43
Ambiguous Nodes in Networked Data based on Measuring Reliable Neighboring Probabilities Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

Embed Size (px)

Citation preview

Page 1: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

1

Ambiguous Nodes in Networked Data based on Measuring Reliable Neighboring Probabilities

Advisor : Prof. Sing Ling LeeStudent : Chao Chih WangDate : 2013.01.04

Page 2: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

2

Outline

Introduction Network data Traditional VS Networked data Classification Collective Classification ICA

Problem Our Method

Collective Inference With Ambiguous Node (CIAN)

Experiments Conclusion

Page 3: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

3

Introduction – Network data traditional data:

instances are independent of each other

network data: instances are maybe related to each other

application: emails web page paper citation

independent related

Page 4: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

4

Introduction – Network data

Page 5: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

5

traditional VS network data classification

Introduction

F

D

G

E

C

B

H

A

12

F

D

G

E

C

B

H

A 1

2

B

Class: 1 2

: Class 1

Page 6: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

6

Introduction – Collective Classification To classify interrelated instances using content

features and link features.

node

content feature

link featureclass1 class2

class3

class

D 1 0 0

E 1 1 1

1+2

A 1B

C

D

E

21

1 0 0 1/2 1/2 0

1

2

link feature

class1 class2 class3

Binary

Count

Proportion

1 0 02 0 01 0 0

1 1 01 1 01/2 1/2 0

D:E:

We use :

Page 7: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

7

Introduction – ICA

ICA : Iterative Classification Algorithm

Initial : Training local classifier use content features to predict unlabel instancesIterative { for predict each unlabeled instance { set unlabeled instance ’s link feature use local classifier to predict unlabeled instance }}

step1

step2

Page 8: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

8

Introduction – ICA Example

Iteration

content feature

link featureclass1 class2

class3

class

1 1 0 1

2 1 0 1

node

content feature

link featureclass1 class2

class3

class

C 1 0 0 0 1/2 1/2 2

D 1 0 0 1/2 1/2 0 2

E 1 0 1 1/2 1/4 1/4 1

F 1 0 1 1 0 0 1

G 1 0 1 1 0 0 1

H 1 1 1 1/3 1/3 1/3 3

Training data:

2/3 0 1/3 1/3 1/3 1/3

1

3A:

1

2

2 A

E

1

1B

1

C

D

F1 G

3H2

1

2

3

3

Class : 1 2 3

unlabel data:training data:

Iteration

content feature

link featureclass1 class2

class3

class

1 1 0 1

2 1 0 1

1/2 1/2 0 1/4 1/2 1/4

2

2B:

3I

Page 9: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

9

Problem – Ambiguous Node label the wrong class

judge the label with difficulty make a mistake 2

1

1A

B

2

2D

node content feature class

C 0 0 1

D 0 0 1

E 1 1 2

F 1 0 2

G 1 1 2

C

E F

G

content feature

a. b.

woman

man age≤20

age>20

0 1 0 1

class

non-smoking

smoking

1 2

11 or 2 ?1

Page 10: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

10

Problem – use ICA

11

1A

unlabel data:training data:

1

1

1C 1

2

22

A

True class :

B

1

C

1

2 D

node

content feature

link featureclass1 class2

class3

class

B 0 0 1 0 1 0 1

D 0 1 1 1/3 2/3 0 2

E 0 1 1 1/4 3/4 0 2

F 1 0 1 2/3 1/3 0 1

G 1 0 1 2/3 1/3 0 1

H 0 1 1 0 1 0 2

Training data

Iteration

content feature

link featureclass1 class2

class3

class

1 1 1 1

2 1 1 1

2/3 1/3 0 2/3 1/3 0

A: 1

1E

F

G

B

2

H

- Ambiguous

1 0 1C:

1I

2J

Page 11: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

11

Idea

Make a new prediction for neighbors of unlabeled instance

Use probability to compute link feature

Retrain the CC classifier

Page 12: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

12

compute link feature use probability

A

12

3( 1 , 80%)

( 2, 60%)

( 3 , 70%)

Our method:Class 1 : 80/(80+60+70)Class 2 : 60/(80+60+70)Class 3 : 70/(80+60+70)

General method :Class 1 : 1/3Class 2 : 1/3Class 3 : 1/3

Our Method – Method #1

Page 13: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

13

Our Method – Method #2

11

1A1

1

1C

2

2

E

F

G

B

2

H

- Ambiguous

22

A

True class :

B

1

C

D

To predict unlabeled instance ’s neighbors again.

