32
UTN FACULTAD REGIONAL CÓRDOBA INGLES I Selección de Material y Ejercitación MBA Lic. ADRIANA DEZA 2014

Apunte Ingles i - Ingenieria Quimica 2015

Embed Size (px)

DESCRIPTION

INGLES TECNICO 1 , APUNTE CORRESPONDIENTE PARA INGENIERIA QUIMICA EN UTN - FRC CORDOBA, ARGENTINA.

Citation preview

Page 2: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 2

INTRODUCCIÓN

Esta recopilación y ejercitación no está pensada como una autoguía de estudio, sino como soporte de clases presenciales. Busca colaborar con el desarrollo de tus propias habilidades lectoras e interpretativas de textos escritos en idioma inglés que versen sobre cuestiones relacionadas a tu opción de estudios universitarios, es decir, la Química en general y la Ingeniería Química en particular.

Los textos que se incluyen son, en su mayoría, originales, por ello se cita la fuente informática de la cual se obtuvieron. La ejercitación es gradual y orientativa, dirigida a que internalices estrategias que te permitan inferir el significado de palabras, de frases o de estructuras opacas para un hispano-parlante, “minimizando” el uso del diccionario, es decir, promoviendo su utilización como último recurso, abordando eventualmente las búsquedas de un modo inteligente y efectivo.

Nos apoyaremos en tu Weltanshauung, tu Cosmovisión de alumno universitario argentino, de habla hispana, que a tu edad ya ha tenido una virtual sobreexposición mediática a la lengua inglesa desde la infancia.

Recurriremos a la Gramática, ciencia que estudia los elementos de una lengua y sus combinaciones y a la Gramática Comparada, para establecer relaciones entre ambas lenguas, haciendo permanentes análisis lexicos, semánticos y sintácticos a partir de tus propios conocimientos y de los nuevos conceptos que vayas adquiriendo.

Te invito a compartir dos módulos de aprendizaje, en los que reforzarás tus capacidades de lector autónomo y competente y desarrollarás tus habilidades intelectuales superiores: reconocimiento, comprensión, aplicación y análisis, síntesis y evaluación de información relevante en idioma extranjero, en un ambiente de respeto y cordialidad, para que la instancia aúlica resulte satisfactoria para todos quienes participan.

Te invito a que compruebes cuántas cosas no sabías que sabías…

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill

Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.

Page 3: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 3

UNIDAD 1 – DEFINICIÓN – IDEA GENERAL – PALABRAS Y SIGNIFICADOS TRANSPARENTES –

COGNADOS – FRASE SUSTANTIVA – SUSTANTIVOS – ARTÍCULOS – SUFIJOS – CASO GENITIVO

Gas Laws

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Gases behave differently from the other two commonly studied states of matter, solids and liquids, so we have different methods for treating and understanding how gases behave under certain conditions. Gases, unlike solids and liquids, have neither fixed volume nor shape. They are molded entirely by the container in which they are held. We have three variables by which we measure gases: pressure, volume, and temperature. Pressure is measured as force per area. The standard SI unit for pressure is the pascal (Pa). However atmospheres (atm) and several other units are commonly used. The table below shows the conversions between these units.

Units of Pressure

1 pascal (Pa) 1 N*m-2 = 1 kg*m-1*s-2

1 atmosphere (atm) 1.01325*105 Pa

1 atmosphere (atm) 760 torr

1 bar 105 Pa

Volume is related between all gases by Avogadro's hypothesis, which states: Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. From this, we derive the molar volume of a gas (volume/moles of gas). This value, at 1 atm, and 0° C is shown below.

The Ideal Gas Law assumes several factors about the molecules of gas. The volume of the molecules is considered negligible compared to the volume of the container in which they are held. We also assume that gas molecules move randomly, and collide in completely elastic collisions. Attractive and repulsive forces between the molecules are therefore considered negligible.

