29
Physics and target design for Shock Ignition scenario of an ICF power plant V. T. Tikhonchuk, D. Batani, Ph. Nicolaï, X. Ribeyre CELIA, University of Bordeaux, CNRS, CEA, UMR 5107, Talence, France

and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

  • Upload
    ngohanh

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Physics and target design for Shock Ignition scenario of an ICF power plant

V. T. Tikhonchuk, D. Batani, Ph. Nicolaï, X. RibeyreCELIA, University of Bordeaux, CNRS, CEA, UMR 5107, Talence, France

Page 2: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Outline

• Major steps in the design of Shock Ignition schemeHIPER project, COST & EUROfusion, LMJ‐PETALPrinciple ideas of the SI scheme

• Physics issues of the SI schemeShock convergence and ignition conditionsExperiments on the strong shock excitation Generation of a high pressure shockIon kinetic effects in the ignition phase

• Future developments for the SI schemeDefinition of the laser irradiation requirementsDesign of a robust target and technical solutionsExperiments and the diagnostic developments 

• Conclusions

Page 3: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Recall of major events since 2010

• HIPER project (2008 – 2013) choice of the Shock Ignition as the mainstream approach compatible with the existent laser technologies

• Special Nuclear Fusion issue (2014, no.5) on the status of alternative approaches to IFE

• COST‐1208 program (2013 – 2017) for international collaboration in IFE

• EUROfusion program 2020 and the ToIFE collaboration European project 2014 and 2015 – 2017 

• New NIF ICF program since 2013• Opening LMJ‐PETAL facility for the academic research in 2017

v. 54, no.5

Page 4: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

LMJ‐PETAL Scientific Case

September 2014

Page 5: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Timeline of LMJ ‐ PETAL

PETAL will be delivered in 2016 and will be operational together with LMJ in 2017

The first academic program was launched in 2014 and first 3 experiments will be selected later this year

Starting date of academic experiments: fall 2017

Page 6: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Shock ignition: basic ideas

~ .

~ .

Spike :Converging Shock

Shock collision with the returnshock during stagnation

Laser Pulse

Mesh HotSpot

Fuel

Laser

Betti R. et al. : PRL 98 (2007)Ribeyre X. et al PPCF (2009)

Major features • Low implosion velocity (250‐300 km/s):• Better hydro stability• Larger target and higher Gain• Hot spot ignition with converging shock• High spike pressure• Compatible with the existent laser techno

Ignition

SI Target Gain

Standard ignition scheme

Page 7: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Implosion dynamics for shock ignition

Steps:1. Shell compression2. Shell implosion3. Shock launch4. Shell deceleration & 

Shock collision5. Shock propagation 

through the hot spot & ignition

S Atzeni et al Nuc Fus 2014

Page 8: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Shock pressure amplification

Amplification factor

The total ignitor shock amplification in the imploding shell is disentangled in three separate the contributions: (i) due to the shell implosion, (ii) the shock amplification in the shell co‐moving frame, and (iii) the collision with the diverging shock

Vallet A. et al. PhD thesis, 2014

Page 9: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Pressure amplification due to the shell implosion: factor 

Kidder like model describes the shell implosion 

Overall pressure enhancement in the shell: = 

Typical value  = 15 during the time of shell deceleration

Page 10: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Shock amplification in the co‐moving frame: factor 

The shock force  =  is defined by the evolution equation 

dln =  dln + S_ρ dlnρ ‐ dln

Shock is loosing its force as propagating in the accelerated shell and increases it as the shell is deceleratedTypical amplification  = 2

= 0.5

= 2

Page 11: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Pressure amplification in the diverging shock: factor 

Collision with the returning first shock is indispensable part of the SI schemeNumerical simulation for the HIPER target design

Typical pressure amplification  ~ 2 ‐ 3 HIPER target design

Page 12: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Total shock pressure amplification: factor 

Numerical simulation for the HIPER target design: comparison with the analytical model

Optimal amplification χ ~ 100

Shock pressure amplification higher than 100 can be achieved in a narrow time window of 200 ps

Laser intensities above 1016 W/cm2

are required

Role of hot electrons in the pressure generation needs to be revisited

Page 13: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Shock propagation through the hot spot: ignition conditions

Necessary conditions for the hot spot ignition after the reflection of the shock:• The incident shock velocity > 800 km/s• The hot spot areal density > 20 mg/cm2

