35
A New View on HJLS and PSLQ: Sums and Projections of Lattices Jingwei Chen Damien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de Lyon - UCBL - Université de Lyon - INRIA Laboratoire LIP ISSAC ’13 Boston, USA 28, June, 2013

ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

A New View on HJLS and PSLQ:Sums and Projections of Lattices

Jingwei Chen Damien Stehlé Gilles Villard

Chengdu Institute of Computer Application, CASCNRS - ENS de Lyon - UCBL - Université de Lyon - INRIA

Laboratoire LIP

ISSAC ’13 Boston, USA28, June, 2013

Page 2: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Goals of this talk

To give a better understanding ofthe HJLS and PSLQ algorithms

To propose an algorithm for a fundamental problemon finitely generated additive subgroups of Rn

2 / 24

Page 3: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Outline

1 Background

2 A new view on HJLS-PSLQ

3 Decomp using HJLS

4 Conclusion and open problems

3 / 24

Page 4: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Outline

1 Background

2 A new view on HJLS-PSLQ

3 Decomp using HJLS

4 Conclusion and open problems

4 / 24

Page 5: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Lattices

d -dimensional lattice ,∑

i≤d Zbifor linearly indep. bi ’s in Rn ,referred to as lattice basis.Bases are not unique when d ≥ 2,but related one another by integertransforms with determinant ±1.

A lattice is also a discrete additivesubgroup of Rn .

λ1(Λ) = min{‖b‖2 : b ∈ Λ \ 0}.

b1b2

b3

b4

(−2 101 6

)

=

(1 21 1

)·(

4 2−3 4

).

5 / 24

Page 6: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Integer relation finding

The problemAn integer relation m ∈ Zn \ 0 for x ∈ Rn satisfies

〈m,x〉 = 0.

Does there exist any? Find one/all.

Let Λx := Zn ∩ x⊥. Then Λx is a lattice.

ApplicationFor α, find f (x ) ∈ Z[x ] such that f (α) = 0.

6 / 24

Page 7: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

A brief history of integer relation finding

Ferguson and Forcade ’79LLL: Lenstra, Lenstra and Lovász ’82HJLS: Håstad, Just, Lagarias and Schnorr ’89PSLQ: Ferguson, Bailey and Arno ’99

RemarkEssentially, PSLQ is equivalent to HJLS.

7 / 24

Page 8: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Motivation of the present work

“... Ferguson and Forcade’s generalization,although much more difficult to implement (andto understand), is also more powerful...” 1

1B. Cipra ’00. The best of the 20th century: Editors name top 10 algorithms.8 / 24

Page 9: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

The HJLS-PSLQ algorithm [HJLS89, FBA99]

Input: x = (xi) ∈ Rn with xi 6= 0.Output: m ∈ Λx \ 0, or assert λ1(Λx ) ≥M .

1. Compute a lower trapezoidalmatrix Hx ∈ Rn×(n−1) whosecolumns form a basis of x⊥.Let H := Hx .

Partial Sums: s2k =∑n

j=k x 2j n − 1

n

9 / 24

Page 10: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

The HJLS-PSLQ algorithm [HJLS89, FBA99]

2. While hn−1,n−1 6= 0 do2.1. Choose r maximizing 2r · |hr ,r |2;

swap the r -th and (r + 1)-th rows of H ;LQ decompose H .

2.2. Size-reduce the rows of H (s.t. |hi ,j | ≤ |hj ,j | /2 for i > j ).[If hn−1,n−1 6= 0, then λ1(Λx ) > 1/max{hi ,i }.]

3. Return the last row ofU−T , where U is theproduct of all transformmatrices.

hn−1,n−1 = 0

hn,n−1 6= 0

n − 1

n

9 / 24

Page 11: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Some comments on HJLS-PSLQ

A generic description1 Compute Hx .2 Reduce the rows of Hx .3 Return the last row of U−T .

RemarksThe rows of Hx may not form a lattice.Global swap condition.U−T & duality.

