Anàlisis fisico quimico_examen.pdf

Embed Size (px)

Citation preview

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    1/25

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    2/25

    Wb= 

    Donde; p=f(v) 

    La ecuación para el aire, siendo un gas ideal. 

    Pv= nRuT

    P= nRuT/v ; n= pv/RuT 

    Wb= 

    =nRuT ln v2 

    v1 

    =nRuT ln v2/v1 

    Trabajo de frontera

    Wb=p1v1/RuT (RuT ln v2) = p1v1 ln v2/v1 = p2v2 ln v2/v1 

    v1 

    Wb= 100kpa (.m3) ln .1m3/.4m3 

    =-55.45 KJ 

    El signo negativo indica que solo se utiliza en una entrada de trabajo, que siempre es en

    el caso de la compresión. 

    Calor. 

    ∆T  forma finita= Q= mc∆T (J) 

    Q= m forma infinitesimal=δQ=mcd  (J) 

    Sustancia calor específico (C) 

    Capacidad calorífica

    c=Q/m∆T  (J/Kg.ºC)=J/Kg.K  

    otras formulas. 

    Q=nMc∆T  donde Mc= c (capacidad calorífica molar)

    Q=nc ∆T  donde c se mide en J/mol.K  

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    3/25

     

    Liquido-vapor. Q=mLv (vapor latente vaporización) vapor-liquido.Q= -mLv 

    Solido-liquido.Q=mLf (vapor latente de fusión) liquido-solido.Q= -mLF 

    Una varilla gruesa de cobre de 2kg incluida su tapa esta una temperatura 150ºC. Ud.

    Vierte en ella .10 kg de agua a 25ºC y rápidamente tapa la olla para que no pueda escapar

    el vapor, calcule la temperatura final del vapor u de su contenido, y determine la fase del

    agua. Suponga que no se pierde calor al entorno. Calor especifico del cobre 390 J/Kg.K,

    calor especifico del agua 4190 J/Kg.k, calor latente de vaporización 2.256 x 10-6 J/Kg. 

    -Qcv=Qagua 

    a¿)diciendo que nada del agua hierve y la T será menor a 100ºC 

    ¿¿) una parte del agua hierve a T=100ºC 

    ¿¿¿) el agua se evapora por completo a T=100ºC o mucho mas. 

    si -Qcv=Qagua esto es equivalente a: 

    -mCU CCU(T-TCU)=ma Ca(T-Ta) sustituyendo valores. 

    -2kg (390J/Kg. ºC) (T-150)ºC= .10Kg(4190J/Kg. ºC)(T-25ºC) 

    -780J/ºC (T-150ºC)=419J/ºC (T-25ºC) 

    -780 T J/ºC+ 117000J= 419T J/ºC-10475J 

    117000+10475=(419+780) T 

    T=127,475/1199= 106.31 ºCº 

    Cuando una parte del agua hierve a 100ºc 

    -mCU CCU(T-TCU)=ma Ca(T-Ta) + X maLv sustituyendo valores. 

    -2kg (390J/Kg. ºC) (100-150)ºC= .10Kg(4190J/Kg. ºC)(100-25ºC) + X .10(2.256x10-6) 

    39000=31425+X (2.256x10

    -7

    ) 39000-31425/2.256x10-7= X=.034kg 

    La parte de agua que hierve a T=100º 3.4g de esta se evapora.  

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    4/25

     

    En cierta estufa de gasolina para acampar 30% de la energía liberada al quemar el

    combustible calienta el agua de la olla en la estufa. Si calentamos 1lt de agua de 20 a 100

    ºC y evaporamos ¼ de ella, ¿Cuánta gasolina habremos quemado? 

    1 gramo de gasolina libera 46,000J. 

    Q1 = mc∆T sustituyendo valores 

    Q1 = (1 Kg) (4190 J/Kg*oC)(100 - 20)oC 

    Q1 = (4190 J)(80) 

    Q1 = 335200 J 

    Q2 = (mLv)/4 

    Q2 = (1/4 Kg) (2.256 x 106 J/Kg) 

    Q2 = 564000 J 

    QT = Q1 + Q2 

    QT = 335200 J + 546000 J 

    QT = 899200 J 30% 

    2997333.333 J 100% 

    1 gr 46000 J 

    x gr 2997333.333 J 

    x = 65.16 grs de gasolina producen el 100 % de calor requerido. 