( 1 , 70%)( 2, 80%)

( 1 , 70%)

( 1 , 70%)

( 2 , 60%)

( 2 , 80%)

predict again

11

1A1

1

1C

2

2

E

F

G

B

2

H

- Noise

D( 1 , 70%)( 2, 80%)

( 1 , 70%)

( 1 , 70%)

( 2 , 90%)

( 2 , 80%)

predict again

B is ambiguous node.

B is noise node.

Page 14: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

14

To predict unlabeled instance ’s neighbors again first iteration needs to predict again difference between original and predict

label : ▪ This iteration doesn’t to adopt▪ Next iteration need to predict again

similarity between original and predict label :▪ Average the probability ▪ Next iteration doesn’t need to predict again

A

1 2( 1 , 80%) ( 2, 60%)

( 2, 80%)( 2, 60%)

( 2, 70%)( 2, 60%)

1

Our Method – Method #2

new prediction

B C

Example:

Page 15: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

15

2

w

x

y 3z

1( 1 , 60%)

( 2 , 70%)

( 3 , 60%)

( 3 , 60%)

( 2 , 80%)

( 2 , 70%) new prediction

( 2 , 75%)

( 3 , 60%)( ? , ??%)

linkfeature

Class 1 Class 2 Class 3

original 0.315 0.368 0.315

Method A 0.27 0.405 0.324

Method B 0 0.692 0.307

Method C 0 0.555 0.444

x:Method A : (1 , 50%)Method B : (2 , 60%)Method C : (1 , 0%)

2

x’s True label : 2

x is ambiguous ( or noise) node:Method B >Method C > Method Ax is not ambiguous ( or noise) node:Method A >Method C > Method BMethod A & Method B is too extreme.So we choose the Method C.

Our Method – Method #2

not adoptchange classnot change class

-Ambiguous

Page 16: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

16

Our Method – Method #2

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

67

68

69

70

71

72

73

74

75

MethodAMethodBMethodC

Accuracy

Page 17: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

17

Retrain CC classifier

Our Method – Method #3

node

content feature

link featureclass1 class2

class3

class

A 1 0 1 1/2 1/2 0 1

B 1 1 1 1 0 0 2

C 1 0 1 1 0 0 1

( 3 , 70%)

1+

AB

C

D

E

21

1+2

A 3

B

C

D

E

21

( 1 , 90%)( 2, 60%)

( 2 , 70%)

( 1 , 80%) node

content feature

link featureclass1 class2

class3

class

A 1 0 1 90/290 130/290

70/290 1

B 1 1 1 80/140 60/140 0 2

C 1 0 1 80/150 0 70/150 1

retrain

Initial ( ICA )

Page 18: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

18

11

1A

B

1

1

1C 2

-Ambiguous2

1

( 2 , 60%)

( 1 , 80%)

2( 2 , 80%)

( 1 , 80%) ( 2 , 80%)

( 1 , 70%)

predict again

( 2 , 60%)

( 1 , 60%)

D

Iteration

content feature

link featureclass1 class2

class3

class

1 1 1 1

22

A

True label:

B

1

C node

content feature

link featureclass1 class2

class3

class

B 0 0 1 0 1 0 1

D 0 1 1 1/2 1/2 0 2

E 0 1 1 1/2 1/2 0 2

F 1 0 1 1 0 0 1

G 1 0 1 1 0 0 1

Training data

E

F

G

1/2 1/2 0

Our: 2

unlabel data:training data:

content feature

link featureclass1 class2

class3

class

0 0 1 0.466 0.533 0

B:

( 1 , 60%)

( 2 , 80%)

2

CIAN Example – Ambiguous

1 1 1 2/3 1/3 0 1ICA:

Page 19: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

19

11

1A

B

1

1

1C 2

- Noise2

1

( 2 , 80%)

( 1 , 80%)

2( 2 , 80%)

( 1 , 80%) ( 2 , 80%)

( 1 , 70%)

predict again

( 2 , 70%)

( 1 , 70%)

D Iteration

content feature

link featureclass1 class2

class3

class

1 1 1 1

22

A

True label:

B

1

C node

content feature

link featureclass1 class2

class3

class

B 0 1 1 0 1 0 1

D 0 1 1 1/2 1/2 0 2

E 0 1 1 1/2 1/2 0 2

F 1 0 1 1 0 0 1

G 1 0 1 1 0 0 1

Training data

E

F

G

1/2 1/2 0

Our:2

unlabel data:training data:

content feature

link featureclass1 class2

class3

class

0 1 1 0.466 0.533 0

B:

( 1 , 60%)

( 2 , 80%)

2

CIAN Example – Noise

1 1 1 2/3 1/3 0 1ICA:

Page 20: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

20

CIAN

CIAN : Collective Inference With Ambiguous Node

Initial : Training local classifier use content features to predict unlabel instancesIterative { for predict each unlabel instance { for nb unlabeled instance ’s neighbors{

if(need to predict again) (class label, probability ) = local

classifier(nb) } set unlabel instance ’s link feature (class label, probability ) = local classifier(A) } retrain local classifier}

step1

step2

step3

step4step5

Page 21: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

21

Experiments - Data sets

Characteristics Cora CiteSeer

WebKB-texas

WebKB-washingto

n

Instances 2708 3312 187 230

Class labels 7 6 5 5

Link number 4732 5429 328 446

Content features 1433 3703 1703 1703

Link features 7 6 5 5

Page 22: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

22

Experiments-Experimental setting

Characteristics Cora CiteSeer

WebKB-texas

WebKB-washingt

on

Instances 2708 3312 187 230

Max ambiguous nodes

(NB)429 590 52 50

Max ambiguous nodes

(SVM)356 365 20 31

Training data 1500 2000 100 120

Iteration 5 5 5 5fixed

argument‧Compare with CO、 ICA、 CIAN

Page 23: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

23

Experiments

1. misclassified nodes Proportion of misclassified nodes (0%~30% , 80%)

2. ambiguous nodes NB vs SVM

3. misclassified and Ambiguous nodes Proportion of misclassified and ambiguous nodes

(0%~30% , 80%)

4. iteration & stable number of iterations

Page 24: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

24

Experiments – 1. misclassified Cora

0% 10% 20% 30%68

70

72

74

76

78

80

82

84COICACIAN

Proportion of misclassified nodes

Accu

racy

0% 4.5 2.5

10% 3.2 3.3

20% 2.7 3.9

30% 2.3 4.2

CO ICA CIAN0% 76.1 80.6 83.1

10% 73.2 76.4 79.720% 70.7 73.4 77.330% 68 70.3 74.5

Page 25: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

25

Experiments – 1. misclassified CiteSeer

0% 10% 20% 30%6869707172737475767778

COICACIAN

Proportion of misclassified nodes

Accu

racy

0% 3.6 0.2

10% 1.9 1.3

20% 1.3 1.8

30% 1.2 2.1

CO ICA CIAN0% 73.5 77.1 77.3

10% 71.8 73.7 7520% 70.2 71.5 73.330% 69.1 70.3 72.4

Page 26: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

26

Experiments – 1. misclassified WebKB-texas

0% 10% 20% 30%66676869707172737475 CO

ICACIAN

Proportion of misclassified nodes

Accu

racy

0% 1.4 0.3

10% 1.5 0.9

20% 1 1.5

30% 0.4 2

CO ICA CIAN

0% 73.2 74.6 74.9

10% 70.7 72.2 73.1

20% 69.4 70.4 71.9

30% 67.8 68.2 70.2

Page 27: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

27

Experiments – 1. misclassified WebKB-washington

0% 10% 20% 30%6869707172737475767778 CO

ICACIAN

Proportion of misclassified nodes

Accu

racy

0% 1.5 0.9

10% 1.4 1.4

20% 1 1.9

30% 0.8 2.2

CO ICA CIAN

0% 75.1 76.6 77.5

10% 73.2 74.6 76

20% 71.6 72.6 74.5

30% 69.8 70.6 72.8

Page 28: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

28

Experiments – 1. misclassified

80% of misclassified nodes

CO ICA CIAN

Cora 22.1 20.1 25.6

CiteSeer 20.7 19.1 23.6

WebKB-texas 17.6 16.3 20.5

WebKB-washington 19 17.7 22.2

Page 29: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

29

Experiments – 2. ambiguous

Cora

33% 66% 99%74

76

78

80

82

84

86

CO

ICA

CIAN

Proportion of ambiguous nodes(NB)

Accu

racy

Max ambiguous nodes : 429

33% 66% 99%74

76

78

80

82

84

86

Proportion of ambiguous nodes (SVM)

Max ambiguous nodes : 356

Page 30: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

30

Experiments – 2. ambiguous

CiteSeerMax ambiguous nodes : 590

33% 66% 99%74

76

78

80

82

84

CO

ICA

CIAN

Proportion of ambiguous nodes(NB)

