8
Air-Cooled Condensers Technical Guide Models WSS CH-RACCTB | APR 2015 Replaces CH-RACCTB April 2011

Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

  • Upload
    dokhue

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

Air-Cooled Condensers Technical Guide

Models WSS

CH-RACCTB | APR 2015Replaces CH-RACCTB April 2011

Page 2: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

22

Features & Options �����������������������������������������������������������������������������������������������������������������������������������������2Condenser Selection ���������������������������������������������������������������������������������������������������������������������������������� 3-4Performance Data ������������������������������������������������������������������������������������������������������������������������������������������5Dimensional Data �������������������������������������������������������������������������������������������������������������������������������������������5Dimensional Diagrams �����������������������������������������������������������������������������������������������������������������������������������6Specifications �������������������������������������������������������������������������������������������������������������������������������������������������7

© 2015 Heatcraft Refrigeration Products, LLC

WSS air-cooled condensers are available from 1 through 26 ton models. They are designed for efficient performance and low maintenance.

Table of Contents

Design Features

n Horizontal or vertical air discharge

n Attractive aluminum housing

n Multi-circuiting at no additional charge

n Energy efficient fan motors with internal overload protection and permanently lubricated ball bearings

n Motors wired to a common junction box

n Coated steel fan guards

n Fully baffled fan sections to prevent windmilling

Available Optionsn Factory mounted head pressure control valves (consult factory)

n Temperature or pressure activated fan cycling kits

n Control power transformer for fan cycling kits (230V standard)

n Alternate control voltages (115V or 24V) for fan cycling kits

n Polyester finned or copper fins on condenser coil

n Industrial coil coatings available (consult factory)

n Single phase fan motors available on all models

n Three phase motors available on models 005-026

n 575/3/60 motors available on models 005-026

n Sealtite wiring on models 005-026

n Variable speed fan motor options available on models 005-026 (consult factory)

Available Options

Page 3: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

3 3

CONDENSER SELECTION

Capacity for air-cooled condensers are based on total heat

of rejection (THR) at the condenser. THR is equal to net

refrigeration at the evaporator (compressor capacity) plus the

energy input into the refrigerant by the compressor (heat of

compression). The heat of compression will vary depending

on the compressor manufacturer, type of compressor and the

operating conditions of the compressor. Whenever possible, it

is recommended that you obtain the heat of compression value

from the compressor manufacturer.

If this is not available, the THR can be estimated using the

following formula:

THR = (Compressor Capacity) * (Heat of Compression Factor,

Tables 1 & 2)

Table 1 contains heat of compression factors for suction-cooled

compressors and Table 2 contains factors for open drive

compressors. For refrigeration systems beyond the range of

Tables 1 and 2, use the following equations to estimate THR:

Open Compressors:

THR = Compressor Capacity (BTUH) + (2545) * (Brake

Horsepower, BHP)

Suction-Cooled Compressors:

THR = Compressor Capacity (BTUH) + (3413 * KW)

The condenser capacity is affected by its altitude. If the

condenser location is above sea level, an additional correction

is required to the THR, as follows:

THR (altitude) = THR* altitude Correction Factor, Table 3

The condenser capacity is affected by the refrigerant used

in the project. If the refrigerant is not R-404A or R-507A, an

additional correction is required to the THR, as follows:

THR (refrigerant) = THR ÷ Refrigerant Correction Factor, Table 4

Table 1. Heat of Compression Factor for Suction-Cooled Compressors

Table 2. Heat of Compression Factor for Open Drive Compressors

Evaporator Condensing Temperature °F

Temp. °F 90° 100° 110° 120° 130° 140°

-30° 1.37 1.42 1.47 — — —

-20° 1.33 1.37 1.42 1.47 — —

-10° 1.28 1.32 1.37 1.42 1.47 —

0° 1.24 1.28 1.32 1.37 1.41 1.47

5° 1.23 1.26 1.30 1.35 1.39 1.45

10° 1.21 1.24 1.28 1.32 1.36 1.42

15° 1.19 1.22 1.26 1.30 1.34 1.40

20° 1.17 1.20 1.24 1.28 1.32 1.37

25° 1.16 1.19 1.22 1.26 1.30 1.35

30° 1.14 1.17 1.20 1.24 1.27 1.32

40° 1.12 1.15 1.17 1.20 1.23 1.28

50° 1.09 1.12 1.14 1.17 1.20 1.24

Suction Temp. °F

Condensing Temperature °F

90° 100° 110° 120° 130°

-40° 1.56 1.63 1.72 1.81 1.94

-30° 1.49 1.55 1.62 1.70 1.80

-20° 1.43 1.49 1.55 1.62 1.70

-10° 1.38 1.43 1.49 1.55 1.63

0° 1.34 1.38 1.43 1.49 1.56

5° 1.31 1.36 1.41 1.48 1.55

10° 1.29 1.34 1.39 1.44 1.52

15° 1.26 1.31 1.36 1.41 1.48

20° 1.24 1.28 1.33 1.38 1.44

25° 1.22 1.26 1.31 1.36 1.42

30° 1.20 1.24 1.28 1.33 1.39

40° 1.17 1.20 1.24 1.28 1.33

50° 1.13 1.16 1.20 1.24 1.28

Page 4: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

44

Table 4. Refrigerant Capacity Factor

Refrigerant Capacity Factor

R-22 1.02

R-134A 0.99

R-407A 0.98*

R-407C 0.94*

R-407F 0.98*

R-410A 1.02

*Correction factors based on midpoint condensing temperature.

Step 1: Estimate Condenser THR

Obtain compressor heat of rejection from compressor

manufacturer or calculate condenser THR estimate by

multiplying compressor capacity by heat of compression factor

from Tables 1 or 2 at given operating conditions.

THR = Compressor Capacity *Heat of Compression Factor

Step 2: Correct for Altitude

If condenser location is above sea level, correct for altitude by

multiplying condenser THR by altitude correction factor from

Table 3.

THR = THR (from Step 1) *Altitude Correction Factor

Step 3: Correct for Refrigerant Type

If condenser is using a refrigerant other than R-404A/R-570A,

correct for alternate refrigerant by dividing condenser THR by

refrigerant capacity factor from Table 4.

THR = THR (from Step 2) ÷ Refrigerant Capacity Factor

Step 4: Calculate Design Condenser T.D.

Design Condenser T.D. = Condensing Temp. – Ambient Temp.

Altitude Correction Factor

0 1.00

1,000 1.02

2,000 1.05

3,000 1.07

4,000 1.10

5,000 1.12

6,000 1.15

7,000 1.17

Table 3. Altitude Correction Factors

Step 5: Condenser Selection

Condenser capacities for 60 Hz operation are in Table 5.

Condenser capacities are given in MBH. Convert capacity from

Step 3 to MBH by dividing by 1,000. Condenser capacities are

given at 10°F, 15°F, 20°F and 30°F condenser T.D. conditions.

If Condenser T.D. from Step 4 matches one of these columns,

use that column. Otherwise, divide the calculated MBH by the

calculated design condenser T.D. from Step 4 and use the 1°F

column. Using the appropriate column, read down until you locate

a value equal to or slightly larger than the value calculated. Then

read horizontally to the left to obtain condenser model number.

THR (MBH) = THR (from Step 3) ÷ 1,000

THR (MBH/°T.D.) = THR (MBH) ÷ Calculated Design Condenser T.D.

Step 6: Calculate Actual Condenser T.D. and Condensing Temperature

Actual condenser T.D. can be calculated by dividing the design

THR by the 1°F T.D. Condenser T.D. Rating.

Actual T.D. = THR (MBH) ÷ (Rating at 1°F)

Actual condensing temperature can be calculated by adding the

actual condenser T.D. to the design ambient temperature.

Actual Condensing Temp. = Ambient Temperature + Actual T.D.