    Balance de energía para sistemas cerrados. 

    Energía entrada –  Energía salida = ∆Energía sistema. 

    Calor y trabajo. Energía interna. 

    Energía cinética. 

    Energía potencial. 

    Q W = ∆U (KJ) 

    dq dw = du 

    q –  w = ∆u (KJ/Kg) 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    5/25

    Se condensa isotérmicamente vapor saturado a 200oC hasta liquido saturado en un

    dispositivo de cilindro embolo. Calcule el calor transferido y el trabajo efectuado durante

    este proceso en KJ/Kg. 

    Estado 1 

    Vapor saturado T = ctte. Liquido saturado 

    T = 200oC T = 200oC 

    P1 = Psat = 1554.9 Kpa P2 = Psat = 1554.9 KPa 

    W b =  = P(V2  –  V1) 

    Mp (V2  –  V1) 

    W b = = P (Vf @ 200oC  –  Vg @ 200oC) 

    = 1554.9 KPa (0.001157 –  0.12721) 

    W b = -196 KJ/Kg 

    Balance de energia. 

    w –  q = ∆u = u2  –  u1 

    q = w b  –  u2 + u1 

    q = 196 KJ/Kg –  (850.46 + 2594.2) KJ/Kg 

    q = 1939.74 KJ/Kg ≈ 1940 KJ/Kg 

    Un recipiente rigido de 1 ft3 contiene refrigerante 134 a originalmente a -20oF y 27.7%de calidad. A continuación se calienta el refrigerante hasta que su temperatura es 100 oF.

    calcule la transferencia de calor para este proceso. 

    Un dispositivo de cilindro –  embolo contiene 0.5 lbm de agua a 120 PSIa y 2 ft3 entoncesse transmiten 200 BTU de calor al agua manteniendo constante la presión. Determine la

    temperatura final del agua. 

    Un dispositivo que consta de cilindro  –   embolo contiene inicialmente 0.5 m3  de gasnitrógeno a 400 KPa y 27oC. Dentro del dispositivo se enciende un calentador eléctrico

    con lo cual pasa una corriente de 2 A durante 5 min desde una fuente de 120 v. El

    nitrógeno se expande a presión constante y ocurre una perdida de calor de 2800 J durante

    el proceso. Determine la temperatura final del nitrógeno. 

    Calores específicos. 

    Cp…. 

    Un recipiente rigido contiene 20 lbm de aire a 50psia y 80 oF el aire se calienta hasta

    duplicar su presión, determine: 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    6/25

    a) El volumen del recipiente. 

     b) La cantidad de transferencia de calor. 

    Balance de masa y de energía en sistemas abiertos. 

    Resumen.- 

    La conservación de la masa es uno de los principios fundamentales de la naturaleza.

    Cuando 16 Kg de oxigeno reaccionan con 2 Kg de hidrogeno y se forman 18 Kg de agua.

    En un proceso de electrolisis, el agua se separa en 2 Kg de hidrogeno y16 Kg de oxigeno. 

    Al igual que la energía, la masa es una propiedad conservada que no es posible crear ni

    destruir durante un proceso. Sin embargo la masa (m) y la energía (E) se pueden convertir

    entre si según una formula bien conocida que propuso Albert Einstein: 

    E = mc2 

    Donde: 

    c = 2.9979 x 108 m/s: Es la velocidad de la luz en el vacío.  

    Esta ecuación indica que la masa de un sistema cambia cuando su energía también lo

    hace. Sin embargo, para todas las interacciones de energía encontradas en la práctica, con

    excepción de las reacciones nucleares, el cambio en la masa es extremadamente pequeño

    incluso no lo detectan los dispositivos mas sensibles. Por ejemplo, cuando se forma 1 Kg

    de agua a partir de oxigeno e hidrogeno la cantidad de energía liberada es 15879 KJ, que

    corresponde a una masa de 1.76 x 10-10 Kg. Una masa de esa magnitud esta mas alla de

    la exactitud requerida en casi todos los cálculos de ingeniería, por lo tanto se puede

    ignorar. 

    Para sistemas cerrados, el principio de conservación de la masa se usa de modo implícito

    al requerir que la masa del sistema permanezca constante durante un proceso. Sin

    embargo, para los volúmenes de control, la masa puede cruzar fronteras de modo que se

    debe mantener un registro de la cantidad de masa que entra y sale. 