10 / 24

Page 12: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Outline

1 Background

2 A new view on HJLS-PSLQ

3 Decomp using HJLS

4 Conclusion and open problems

11 / 24

Page 13: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

The Intersect problem

A lattice Λ ⊆ Rn

A vector space E ⊆ Rn

Λ ∩E is a lattice.

The Intersect problemGiven Λ and E , how to compute a basis of Λ ∩E ?

Integer relation finding: Λ = Zn and E = x⊥

12 / 24

Page 14: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

The Intersect problem

A lattice Λ ⊆ Rn

A vector space E ⊆ Rn

Λ ∩E is a lattice.The Intersect problemGiven Λ and E , how to compute a basis of Λ ∩E ?

Integer relation finding: Λ = Zn and E = x⊥

12 / 24

Page 15: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Two more questions about lattices

Is Λ1 +Λ2 a lattice ?How about π(Λ,E ) ?

Sum

Λ1 = Z · (1, 0) ⊆ R2,

Λ2 = Z · (√

2, 0) ⊆ R2,

Λ1 +Λ2 = Z2 · 1 0√

2 0

.

Projection

Λ = Z2 · 1 0√

2 1

⊆ R2,

E = R · (1, 0) ⊆ R2,

π(Λ,E ) = Z2 · 1 0√

2 0

.

13 / 24

Page 16: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Two more questions about lattices

Is Λ1 +Λ2 a lattice ?How about π(Λ,E ) ?

Sum

Λ1 = Z · (1, 0) ⊆ R2,

Λ2 = Z · (√

2, 0) ⊆ R2,

Λ1 +Λ2 = Z2 · 1 0√

2 0

.

Projection

Λ = Z2 · 1 0√

2 1

⊆ R2,

E = R · (1, 0) ⊆ R2,

π(Λ,E ) = Z2 · 1 0√

2 0

.

13 / 24

Page 17: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Two more questions about lattices

Is Λ1 +Λ2 a lattice ?How about π(Λ,E ) ?

Sum

Λ1 = Z · (1, 0) ⊆ R2,

Λ2 = Z · (√

2, 0) ⊆ R2,

Λ1 +Λ2 = Z2 · 1 0√

2 0

.

Projection

Λ = Z2 · 1 0√

2 1

⊆ R2,

E = R · (1, 0) ⊆ R2,

π(Λ,E ) = Z2 · 1 0√

2 0

.

13 / 24

Page 18: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Finitely generated additive subgroup of Rm

FGASGiven a1, · · · , an ∈ Rm , we consider the set

S(ai) =n∑

i=1

Zai =

{n∑

i=1

ziai : zi ∈ Z

}⊆ Rm .

Then S is a Finitely Generated Additive Subgroup of Rm .

S(ai)←→ ∑̀i=1

Λi ←→ π(Λ,E )

14 / 24

Page 19: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Geometric interpretation

Z3 ·

1 02 01 1

= Z2.

b1

b2

b3

15 / 24

Page 20: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Geometric interpretation

Z3 ·

1 0√2 0

1 1

15 / 24

Page 21: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Geometric interpretation

The closure of Z3 ·

1 0√2 0

1 1

is Z · (0, 1) ⊥⊕ R · (1, 0).

b1

b2

b3

15 / 24

Page 22: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

The Decomp problem

Theorem (Adapted from [Bourbaki ’67, Chap. VII, Th. 2])Given a fgas S ⊆ Rm , its closure S has the uniquedecomposition S = Λ+E with span(Λ) ⊥ E , and:

Λ: a lattice,E : a vector space.

↓ ↓The Decomp problemGiven a generating set of S, how to compute a basis ofthe lattice component of a fgas ?

16 / 24

Page 23: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

The dual of a fgas

The dual lattice of a lattice Λ:

Λ∗ = {c ∈ span(Λ): ∀b ∈ Λ, 〈b, c〉 ∈ Z}.

The dual lattice of a fgas S:

S∗ = {c ∈ span(S): ∀b ∈ S, 〈b, c〉 ∈ Z}.