• The hot spot radius > 50 µm• The shock pressure > 30 Gbar• The shock pressure amplification ~ 100

>  1 + 

Power balance at the shock breakout:  f – fraction of absorbed ‐particles

Vallet A. et al. Phys. Plasmas, 2013

Page 14: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

‐particle kinetics in the hot spot B Peigney et al, Phys Plasmas 2014

Kinetic treatment of the a‐particle transport is important for the accurate definition of the ignition threshold and the gain

Hybrid – hydrodynamic + ion kinetic simulation of the standard NIF target:• Earlier ignition• Lower fusion yield• Deep penetration of particles in 

shell• Broader burn front

Fluid

Kinetic

Page 15: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Experiments on the strong shock generationA series of experiments on strong shock generation has been accomplished on the Omega facility 

R Nora et al, Phys Rev Lett 2015

Laser intensity ~ 4×1015 W/cm2

@ 351 nmDensity scale length in corona 120 µm

Generation of a strong shock is correlated with the production of hot electrons 

Page 16: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Numerical simulations of the shock generationThe numerical simulations with LILAC and CHIC were constrained by the measured absorption and the X‐flush time

The hot electron parameters were adjusted to the X‐flush time: Conversion factor 15%Hot electron temperature 50 keV

Shock pressure time history: combination of laser & hot electron heating

w/out hot electrons

with hot electrons

Estimated shock pressure 

Page 17: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Pressure generation with hot electronsIn difference from the laser driven absorption, the hot electron drive is limited by the time of formation of rarefaction wave

S Guskov et al,, Phys Rev Lett 2012

Laserabsorption < c <<solid

c =0.03 g/cm2 at 0.35 µm

Electron beam absorption ≈ solid

A stationary process: constant ablation rate and pressure

A non-stationary process: constant ablated mass

Laser beam deposes its energy at a critical density, the plasma flows through with a constant velocity. The electron beam deposes its energy in a constant mass: the absorption zone moves away with the heated mass

3/2abs

3/2abl 6.0 Icm csc

25/39/8 g/cm1845.0 ettst ZAR

3/2abs

3/1abl 4.0 IP c

Page 18: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Ablation pressure of a beam of energetic electronsTwo step formation of the ablation pressure:First ‐‐ heating of the dense plasma with a constant rate over the electron stopping length and formation of a rarefaction waveSecond ‐‐ expansion of the ablated mass and the shock wave

3/100 //6.1 bbhhf IDDItz

An intense electron beam can create a higher pressure but for a short period of time

3/23/1max 4.0 bh IP

30

2 g/cm10keV,30,PW/cm1 ebI

Page 19: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Efficiency of the shock creation by the electron beam

bb

ss

tI

dtDPt

43

energybeameIncidentshocktheofEnergy)(

Numerical simulations with the CHIC+M1 code confirm the efficiency of the pressure creation with an intense electron beam

30

2 g/cm10keV,30,PW/cm1 ebI

Page 20: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Effect of the plasma density profile on the hot electron pressure

30

2 g/cm10keV,30,PW/cm1 ebI

The plasma corona is too thick and the hot electrons are stopped before the density peak The electron energy is insufficient for the strong pressure formation

The target hydrodynamics needs to be adjusted for the efficient pressure creation by hot electrons  

Page 21: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Laser propagation and absorption in the corona: SBS, FI, SRS, TPD, CBETThe physics of laser beam propagation and absorption needs is coupled to the hot electron generation

ne

nc

1/4nc

SBS and filamentation operate at ne < nc

SRS operates at ne < 1/4 ncconvective amplification of the backscattered signal s = 0 -p and production of hot electrons

1/4 nc – a dangerous zone of co-existence of absolute instabilities SRS and the two plasmon decay 0 → 2p hot electron generation

SBS – convective amplification of the backscattered signal s = 0 -2k0cs laser pulse reflection

Laser beam filamentation leads to focalization and spreading

Numerical simulations: SRS dominates at intensities above 3-5 PW/cm2 and temperatures above 1-2 keVEmerging subject: energy exchange in the crossing beams

• Large scale numerical kinetic simulations with PIC codes 

• Advanced ray tracing technique for energy absorption and hot electron generation: thick rays

D Batani et al Nuc Fus 2014

Page 22: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Electron energy flux driven by the stimulated Raman scattering