    · Flujos masicos y volumétricos 

    La cantidad de masa que pasa por una sección transversal por unidad de tiempo se llama

    flujo masico y se denota mediante ṁ. 

    Balance de masa y energía en sistemas abiertos. 

    Flujo masico 

    Flujo volumétrico 

    Ejemplo 

    A una tobera cuya area de entrada es de 0.2 ft2 entra de forma estacionaria vapor de agua

    a 250 psia y 700oF. El flujo masico de vapor por la tobera es 10 lbm/seg. El vapor sale a

    200 psia con una velocidad de 900 ft/seg. Las perdidas de calor desde la tobera por unidad

    de masa del vapor se estima en 1.2 BTU/lbm. 

    a) Determine la vin. 

     b) La temperatura de salida del vapor. 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    7/25

    A un difusor adiabatico entra aire a 80 KPa y 127oC al flujo constante de 6000 Kg/ y sale

    a 100 KPa. La velocidad de aire baja de 230 m/s a 30 m/s al pasar por el difusor. 

    a) Calcule la temperatura la salida. 

     b) El area de salida. 

    La salida de potencia de una turbina de vapor adiabática es 5MW, mientras las

    condiciones de entrada y salida son como se indica en la figura. 

    a) Determine el trabajo hecho por unidad de masa de vapor de agua que fluye por la turbina. 

     b) Calcule el flujo masico del vapor. 

    Al tubo capilar de una refrigerador entra R-134ª como liquido saturado a 0.8 MPa, el cual

    se extrangula a una presión de 0.12 MPa. Determine la calidad del retrigerante en el estado

    final y la disminución de temperatura durante este proceso. 

    Se tiene una regadera ordinaria donde se mezcla agua caliente a 250oF y agua fría 50oF

    se desea suministrar un flujo estacionario de agua fría determine la relación de los flujosmasico de agua fría y caliente si el mezclado ocurre a una presión de 20 psia 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    8/25

     

    unidad 2: Propiedades de las sustancias puras

    Propiedades de las sustancias puras. 

    Una sustancia pura que tiene una composición química fija en cualquier parte se le llama

    sustancia pura, el agua, nitrógeno y el hielo son sustancias puras. 

    Una sustancia pura no debe de estar conformada por un solo elemento o compuesto

    químico. 

    Fases de una sustancia pura. 

    Son 3 principales (solido, liquido, gaseoso), una sustancia puede tener varias fases dentro

    de la principal, coda una con distinta estructura molecular. 

    Por experiencia se sabe que las sustancias existen en fases diferentes, a temperatura y

     presión ambiente, el cobre es un solido a temperatura ambiente, el mercurio es un liquido

    a igual temperatura y en nitrógeno un gas, pero en conclusiones distintas todos podrían

    encontrarse en diferentes fases.

    . Liquido comprimido. 

    El agua existe en fase liquida y se le denomina “liquido comprimido”, lo cual significaque no esta apunto de evaporarse. 

    Liquido saturado. 

    Un liquido que esta apunto de evaporarse se llama “liquido saturado” .tenemos que tomaren cuenta que aun no existe una porción de vapor ya que en esta fase es cuando esta a

     punto de comenzar a crearse vapor. 

    Vapor húmedo. 

    Cuando nos referimos a vapor húmedo es en el momeno en que consideramos cierto

     porcentaje de vapor en una mezcla (liquido-vapor) y suele denotarse con una X la cual se

    conoce como calidad. 

    Vapor saturado. 

    Es un vapor que esta en el punto en que se va a condensar. Esta fase hace que la sustancia

    este completa como vapor y es necesario retirar calor. 

    vapor sobre calentado. Liquido comprimido 

    http://termodinamica4em4b1.blogspot.com/2012/04/propiedades-de-las-sustancias-puras.htmlhttp://termodinamica4em4b1.blogspot.com/2012/04/propiedades-de-las-sustancias-puras.html

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    9/25

     

    PPsat a una T dada 

    T>Tsat a una P dada Tvg a una P o T dada vug a una P o T dada u>uf a una P o T dada 

    h>hg a una P o T dada h>hf a una P o T dada 

    diagrama T-V para el proceso de calentamiento del agua a presión constante. 

    En las sustancias puras, se determinan las propiedades con ciertas ecuaciones pero estas

    son complejas y además consumen mucho tiempo, para resolver de una manera más fácil

    y ahorrarnos más tiempo se usan las tablas donde encuentras: temperatura, presión,

    volumen específico, energía interna y entalpia. 