PropertyIf S = Λ

⊕E with span(Λ) ⊥ E , then S∗ = Λ∗.

17 / 24

Page 24: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Link between Intersect and Decomp

The Intersect problem

Λ ∩E

m The key equationΛ ∩E = π(Λ∗,E )∗

The Decomp problem

S = Λ+E

18 / 24

Page 25: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Link between Intersect and Decomp

Λdual lattice−−−−−−−−→ Λ∗

Intersecty y projection

Λ ∩E ←−−−−−−−−dual lattice

π(Λ∗,E )

dual latticex y Decomp

Λ ′ ←−−−−−−−−−−−−lattice component

Λ ′ ⊕E ′

18 / 24

Page 26: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

A new view on HJLS-PSLQ

Zn ∩ x⊥ = π(Zn ,x⊥)∗

Zn dual lattice−−−−−−−−→ Zn

Intersecty y projection Hx

one element inZn ∩ x⊥ ←−−−−−−−−

dual latticeπ(Zn ,x⊥)

dual latticex y partially Decomp

mZ ←−−−−−−−−latt. comp.

mZ⊕ ?

19 / 24

Page 27: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Outline

1 Background

2 A new view on HJLS-PSLQ

3 Decomp using HJLS

4 Conclusion and open problems

20 / 24

Page 28: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Decomp_HJLSInput: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).Output: a basis of the lattice component Λ of the fgas spanned by A.

HJLS-PSLQ Decomp_HJLS

hn−1,n−1

n − 1

n

m

nd

hn−1,n−1 = 0

hn,n−1 6= 0

n − 2

n

0

d

n

21 / 24

Page 29: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Decomp_HJLSInput: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).Output: a basis of the lattice component Λ of the fgas spanned by A.

HJLS-PSLQ

Decomp_HJLS

hn−1,n−1

n − 1

n

m

nd

hn−1,n−1 = 0

hn,n−1 6= 0

n − 2

n

0

d

n

21 / 24

Page 30: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Decomp_HJLSInput: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).Output: a basis of the lattice component Λ of the fgas spanned by A.

HJLS-PSLQ Decomp_HJLS

hn−1,n−1

n − 1

n

m

nd

hn−1,n−1 = 0

hn,n−1 6= 0

n − 2

n

0

d

n

21 / 24

Page 31: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Decomp_HJLSInput: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).Output: a basis of the lattice component Λ of the fgas spanned by A.

HJLS-PSLQ Decomp_HJLS

hn−1,n−1

n − 1

n

m

nd

hn−1,n−1 = 0

hn,n−1 6= 0

n − 2

n

0

d

n

21 / 24

Page 32: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Complexity bound on Decomp_HJLSInput: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).Output: a basis of the lattice component Λ of the fgas spanned by A.

The number of loop iterations consumed byDecomp_HJLS is

O(r 3 + r 2 log

Xλ1(Λ)

),

where r = rank(A).The number of real arithmetic operations consumedat each loop iteration is O(nm2).

22 / 24

Page 33: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Outline

1 Background

2 A new view on HJLS-PSLQ

3 Decomp using HJLS

4 Conclusion and open problems

23 / 24

Page 34: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Conclusion and open problemsConclusion

Exhibit a link between Intersect and DecompProvide another view on HJLS-PSLQDescribe an algorithm for Decomp

Open problemsTo investigate the numerical stabilityTo analyze the bit-complexityTo develop algorithms that directly solve Intersect

Thanks

24 / 24

Page 35: ANewViewonHJLSandPSLQ · ANewViewonHJLSandPSLQ: SumsandProjectionsofLattices Jingwei ChenDamien Stehlé Gilles Villard Chengdu Institute of Computer Application, CAS CNRS - ENS de

Conclusion and open problemsConclusion

Exhibit a link between Intersect and DecompProvide another view on HJLS-PSLQDescribe an algorithm for Decomp

Open problemsTo investigate the numerical stabilityTo analyze the bit-complexityTo develop algorithms that directly solve Intersect

Thanks24 / 24