Accu

racy

33% 66% 99%74

76

78

80

82

84

Proportion of ambiguous nodes (SVM)

Max ambiguous nodes : 365

Page 31: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

31

Experiments – 2. ambiguous

WebKB-texasMax ambiguous nodes : 52

33% 66% 99%67

69

71

73

75

77

79

81

CO

ICA

CIAN

Proportion of ambiguous nodes(NB)

Accu

racy

33% 66% 99%67

69

71

73

75

77

79

81

Proportion of ambiguous nodes (SVM)

Max ambiguous nodes : 20

Page 32: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

32

Experiments – 2. ambiguous

WebKB-washingtonMax ambiguous nodes : 33

33% 66% 99%71

73

75

77

79

81

CO

ICA

CIAN

Proportion of ambiguous nodes(NB)

Accu

racy

33% 66% 99%71

73

75

77

79

81

Proportion of ambiguous nodes (SVM)

Max ambiguous nodes : 31

Page 33: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

33

Experiments – 2. ambiguous

Characteristics Cora CiteSeer

WebKB-texas

WebKB-washingt

on

Instances 2708 3312 187 230

Max ambiguous nodes

(NB)429 590 52 50

Max ambiguous nodes

(SVM)356 365 20 31

The same ambiguous nodes 157 164 15 17

The proportion of the same

ambiguous nodes (NB)

36.5% 27.7% 28.8% 34%

The proportion of the same

ambiguous nodes (SVM)

44.1% 44.9% 75% 54.8%

‧ How much the same ambiguous nodes between NB and SVM?

Page 34: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

34

Experiments – 3. misclassified and ambiguous

Cora

10% 20% 30%67

69

71

73

75

77

79 COICACIAN

Proportion of misclassified and ambiguous nodes

Accu

racy

10% 6.3 1.5

20% 6.7 2

30% 6.7 2.3

CO ICA CIAN

10% 71.7 78 79.5

20% 69.2 75.9 77.9

30% 67.1 73.8 76.1

Page 35: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

35

Experiments – 3. misclassified and ambiguous

CiteSeer

10% 20% 30%69707172737475767778

COICACIAN

Proportion of misclassified and ambiguous nodes

Accu

racy

10% 2.2 0.9

20% 1.1 1.7

30% 2.2 2.3

CO ICA CIAN

10% 74.5 76.7 77.6

20% 72.5 73.6 75.3

30% 69.1 71.3 73.6

Page 36: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

36

Experiments – 3. misclassified and ambiguous

WebKB-texas

10% 20% 30%666768697071727374

COICACIAN

Proportion of misclassified and ambiguous nodes

Accu

racy

10% 1.8 1

20% 1.8 1.4

30% 1.4 3

CO ICA CIAN

10% 70.3 72.1 73.1

20% 68.2 70 71.4

30% 66.1 67.5 70.5

Page 37: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

37

Experiments – 3. misclassified and ambiguous

WebKB-washington

10% 20% 30%66

68

70

72

74

76

78

80 COICACIAN

Proportion of misclassified and ambiguous nodes

Accu

racy

10% 0.5 1.8

20% 1.2 2.4

30% 1.8 5.2

CO ICA CIAN

10% 78.4 78.9 80.7

20% 72.4 73.6 76

30% 66.2 68 73.2

Page 38: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

38

Experiments – 3. misclassified and ambiguous

80% of misclassified and ambiguous nodes

CO ICA CIAN

Cora 27.3 26.8 30.3

CiteSeer 26.9 24.8 28.6

WebKB-texas 24.9 22.5 26.9

WebKB-washington 25.8 20.9 25.9

Page 39: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

39

Experiments

Number of

training data

The proportion of misclassified

nodes

The proportion of misclassified and ambiguous

nodesCora 1500 60% 65%

CiteSeer 2000 65% 70%

WebKB-texas 100 45% 50%WebKB-

washington 120 50% 55%

‧ When the accuracy of ICA is lower than CO ?