    2 sustancias puras son: el agua y el refrigerante 134a (R-134a) 

    Estado de líquido saturado y vapor saturado. Cantidad de energía que se requiere para evaporar una masa unitaria de líquido saturado

    a una temperatura o presión determinada. 

    T=100ºc Patm=101.42kpa 

    hfg=2256.4 KJ/ Kg 

    1.-Un recipiente rígido contiene 50 kg de agua liquida saturada a 90ºc. Determine la

     presión en el recipiente y el volumen del mismo. 

    De la tabla (A-4) donde: 

    P=Psat@90ºC= 70.184 kpa 

    El volumen específico del líquido saturado a 90ºc es: v=vf@90ºC= .001036 m

    3/kg (tabla a-4) 

    http://2.bp.blogspot.com/-cC9meOZsipc/T45aXjqAYkI/AAAAAAAAABg/yAqXYaSSwOY/s1600/1.png

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    10/25

    Entonces el volumen total del recipiente es: 

    V=mv=50kg (.001036 m3/kg)= .0518 m3 

    2.-Una masa de 200gr de agua liquida se evapora por completo a una presión constante

    de 100 kpa. Determine: a) cambio de volumen, b) la cantidad de energía transferida al

    agua. De la tabla A-5 

    a) v f@100 kpa=.001043 m3/kg 

    vg@100 kpa=1.6141 

    ∆T=m (vg - v f ) = .2kg (1.6141-.001043 )m3/kg =.3386m3  b) la cantidad de energía=m hfg 

    hfg@100 kpa= 2257.7 KJ/KG 

    .2kg (2257.7 KJ/KG)= 451.5 KJ 

    3.-1 kg de R-134ª llena un espacio de cilindro embolo con carga constante y volumen0.14m3 a la temperatura de -26.4. Determine el volumen final. 

    siendo la presión constante: [email protected]ºc= 100 kpa 

    siendo el estado final vapor brecalentado, de la tabla A-13  

    volumen especifico inicial: v1= V 1/m= .14m3/1kg= .14m3/kg 

    de la tabla A-12 

    Siendo la presión constante: [email protected]ºc= 100 kpa 

    Siendo el estado final vapor sobrecalentado, de la tabla A-13 

     p2=100 kpa por lo tanto: v2=.30138 m3/kg

    T2=100 ºc

    El volumen final es: V2=m v2=1kg(.30138)m3/kg= .30138 m3 

    4.-Un dispositivo de cilindro embolo contiene inicialmente 1.4kg de agua liquida saturada

    a 200ºc. Entonces se transmite calor de agua, hasta que se cuadriplica el volumen y el

    vapor solo contiene vapor saturado. Determine: 

    a) el volumen del tanque 

     b) la temperatura y presiónfinal

    c) el cambio de energía interna del agua.  

    Datos: m1= 1.4kg, fase inicial=liquido saturado, T1=200ºc 

    T1= 200ºc

    vf =.001157 m3/kg vg= 850.46 KJ/Kg 

    a) Vinicial=volumen del tanque=mvf =1.4kg(..001157 m3/kg )=.0016198 m3 

    Como se cuadriplica: 4(0016198 m3)=.0064792 m3 

     b) Vfinal= Vtaque/m= .0064792 m3/1.4kg= .004628 m3/kg 

    T2=317.3 p2=21,367 kpa v2= 2201.5 KJ/Kg 

    c) ∆v=m(v2  –  v1)= 1.4kg(2201.5 - 850.46) KJ/Kg= 1891.456 KJ 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    11/25

     

    5.-Determine la temperatura del agua en un estado de presión 0.5 Mpa y entalpia h=2890 

    Sustancia pura H2O ¿fase? P=.5 mpa h=2890 KJ/Kg T=? D 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    12/25

     

    Unidad I:Conceptos Basicos. 

    Termodinámica proviene de dos palabras griegas “Therme” ( calor) y “Dynamis” 

    (fuerza), lo que

    quiere decir, que termodinámica es la ciencia que estudia los métodos para hacer el calor energía.

    También el concepto tiene varias interpretaciones que incluyen los aspectos de energía y sus

    transformaciones incluyendo la generación de potencia, la refrigeración y las relaciones éntrelas

     propiedades de la materia. 

    Leyes de la Termodinámica. 