Differential electron energy flux is interpolated by (non-relativistic) Maxwellian functions

ε 8πε

expε

Three groups of hot electrons• Group 1: cavitation• Group 2: SRS backward• Group 3: SRS forward

, keV

Electron energy flux carries the absorbed laser energy from corona in dense plasma

Page 23: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Advanced ray tracing technique: thick rays

The standard ray tracing technique does not account for diffraction and for nonlinear effectsNew approach of complex geometrical optics describes the laser intensity in corona and takes into account the cross beam energy transfer, theponderomotive force and hot electron generation

Each laser beam is constructed from Gaussian beamletsInteraction of beamlets from different beams is allowed 

A Colaitis et al, PRE 2014, 2015

  = ∥ ∥Ray centroid

Ray curvature/widthAbsorption/gain

Page 24: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Example: CBET in OMEGA configuration

Spherical implosion of a CH shell with 60 OMEGA beams

A Colaitis et al,, Phys Rev E 2015

The choice of ablator is important for the CBET control, higher absorption allows to reduce the negative effect

Page 25: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Proposal for the future project

• Better comprehension of the physics of shock drive and the implosion and ignition physics allows us to design a new SI target – robust and compatible with the NIF and LMJ conditions

• Target implosion stability needs to be revisited and coupled to the Polar Direct Drive scheme 

• Design of the methods of control of hot electron spectrum and revision of their role in the spike shock drive

• Design of special diagnostics and numerical tools• Design of experiments on the intermediate facilities

K Anderson et al PhysPlasmas, 2013

Target designed for NIF experiment withGain = 58 at 700 kJ and 450 TW

Page 26: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

LMJ‐PETAL proposal

Main objectives: Study the effect of the optical laser

smoothing on the shock pressure generation Study the effects of hot electrons on the

shock pressure generation

Diagnostics: Shock x-ray radiography K spectroscopy SOP

LIL campaign 2014Hemispherical Target

Simulation

Low backscattered energy No difference vs pulse shape Estimated ablation pressure ≤ 120 Mbar

Page 27: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Program for the full LMJ

Expected performances• 1.2 MJ,  390 TW• 40 quadruplets (33°, 49°)• 160 beams • May be split and repointed

33.2°49°

59°

121°131°

146.8°

Polar Direct Drive configuration:Need to have a good

laser uniformity < 2% ?

33.2°

PDD- LMJ 2 rings

49°

Convergingshock Front

Divergingshock front

Need to generate a strong shock 200-300 Mbar

1-5x1015 W/cm2 (3)

IgnitionFirst step:Target compressionat low velocity ~ 250 km/s

Second step:Shock ignition

Page 28: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Conclusions ‐ summary

Theoretical studies Shock amplification and ignition criteria: pressure amplification factor ~ 100 is need to achieve ignition at 30 Gbar. The ablation pressure > 300 Mbar

Hot electron energy deposition: the model and numerical simulations show that the HiPER target need to be redesigned to prevent the hot electron preheating

Experimental studies Omega strong shock campaign: strong effect of hot electrons on the shock pressure. The pressure > 300 Mbar is demonstrated

LIL experiment: ~ 120 Mbar in the planar geometry, strong effect of target geometry on shock velocity and shape 

Perspectives Shock Ignition proposal for LMJ‐PETAL experiment: studies of the laser beam smoothing on the hot electron production

LMJ target design with PDD implosion, analysis of the CBET effect Analysis of the ignition conditions taking into account the a‐particle kinetics

Page 29: and target design for Shock Ignition scenario of an ICF ... · Physics and target design for Shock Ignition ... Experiments on the strong shock excitation ... Shell compression 2

Collaborators

A.Colaitis, G. Duchateau, E. Le Bel, J. Breil, J.L. Feugeas, E. Llor‐Aisa, Y. Maheut, T. Nguen‐Bui, A. Vallet

CELIA, University of Bordeaux‐CNRS‐CEA, France

S. Baton, M. Koenig LULI, Ecole Polytechnique – UPMC, France

A. Casner, S. Brygoo, C. Reverdin, C. Rousseau CEA DiF, Bruyères le Châtel, France

D. RaffestinCEA CESTA, Le Barp, France

R. Betti, R. Nora, W. TheobaldLaboratory for Laser Energetics, University of Rochester, Rochester, USA