Previously, we considered only ideal gases, those that fit the assumptions of the ideal gas law. Gases, however, are never perfectly in the ideal state. All atoms of every gas have mass and volume. When pressure is low and temperature is low, gases behave similarly to gases in the ideal state. When pressure and temperature increase, gases deviate farther from the ideal state. We have to assume new standards, and consider new variables to account for these changes. A common equation used to better represent a gas that is not near ideal conditions is the Van der Waals equation, seen below.

SIGNIFICADOS: En un texto encontramos palabras cuyo significado se puede deducir con

facilidad, otras palabras resultan “transparentes” por su similitud con términos en español.

CONSIGNAS

1. Subraye las palabras transparentes;

2. Marque y explique los cambios de tipografía;

3. ¿Qué relación tiene la tabla con el texto?

4. ¿Cuáles palabras son sustantivos? ¿Cuáles son artículos y adjetivos?

5. Recuerde la función que cumple el adverbio en la oración. En Castellano, la terminación más usual de adverbio es el sufijo –mente. ¿Y en Inglés? ¿Cuales son los adverbios en este texto?

Page 4: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 4

DEFINITIONS

Absolute Entropy (of a substance)

The increase in the entropy of a substance as it goes from a perfectly ordered

crystalline form at 0 °K (where its entropy is zero) to the temperature in

question.

Absolute Zero

The zero point on the absolute temperature scale; -273.15°C or 0 K;

theoretically, the temperature at which molecular motion ceases.

Adhesive Forces

Forces of attraction between a liquid and another surface.

Alcohol

Hydrocarbon derivative containing an --OH group attached to a carbon atom

not in an aromatic ring.

Allotropes

Different forms of the same element in the same physical state.

Alloying

Mixing of a metal with other substances (usually other metals) to modify its

properties.

http://home.nas.net/~dbc/cic_hamilton/dictionary/a.html

Table of Contents for Chemical Education Resources Analytical Chemistry

1. •Analytical Spectroscopy 2. •Chromatography 3. •Forensic Chemistry 4. •Instrumental Analysis 5. •Quantitative Analysis 6. •Statistics in Analytical Chemistry 7. •Software for Analytical Chemistry Biochemistry

Biochemistry 1. Biochemistry Laboratory 2. Inorganic Biochemistry 3. Models for Biochemistry 4. Software for Biochemistry

http://www.umsl.edu/~chemist/books/texts.html

CONSIGNAS

6. Definiciones: analice las definiciones. ¿Cuáles son las estructuras que se repiten? ¿Son transparentes?

7. ¿Qué contiene una “Table of Contents”?

8. ¿Cuáles palabras son sustantivos? ¿Cuáles son adjetivos?

9. Que inferencia puedes hacer en relación a la sintaxis de la frase sustantiva más simple (sustantivo + modificadores)

10. ¿Cuáles son las funciones de la lengua que encontramos en los textos de esta unidad?

Page 5: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 5

UNIDAD 2 – DEFINICIÓN – EXISTENCIA – FRASE SUSTANTIVA – PRESENTE SIMPLE –

PLURALES REGULARES y PLURALES IRREGULARES

States of Matter

Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these

particles differ in the three phases. The following figure illustrates the microscopic differences.

Note that:

Particles in a:

o gas are well separated with no regular arrangement.

o liquid are close together with no regular arrangement.

o solid are tightly packed, usually in a regular pattern.

Particles in a:

o gas vibrate and move freely at high speeds.

o liquid vibrate, move about, and slide past each other.

o solid vibrate (jiggle) but generally do not move from place to place.

Liquids and solids are often referred to as condensed phases because the particles are very close

together. The following table summarizes properties of gases, liquids, and solids and identifies

the microscopic behavior responsible for each property.