    · Principio de conservación de la energía: Establece que la energía puede cambiar de una forma a otra

     pero su cantidad permanece igual. Lo que conclusión tenemos que la energía no se crea, ni se destruye

    solo se transforma. 

    · 1ra. Ley de la Termodinámica: Establece que la energía es una propiedad de la termodinámica. 

    · 2da. Ley de la Termodinámica: dice que la energía tiene calidad así como cantidad, y los procesos reales

    ocurren disminuye la calidad de la energía. 

    La termodinámica se puede ver desde dos enfoques que son la termodinámica clásica y la

    termodinámica estadística. 

    * Termodinámica clásica: Es la que utiliza aparatos para medir presión sin importar el comportamiento

    individual de las partículas. 

    * Termodinámica estadística: Estudia el comportamiento de las partículas. 

    Sistema: Es un espacio o selección que se selecciona para su análisis. Hay dos tipos de sistemas uno es

    sistema cerrado y el otro es sistema abierto. 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    13/25

     

     

    Sistema Cerrado: es aquel sistema que deja entrar y salir energía ya se en forma de calor o en forma

    de trabajo. En este sistema no entra masa, y también no sale masa. 

    * Sistema Abierto: Es aquel que deja entrar masa y energía y también las deja salir. 

    * Fronteras: son las  barreras de un sistema, pueden ser móviles, fijas, reales e imaginarias. 

    * Propiedad: Es cualquier característica de un sistema se le conoce como propiedad. 

    a) Propiedades Intensivas: son aquellas independientes de la masa del sistema. Las propiedades

    intensivas son:Temperatura (T), Presión (P) y la densidad (ρ) 

    http://4.bp.blogspot.com/-qFJiZyAQ3Vo/T2t5RcExchI/AAAAAAAAAA4/_pdOd5t79iQ/s1600/sistema+abierto.jpghttp://2.bp.blogspot.com/-INgYg-9wQWE/T2t5KEgTErI/AAAAAAAAAAw/k4XqQD8VIaw/s1600/sistema+cerrado.gif

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    14/25

    b) Propiedades Extensivas: son aquellas son aquellas cuyos valores dependen del tamaño o extensión

    del sistema. Las propiedades extensivas son el volumen (V) y la masa (m). 

    c) Las propiedades extensivas por unidad de masa se le conocen como propiedades

    específicas. También al dividir una propiedad intensiva entre una extensiva se convierte en propiedad

    específica. 

    La termodinámica trata con estados de equilibrio. 

    El número de propiedades requeridas para fijar el estado de un sistema se determina mediante el

     postulado. 

    El estado de un sistema compresible simple se especifica por completo mediante dos propiedades

    intensivas e independientes. 

    Cualquier cambio de un estado de equilibrio a otro se le conoce como proceso y la serie de estados

     porlos que pasaun sistema durante este proceso es una trayectoria del proceso, 

      Cuando la temperatura es constante el proceso es isotermico. 

      Cuando la presión es constante el proceso es isobarico. 

      Cuando el volumen es constante el proceso es isocorico. 

    Cuando hay una compresion lenta se permite que el gas escape y por lo tanto se permite que el gas

    escape y por lo tanto compresion se equilibre se lo conoce como cuasi-equilibrium y es homogenia. 

    Cuando la compresion es rapida y no permite que el gas escape se le conoce como nocuasi-equilibrium. 

    Un fluido  es todo aquello que caresca de elasticidad de forma, un factor de un fluido es su presion. 

    Presion (P)= (Fuerza(F))/(Area) = Pa 

    La presion sobre un objeto siempre va ha ser normal, es decir, perpendicular a la superficie.

    Ejemplo 1.- 

    a) Calcular el peso (W) del agua en un contenedor de 2m x 2m x 0.30m: 

    Vol.= (2m)(2m)(0.30m)= 1.2 m^3 

    magua=densidadagua x vol.agua 

    m= (1000 Kg/m^3)(1.2m^3)=1200Kg

    W= masa(m) x gravedad(g) =(1200Kg)(9.81m/s^2)= 11,772Nw 

     b) ¿Presion que ejerce el agua sobre el suelo? 

    P= F/A = 11,772Nw/m^2= 2.943KPa 

    Variacion de la presión con la profundidad. 