Page 40: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

40

Experiments – 4. iteration & stable Cora

10%

round CO ICA Our

1 74.25 78.59 79.24

2 74.25 78.64 80.11

3 74.25 78.59 80.23

4 74.25 78.64 80.11

5 74.25 78.64 80.48

6 74.25 78.82 80.5

7 74.25 78.82 80.67

8 74.25 78.82 80.79

9 74.25 78.82 80.79

10 74.25 78.82 80.79

Avg. 74.25 78.72 80.371

20%

CO ICA Our

71.77 75.64 76.33

71.77 76.22 77.22

71.77 75.85 77.41

71.77 75.94 77.22

71.77 76.26 78.3

71.77 76.29 78.3

71.77 76.49 78.44

71.77 76.49 78.57

71.77 76.49 78.57

71.77 76.49 78.57

71.77 76.216 77.893

30%

CO ICA Our

67.52 71.32 73.59

67.52 71.53 74.11

67.52 71.53 74.11

67.52 71.32 74.25

67.52 71.64 74.11

67.52 71.73 74.28

67.52 71.82 74.32

67.52 71.82 74.4

67.52 71.82 74.49

67.52 71.82 74.49

67.52 71.635 74.215

Page 41: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

41

Experiments – 4. iteration & stable CiteSeer

10%

round CO ICA Our

1 72.25 74.74 74.88

2 72.25 74.68 75.96

3 72.25 74.79 75.88

4 72.25 74.83 76.27

5 72.25 75.14 76.27

6 72.25 75.23 76.44

7 72.25 75.42 76.5

8 72.25 75.42 76.81

9 72.25 75.42 76.81

10 72.25 75.42 76.81

Avg. 72.25 75.109 76.263

20%

CO ICA Our

71.34 73.32 73.64

71.34 72.94 74.32

71.34 73.32 74.32

71.34 72.94 74.49

71.34 73.28 74.7

71.34 73.52 74.7

71.34 73.52 74.71

71.34 73.52 74.86

71.34 73.52 74.86

71.34 73.52 74.86

71.34 73.34 74.546

30%

CO ICA Our

69.24 71.03 72.17

69.24 71.24 72.78

69.24 71.24 72.63

69.24 71.03 72.78

69.24 71.38 72.86

69.24 71.46 73.24

69.24 71.76 73.3

69.24 71.76 73.39

69.24 71.76 73.48

69.24 71.76 73.48

69.24 71.442 73.011

Page 42: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

42

Experiments – 4. iteration & stable WebKB-texas

10%

round CO ICA Our

1 66.73 66.82 68.34

2 66.73 66.96 68.83

3 66.73 66.82 68.83

4 66.73 67.24 68.54

5 66.73 67.24 68.92

6 66.73 67.24 68.92

7 66.73 67.24 68.92

8 66.73 67.24 68.92

9 66.73 67.24 68.92

10 66.73 67.24 68.92

Avg. 66.73 67.128 68.806

20%

CO ICA Our

64.36 65.51 65.66

64.36 65.79 66.8

64.36 66.08 66.8

64.36 66.25 67.36

64.36 66.25 67.67

64.36 66.25 67.67

64.36 66.25 67.67

64.36 66.25 67.67

64.36 66.25 67.67

64.36 66.25 67.67

64.36 66.113 67.264

30%

CO ICA Our

62.14 62.94 65.86

62.14 63.27 66.05

62.14 64.38 66.05

62.14 64.87 66.19

62.14 64.87 66.19

62.14 64.87 66.31

62.14 64.87 66.31

62.14 64.87 66.31

62.14 64.87 66.31

62.14 64.87 66.31

62.14 64.468 66.189

Page 43: Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 1

43

Experiments – 4. iteration & stable WebKB-washington

10%

round CO ICA Our

1 70.9 71.81 73.34

2 70.9 71.94 74.05

3 70.9 72.16 74.27

4 70.9 72.2 74.27

5 70.9 72.2 74.41

6 70.9 72.2 74.41

7 70.9 72.2 74.41

8 70.9 72.2 74.41

9 70.9 72.2 74.41

10 70.9 72.2 74.41

Avg. 70.9 72.131 74.239

20%

CO ICA Our

68.18 69.09 71.67

68.18 69.27 72.32

68.18 69.67 72.41

68.18 69.8 72.53

68.18 69.8 72.86

68.18 69.8 72.86

68.18 69.8 72.86

68.18 69.8 72.86

68.18 69.8 72.86

68.18 69.8 72.86

68.18 69.663 72.609

30%

CO ICA Our

66.36 67.27 69.37

66.36 67.27 69.86

66.36 67.46 69.92

66.36 67.73 70.18

66.36 67.73 70.18

66.36 67.73 70.22

66.36 67.73 70.22

66.36 67.73 70.22

66.36 67.73 70.22

66.36 67.73 70.22

66.36 67.611 70.061