Characteristics of Gases, Liquids and Solids, Microscopic Explanation for the Behavior

gas liquid solid

It assumes the shape and

volume of its container

Particles can move past one

another

It assumes the shape of the

container which it occupies

Particles can move/slide past

one another

It retains a fixed volume and

shape

Rigid - particles locked into

place

It’s compressible

There is a lot of free space

between particles

It isn’t easily compressible

There is little free space

between particles

It isn’t easily compressible

There is little free space between

particles

A Gas flows easily

Its particles can move past

one another

A Liquid flows easily

Its particles can move/slide

past one another

A Solid doesn’t flow easily

Its rigid particles cannot

move/slide past one another

CONSIGNAS

11. Analice las definiciones. ¿Cuáles son las expresiones utilizadas?

12. Subraye los verbos, y las expresiones verbales.

13. Identifique los verbos en presente simple. Identifique el verbo auxiliar utilizado en este tiempo verbal.

14. ¿Cuáles palabras terminadas en “s” son sustantivos en plural? ¿Cuáles son verbos en 3ª. persona singular del tiempo presente simple?

15. Indique cómo se formaron las oraciones negativas.

Page 6: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 6

MORFOLOGÍA: Plurales regulares e irregulares.

Muchos sustantivos en inglés forman su plural agregando una –s, –es; otros cambian su -y final por la terminación –ies; o la terminación –f o –fe por –ves. Los sustantivos de origen griego o latino conservan sus formas plurales del idioma original.

Recordar que en inglés, los adjetivos no asumen formas diferentes por género ni número.

a. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media

b. "Criteria" is the plural form of the singular noun "criterion."

c. "Media" is the plural form of the noun "medium." We frequently hear "media" used as a singular, especially by the advertising industry, as in “mass media”.

d. Many theses were written on the 2001 economic crisis.

e. The atomic radius is determined entirely by the electrons: The size of the atomic nucleus is measured in femtometres.

f. Family Theory Versus the Theories of Families. Author: Kerry Daly

g. American colonies broke with their mother country in 1776, Argentine ones in 1816.

h. Label boxes clearly with CAUTION, FRAGILE, GLASS, and HEAVY signs.

i. “Sudden Job Loss Destroys Lives”.

1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

LIFE PHENOMENA AND MEASUREMENT ANALYSIS

The area of this research covers studies aiming to create seeds for innovative technologies based on creative ideas on living matter concerning techniques for measurements and analyses based on new principles and methods necessary for the elucidation of life phenomena.

More concretely, it covers new techniques for measurements and analyses of various chemical processes in cells and for the elucidation of life phenomena of cells, living matter, and ecological systems ranging from a micro-scale to a macro-scale. It covers studies expected to trigger the creation of new methodologies and technological development that aim to obtain unique results in life science technologies. It also includes environmental measurements associated with life phenomena. In the field of life science, studies in biomolecular science such as structural biology, which are closely associated with the structures and functions of biomolecules, are actively carried out. Needless to say, this research area undoubtedly has the molecular science of life phenomena within its view. It is becoming clearer that the area of chemistry is shifting from "chemistry of biomolecules" to "chemistry of life phenomena (chemical biology)", which aims at the chemical elucidation of life phenomena. However, a leaping development in technology for measurements and analyses related to life phenomena is essential for the progress from science of biomolecules to that of life phenomena. The science of life phenomena can not make progress without unique techniques for measurements and analyses of interactions of biomolecules in living matter and cell or at levels of living matter, cell, individual, and, further, ecology. Studies that are positive for the development of advanced methods for measurements and analyses based on new concepts by taking advantage of physical, chemical, and biological phenomena are welcome for the purpose of elucidating life phenomena including various complex chemical processes. This research area includes studies on measurements and analyses covering environment related to life phenomena.

de http://www.seimei.jst.go.jp/en/ryoiki/index.html

CONSIGNAS

1. Subraye todas las palabras que considere que están en plural.

2. Identifique los plurales Griegos y Latinos. ¿Cuáles son las formas más utilizadas en este texto? ¿Cuáles son las formas singulares de esos mismos términos?

3. Subraye los verbos, y las expresiones verbales. ¿Cual es el tiempo que predomina?

4. ¿Qué funciones de la lengua predominan?

Page 7: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 7

Repaso de lo visto en las Unidades I y II. Reconocimiento de palabras transparentes y de relaciones lógico semánticas entre las ideas. Inferir significado por la morfología de las palabras. Formas plurales. El “Caso Posesivo” o “Caso Genitivo” y sus formas usuales. La frase sustantiva. El tiempo verbal Presente Simple.