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    15/25

     

    ƩFy =0 

    F-mg-F0=0; P= F/A, entonces: F= PA 

    PA-P0A-mg=0 

    A(P-P0)= mg 

    A(P-P0)= ρVg 

    A(P-P0)= ρAhg 

    P= P0 +ρhg 

    Donde: 

    ρ: densidad del fluido 

    h: profundidad 

    En un recipiente abierto: 

    P0 = atm; presión inicial es igual a la presión atmosférica 

    P= Patm + ρhg 

    P- Patm = ρhg 

    http://4.bp.blogspot.com/-aXFALPy9KOo/T24eN1NEyNI/AAAAAAAAABI/EmcqYyVp3q0/s1600/Sin+t%C3%ADtulo.jpg

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    16/25

     

    Ejemplo:

    a) calcular la presión atmosférica del recipiente mostrado en la figura anterior. 

    Utilizando la formula de la presión: 

    P= Patm + ρhg Datos: P=Pabs= 145KPa ρ= 1000 Kg/m^3 

    g= 9.81 m/s^2 

    h= 5m 

    Patm= P –  ρhg; 

    Patm= 145KPa –  (1000 Kg/m^3)( 5m)( 9.81 m/s^2) 

    Patm= 145000 Pa –  49050Pa 

    Patm= 95950Pa= 95.95KPa. 

    http://1.bp.blogspot.com/-m8f0592VMSE/T5AyxvKAsaI/AAAAAAAAABw/0Ft2mscwkXM/s1600/Img1.pnghttp://1.bp.blogspot.com/-m8f0592VMSE/T5AyxvKAsaI/AAAAAAAAABw/0Ft2mscwkXM/s1600/Img1.pnghttp://1.bp.blogspot.com/-m8f0592VMSE/T5AyxvKAsaI/AAAAAAAAABw/0Ft2mscwkXM/s1600/Img1.png

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    17/25

    a) Calcular la presión del aceite en el mismo recipiente. 

    Utilizando la misma fórmula que se utilizo en al inciso “a” se sustituye la presión atmosférica obtenida, pero ahora la presión será la incógnita. 

    P = Patm + ρhg; 

    P = 95.95KPa + (850 Kg/m^3)( 5m)( 9.81 m/s^2) 

    P = 95950Pa + 41.6925Pa 

    P = 137642.5Pa = 137.6425KPa 

    Ejemplo 2. 

    Calcular la presion de un fluido a lo largo de un plano horizontal, sin considerar la configuración

    geométrica. 

    Datos: F1= ? 

    F2= 13300N 

    A1= 15cm^2 

    A2= 5cm^2 

    De la formula de la ley de la conservación de la energía se obtiene que la Pentrada es igual a la Psalida. 

    Por lo tanto, P1=P2 

    Y la presion es igual a fuerza sobre área (F/A) , sustituyendo esto en la formula dela conservacion de

    la energía obtenemos que; 

    ; esta es la formula que se utilizará para resolver el problema. 

    Sustituyendo los datos del problema se obtiene 

    , ya que se necesita calcular F1, este se despeja y se obtiene lo siguiente. 

    http://2.bp.blogspot.com/-OZbIqtGE8lg/T5A1aPthBvI/AAAAAAAAACI/ucc6Y1hfWVY/s1600/ec3.pnghttp://3.bp.blogspot.com/-eFaijPSeNxY/T5A1RVs9igI/AAAAAAAAACA/_2yvcH0_834/s1600/ec2.png

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    18/25

     Y con los datos sustituidos anteriormente queda lo siguiente 

     b) Obtener la presión utilizando la formula . 

    http://4.bp.blogspot.com/-JHy5Yjkg5-I/T5A2LgDC5eI/AAAAAAAAAC4/vXD4SbzZXuU/s1600/ec7.pnghttp://1.bp.blogspot.com/-Ah2Kz26Cx2U/T5A2A9elUhI/AAAAAAAAACw/uGdm2MhNkdo/s1600/ec6.pnghttp://3.bp.blogspot.com/-RR3G-yHnNu0/T5A1vVYrYrI/AAAAAAAAACY/gLTcxANm9x0/s1600/ec5.pnghttp://1.bp.blogspot.com/-TZh0rHMy6VU/T5A1mH5-8CI/AAAAAAAAACQ/iTzcr0TMub8/s1600/ec4.png

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    19/25

     

    Medidores de presión 

    · Manometro 

    El manómetro puede contener dos más fluidos. 