Page 5: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

5 5

WSS Model

Total Heat of Rejection | MBH | kcal/hr

Max. FeedsAvailable

R404A/R507

1˚F T.D. 10˚F T.D. 15˚F T.D. 20˚F T.D. 30˚F T.D.

1˚C T.D. 6˚C T.D. 8˚C T.D. 12˚C T.D. 17˚C T.D.

008 0.7 340 7.5 2,000 11.2 2,700 15.0 4,100 22.4 5,800 1

009 0.8 400 8.7 2,400 13.1 3,200 17.4 4,700 26.2 6,700 2

010 1.0 450 10.0 2,700 15.0 3,600 19.9 5,400 29.9 7,700 2

016 1.5 700 15.4 4,200 23.0 5,600 30.8 8,400 46.2 11,900 4

024 2.3 1,080 23.8 6,500 35.8 8,700 47.7 13,000 71.5 18,400 8

040 3.9 1,780 39.2 10,700 58.8 14,200 78.4 21,300 117.6 30,200 16

049 4.7 2,160 47.7 13,000 71.5 17,300 95.4 26,000 143.1 36,800 16

061 5.9 2,700 59.6 16,200 89.4 21,600 119.2 32,400 178.8 45,900 16

070 6.8 3,110 68.5 18,600 102.7 24,900 136.9 37,300 205.5 52,800 16

080 7.8 3,550 78.3 21,300 117.4 28,400 156.5 42,600 234.8 60,300 32

105 10.2 4,650 102.9 27,900 154.0 37,200 205.3 55,900 307.9 79,100 24

113 11.0 5,030 110.7 30,200 166.4 40,300 221.9 60,400 332.8 85,500 24

133 13.0 5,900 130.3 35,400 195.1 47,200 260.2 70,800 390.2 100,300 32

Table 5. Performance Data for 60 Hz.

WSS Model

Total Heat of Rejection | kcal/hrMax. FeedsAvailable

R404A/R507

1˚C T.D. 6˚C T.D. 8˚C T.D. 12˚C T.D. 17˚C T.D.

008 310 1,900 2,500 3,700 5,300 1

009 360 2,200 2,900 4,400 6,200 2

010 420 2,500 3,300 5,000 7,100 2

016 640 3,900 5,100 7,700 10,900 4

024 990 6,000 8,000 11,900 16,900 8

040 1,640 9,800 13,100 19,600 27,800 16

049 1,990 11,900 15,900 23,900 33,800 16

061 2,490 14,900 19,900 29,800 42,300 16

070 2,860 17,100 22,900 34,300 48,600 16

080 3,270 19,600 26,100 39,200 55,500 32

105 4,280 25,700 34,300 51,400 72,800 24

113 4,630 27,800 37,000 55,500 78,700 24

133 5,430 32,600 43,400 65,100 92,300 32

Table 6. Performance Data for 50 Hz.

CONDENSER PERFORMANCE

Page 6: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

66

18”460mm

22”560mm

13/32” x 1/2” Slots6mm x 13mmUnit legs are removable

from units installedfor horiziontal air

2”51mm

2”51mm

31 1/4”790mm

37 1/2”950mm

27 5/8”700mm2 7/16”

62mm

9/16”14mm

15 1/4”390mm

7/16” Diameter Hole11mm

8”200mm

22”590mm

43”1,090mm

24 1/2”620mm

16”410mm

21 1/2”550mm

9”230mm 1”

25mm

8”200mm

Optional External Electrical

Box

A

E 34”

860mm

7/8” Diameter Holes22mm

17”430mm

9”230mm

1”25mm

43”1,090mm

42 1/2”1,080mm

7/8” Diameter Holes22mm

37 1/2”950mm2 1/2”

64mm

A

E

Diagram 1. Dimensions for WSS Models 1 through 3

Diagram 2. Dimensions for WSS Models 5 through 26 with Vertical Air Flow

Diagram 3. Dimensions for WSS Models 5 through 26 with Horizontal Flow

DIMENSIONAL DATA

Page 7: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

7 7

Table 7. Specifications

1Motor voltage 208-230/1/60; 1075 RPM2Motor voltage 208-230-460/3/60; 1140 RPM3Motor Voltage 575/3/60; 1140 RPM

Note: WSS 001-002 available in 115/1/60 voltage;

Condenser Fan CyclingWSS models 010 to 026 condensers are available with either ambient or pressure activated fan cycling packages. Head pressure can be controlled by varying the air flow

across the coil in response to changes in ambient temperatures or refrigerant pressures. See Table 8 below for minimum ambients for fan cycling.