Laws of Chemistry

Summary of Major Chemistry Laws

By Anne Marie Helmenstine, Ph.D., About.com

Avogadro's Law

Equal volumes of gases under identical temperature and pressure conditions contain equal numbers of particles (atoms, ion, molecules, electrons, etc.).

Boyle's Law

At constant temperature, the volume of a confined gas is inversely proportional to the pressure to which it is subjected.

Charles' Law

At constant pressure, the volume of a confined gas is directly proportional to the absolute temperature.

Dalton's Law

The pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases.

Faraday's Law

The weight of any element liberated during electrolysis is proportional to the quantity of electricity passing through the cell and also to the equivalent weight of the element.

Gay-Lussac's Law

The ratio between the combining volumes of gases and the product (if gaseous) can be expressed in small whole numbers.

Graham's Law

The rate of diffusion or effusion of a gas is inversely proportional to the square root of its molecular mass.

Henry's Law

The solubility of a gas (unless it is highly soluble) is directly proportional to the pressure applied to the gas.

First Law of Thermodynamics

Conservation of Energy. The total energy of the universe is constant and is neither created nor destroyed.

Second Law of Thermodynamics

Entropy increases over time. Another way of stating this law is to say that heat cannot flow, on its own, from an area of cold to an area of hot.

Page 8: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 8

UNIDAD 3 – VOZ ACTIVA – VOZ PASIVA – FUNCIONES DISCURSIVAS / FUNCIONES RETÓRICAS

BÁSICAS DEL DISCURSO CIENTÍFICO-TÉCNICO (DEFINICIÓN, CLASIFICACIÓN, ENUMERACIÓN, DESCRIPCIÓN, DESCRIPCIÓN DE PROCESO, INSTRUCCIONES, EJEMPLIFICACIÓN, COMPARACIÓN / CONTRASTE, ETC.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chemistry (from Egyptian kēme (chem), meaning "earth") is the science concerned

with the composition, structure, and properties of matter, as well as the changes it

undergoes during chemical reactions. Historically, modern chemistry evolved out of

alchemy following the chemical revolution (1773). Chemistry is a physical science related

to studies of various atoms, molecules, crystals and other aggregates of matter whether in

isolation or combination, which incorporates the concepts of energy and entropy in

relation to the spontaneity of chemical processes.

Disciplines within chemistry are traditionally grouped by the type of matter being studied

or the kind of study. These include inorganic chemistry, the study of inorganic matter;

organic chemistry, the study of organic matter; biochemistry, the study of substances

found in biological organisms; physical chemistry, the energy related studies of chemical

systems at macro, molecular and submolecular scales; analytical chemistry, the analysis of

material samples to gain an understanding of their chemical composition and structure.

Many more specialized disciplines have emerged in recent years, e.g. neurochemistry the

chemical study of the nervous system

http://en.wikipedia.org/wiki/Chemistry#Etymology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Element The concept of chemical element is related to that of chemical substance. A chemical

element is characterized by a particular number of protons in the nuclei of its atoms. This

number is known as the atomic number of the element. For example, all atoms with 6

protons in their nuclei are atoms of the chemical element carbon, and all atoms with 92

protons in their nuclei are atoms of the element uranium. However, several isotopes of an

element, that differ from one another in the number of neutrons present in the nucleus,

may exist.

The most convenient presentation of the chemical elements is in the periodic table of the

chemical elements, which groups elements by atomic number. Due to its ingenious

arrangement, groups, or columns, and periods, or rows, of elements in the table either

share several chemical properties, or follow a certain trend in characteristics such as

atomic radius, electronegativity, etc. Lists of the elements by name, by symbol, and by

atomic number are also available.

CONSIGNAS

1. ¿Cómo se forma la voz pasiva en Inglés? ¿Y en Castellano?

2. Identifique los verbos y la Voz en que se encuentran.

3. En general, ¿Cuándo se prefiere la Voz Pasiva a la Voz Activa en textos técnicos?

4. ¿Que función cumple el “Complemento Agente”?