    Pgas= P1=P2= Patm + ρhg 

    ρ= densidad del fluido en el manometro 

    h= Columna del fluido en el manometro 

    http://1.bp.blogspot.com/-HzrK9xcY1sk/T5AyhjdK_SI/AAAAAAAAABo/ILMEpKH3oEY/s1600/monometro.jpg

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    20/25

     

    Patm= P3 - ρ3h3g3 - ρ2h2g2 - ρ1h1g1; 

    Ejemplo: 

    Patm= 85.6KPa 

    ρ agua= 1000Kg/m^3 

    ρ aceite= 850 Kg/m^3 

    ρ mercurio = 13600Kg/m^3 

    P1=? 

    P2=? 

    P3=? 

    http://2.bp.blogspot.com/-dk0bhxJYwfk/T5A3yj0RhKI/AAAAAAAAADA/D9iWndBlP34/s1600/img1.jpghttp://1.bp.blogspot.com/-XUarxON3qIQ/T5AyTdhJG2I/AAAAAAAAABg/l9VjhneykLQ/s1600/Img2.png

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    21/25

     

    http://3.bp.blogspot.com/-uysWv0k_Aa8/T5A6vfORkqI/AAAAAAAAADg/5AQSiwUFdEQ/s1600/ec1.pnghttp://4.bp.blogspot.com/-hHOJuWh5o4Y/T5A5TR8A6sI/AAAAAAAAADY/mDx707Cj33I/s1600/img2.jpg

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    22/25

     

    http://2.bp.blogspot.com/-O2wQdOgUhF0/T5A7mGYWUUI/AAAAAAAAADo/KAhD-8KtxPA/s1600/ec2.png

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    23/25

     

    Ejercicio 1: 

    P1= Pabs 

    Pman= 80 KPa 

    h1= 30cm= 0.3m 

    h2= ? 

    h3= 75cm= 0.75m 

    Formula: 

    Pman + ρ1h1g –  ρ3h3g = ρ2h2g 

    Se despeja la incognita “h2” y obtenemos lo siguiente: 

    Se paramos los terminus en fracciones y se puede observar que se puede simplificar la formula… 

    Una vez simplificada la expresión se sustituyen los datos 

    h2= 0.5748 m= 57.48 cm 

    http://4.bp.blogspot.com/-hHOJuWh5o4Y/T5A5TR8A6sI/AAAAAAAAADY/mDx707Cj33I/s1600/img2.jpg

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    24/25

     

    Ejercicio 2: 

    Agua dulce y de mar fluyen en tuberías horizontales y paralelas conectadas entre si mediante un

    manómetro de tubo en doble U. Determine la diferencia de presión entre las dos tuberías considerando

    la ρmar a ese punto de 1035 Kg/m^3. ¿Se puede ignorar la columna de aire en el analisis? 

    Datos: 

    ρmar=1035 Kg/m^3. 

    ρaire= 1.29 Kg/m^3 

    ρHg= 13600 Kg/m^3 

    ρh2o= 1000 Kg/m^3 

    hmar= 40cm 

    haire= 70cm 

    hHg= 10cm 

    hH2O= 60cm 

    Calcularla diferenciación de presión: 

    Se analiza ya sea desde la salida del agua de mar o del agua dulce en este caso se analizo comenzando

     por el agua de mar, y se genero la siguente formula: 

    P1+ ρmarh1g1 + ρaireh2g2 +ρmercurioh3g3 –  ρdulceh4g4= P2 

    Se sustituyen los datos y se resuelve: 

    P1 + (1035 Kg/m^3)(9.81 m/s^2)(0.4m) + (1.29 Kg/m^3)(9.81 m/s^2)(0.7m) + (13600 Kg/m^3)(9.81

    m/s^2)(0.1m) –  (1000 Kg/m^3)(9.81mn/s^2)(0.6m)= P2 

    Y obtenemos lo siguiente: 

    P1+3403.12Pa= P2 

    Como nos pide la diferenciacion de la presion que eso es igual a P2-P1 simplemente se despeja de la

    siguiente manera, obtenienndo como resultado una diferencia de presion de 3.4KPa 

    P2 - P1= 3403.12 Pa= 3.4KPa 

    http://3.bp.blogspot.com/-a0MD6SFSWW8/T5A4gVL0hXI/AAAAAAAAADQ/vy7A6pZEo68/s1600/img3.jpg

  • 8/16/2019 Anàlisis fisico quimico_examen.pdf

    25/25