscopic reversibility

Page 12: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Surface hopping (fewest switches)

Supposing:

At a later time:

Let there be N trajectories:

Page 13: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Surface hopping (fewest switches)

Transition selected by using random numbers

Page 14: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Transition from i to k invoked if :

Uniform random numberBetween 0 and 1

Surface hopping (fewest switches)

Sum of the transition 

probabilities of the first k states

Page 15: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Photoisomerization of formaldimine

Page 16: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Photoisomerization of formaldimine

R   P→ R   R→

Page 17: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

E.g., dipolar molecules:

dipole­dipole tensor

permanent + induced dipole moment

Induced dipoles follow nuclei adiabatically and         is always at its minimum:

Suppose a fluid of polarizable molecules

Car­Parrinello MD, a classical system

Iterative solution of (3N) linear equations?

Page 18: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Car­Parrinello MD, a classical system

Extended Lagrangian:

Equation of motion for dipoles:

Role of M?

Adiabadicity: two temperatures?

Page 19: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

units?

Car­Parrinello MD, the idea

Starting from minimized Kohn­Sham orbitals, define orbital velocities and kinetic energy:

Lagrange multipliers

Equations of motion:Functional derivative. In practice wrt the coefficients of the chosen basis set

Page 20: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Initial forces:

Constraint?

Initial conditions:

Update velocities (Δt/2)

Update positions (Δt)

Car­Parrinello MD, the algorithm

Page 21: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Iterative solution:

Starting from:

Car­Parrinello MD, the algorithm

Page 22: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

1

4

5

6

2

3

Velocities: Positions:

Forces update:

Car­Parrinello MD, the algorithm (summary)

Page 23: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Molecular dynamics:summary of extended systems

and applications of Born­Oppenheimer MD

Page 24: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Reminder, reliability of MD

MD trajectories are chaotic (exponential divergence with respect to initial conditions), BUT....

With a good integrator (e.g., Verlet or velocity Verlet) the discrete trajectory, with the same initial and final point as the exact analytical one, can be made infinitely close to the latter (shadow theorem/hypothesis).So: the dynamical information are reliable.What about the ensemble averages?

The ergodic theorem/hypothesis tells us that time and ensemble averages are equivalent (at the limit of infinite sampling time). Not true for all systems, though (indeed called non­ergodic).

 

Page 25: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Summary of extended systems: NVT (Nosé)

Lagrangian:

Conjugated momenta:

Hamiltonian

Eq. of motion:

Page 26: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Summary of extended systems: NPH (Andersen)

Page 27: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Summary of extended systems: NPH (Parrinello­Rahman)

Page 28: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Summary of extended systems: on­the­fly optimization

Car­Parrinello MD

Classical example: polarizable fluid

Page 29: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Galli et al. Science 1990

300 fs

Application of plain MD: nature of liquid C

64 C atoms

Page 30: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

5000 K

Application of plain MD: nature of liquid C

Galli et al. Phys. Rev. Lett. 1989

Page 31: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Application of plain MD: dissociative adsorption

Phys. Rev. Lett. 1993

Page 32: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Initial @ Collision Final (400fs)

Trajectory 1

Trajectory 2

Trajectory 3

Trajectory 4

Trajectory 5

Kinetic energy:1 eV

Page 33: Ab initio Molecular Dynamics BornOppenheimer and beyondluca/Course_TU/04_abinitioMD_extended.pdf · Ab initio MD, general formalism Suppose the solutions of the time independent electronic

Kirchner and Hutter, J. Chem. Phys. 2004

Application of plain MD: solvation of DMSO in water

gas phaseDMSO

DMSOWater

32 water molecules + 1 DMSO@ 320 K