Table 8. Minimum Ambient for Fan Cycling (90º F./32ºC. Condensing Temperature)

WSS ModelsFans

Design T.D.

30°F. / 17°C. 25°F. / 15°C. 20°F. / 12°C. 15°F. / 8°C. 10°F. / 6°C.

49, 61, 70, 80 2 35 2 45 7 55 13 60 16 70 21

105, 113, 133 3 15 -9 30 -1 40 4 55 13 65 18

WSSModels

CFM/m³h

Fan Motor Data

No.Dia.

In./mmHP1 FLA1 HP2 FLA2 HP3 FLA3

008 2400 4100 1 18 460 1/4 2.0 --- --- --- ---

009 2400 4100 1 18 460 1/4 2.0 --- --- --- ---

010 2100 3600 1 18 460 1/4 2.0 --- --- --- ---

016 5050 8600 1 24 610 1/3 3.4 1/3 2.6/1.3 1/3 1.0

024 6450 11000 1 26 660 1/2 3.9 1/3 2.6/1.3 1/3 1.0

040 10100 17200 2 24 610 1/3 6.8 1/3 5.2/2.6 1/3 1.9

049 12400 21100 2 26 660 1/2 7.8 1/3 5.2/2.6 1/3 1.9

061 13700 23300 2 26 660 1/2 7.8 1/3 5.2/2.6 1/3 1.9

070 12900 21900 2 26 660 1/2 7.8 1/3 5.2/2.6 1/3 1.9

080 20500 34800 3 26 660 1/2 11.7 1/3 7.8/3.9 1/3 2.9

105 19900 33800 3 26 660 1/2 11.7 1/3 7.8/3.9 1/3 2.9

113 19400 33000 3 26 660 1/2 11.7 1/3 7.8/3.9 1/3 2.9

WSSModels

DimensionsInches/mm

ConnectionsODS (In.) Max.

Feeds Avail.

Approx. Net Wt.Lbs./kg

A E Inlet Oulet

008 --- --- 3/8 3/8 1 96 44

009 --- --- 7/8 5/8 2 96 44

010 --- --- 7/8 5/8 4 114 52

016 40 1010 30 760 1-1/8 7/8 8 180 82

024 50 1260 40 1020 1-1/8 7/8 16 260 118

040 70 1770 60 1520 (2) 1-1/8 (2) 7/8 16 450 204

049 70 1770 60 1520 (2) 1-1/8 (2) 7/8 16 470 213

061 90 2280 80 2030 (2) 1-1/8 (2) 7/8 16 510 231

070 90 2280 80 2030 (2) 1-3/8 (2) 1-1/8 32 530 240

080 130 3300 120 3050 (2) 1-5/8 (2) 1-1/8 24 550 249

105 130 3300 120 3050 (2) 1-5/8 (2) 1-1/8 24 580 263

113 130 3300 120 3050 (2) 1-5/8 (2) 1-1/8 32 625 284

CONDENSER SPECIFICATION / CONDENSER FAN CYCLING

Page 8: Air-Cooled Condensers - Clark Johnson Co · PDF file3 3 CONDENSER SELECTION Capacity for air-cooled condensers are based on total heat of rejection (THR) at the condenser. THR is equal

2175 West Park Place Blvd. · Stone Mountain, GA 30087Phone: 800.537.7775 · Fax: 770.465.5900heatcraftrpd.com

Since product improvement is a continuing effort, we reserve the right to make changes in specifications without notice.

CH-RACCTB | APR 2015