5. Identifica en los textos los complementos agente y distínguelos de otras expresiones introducidas por “by”.

6. ¿Cuales son las formas más utilizadas en este texto? ¿Cuáles son las formas singulares de esos mismos términos?

7. ¿Qué funciones de la lengua predominan en estos textos?

Page 9: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 9

CONSIGNAS 2 – Ejercicios de Lecto-comprensión

I. REFERENCIA – (¿A qué remiten los siguientes términos?) Texto: CHEMISTRY

1. it (l. 2)

2. which (l. 6)

3. These (l.9)

4. their (l. 13)

II. REFERENCIA – (¿A qué remiten los siguientes términos?) Texto: ELEMENT

5. that (l. 1)

6. its (l. 2)

7. This (l.2)

8. their (l. 5)

9. which (l. 10)

10. its (l. 10)

III. EXPRESIONES – (¿Qué tipo de relación establecen los siguientes conectores?)

Texto: CHEMISTRY

11. as well as (l. 2)

12. wether...or (l. 6/7)

13. grouped by (l.8)

14. e.g. (l. 14)

IV. EXPRESIONES – (¿Qué tipo de relación establecen los siguientes conectores?)

Texto: ELEMENT

15. (be) related to (l. 2)

16. (be) known as (l. 4)

17. However (l.6)

18. Due to. (l. 10)

19. either...or (l. 11/12)

20. such as (l. 12)

V. CONTENIDO / NO CONTENIDO (de línea de referencia ) Texto: CHEMISTRY

1. La ciencia química y la alquimia estuvieron originalmente vinculadas

2. El tipo de materia bajo estudio es lo que diferencia las disciplinas dentro de la química

3. Bioquímica es el estudio de la materia orgánica

4. La neuroquímica es el estudio del sistema nervioso

VI. CONTENIDO / NO CONTENIDO (de línea de referencia ) Texto: ELEMENT

5. El número de protones en el núcleo caracteriza a los elementos químicos

6. Los atomos carbono tienen 6 protones en su nucleo, los atomos de uranio, 92

7. Los isótopos se diferencian en el número de neutrones contenidos en el nucleo

8. La tabla periódica fue una contribución de Mendeleev al estudio de la Química

Page 10: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 10

NEXOS Y FRASES CONECTORAS

ADICION: Agregan datos o información a lo ya dicho.

And Both … and In addition / to

Also As well / as well as Besides

Apart from Furthermore Moreover

CAUSA / CONSECUENCIA: Si bien en general se encuentran en relaciones que contienen ambos elementos, se debe indicar si el nexo introduce la causa o la consecuencia.

o CAUSA / RAZÓN

Because / of Since As

On account of In view of For

Owing to Due to

o CONSECUENCIA / EFECTO / RESULTADO

So As a result For this reason

And so As a consequence So that

Therefore Then Consequently

Hence Thus With the result that

CONDICIÓN: Introducen la condición que debe cumplirse para que se cumpla lo expresado en la proposición principal.

If Or else As / So long as

But for Otherwise Should (sintaxis invertida)

Unless Provided / providing Have / Be (sintaxis invertida)

TEMPORALES: Establecen una relación de tiempo, indicando un suceso anterior, simultáneo o posterior.

First/ly Earlier At the same time

After Next In the beinning

When / As Before At this point

While / As Later / on Up to this point

Lately Ultimately Then

At last Meanwhile Eventually

Since then From … to Since

EJEMPLIFICACIÓN: El componente que sigue al nexo complementa, ejemplifica o redefine lo que se dice antes.

e.g. For instance Such as

For example Namely That is

COMPARACIÓN: confrontan semejanzas o diferencias entre dos o mas elementos de igual valor, o a uno con todo el universo comparable.

Like Likewise In much the same way as

As … as Unlike

Page 11: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 11

PROPÓSITO, INTENCIÓN, FINALIDAD: Indican precisamente el propósito por el cual se realiza lo expresado en la oración principal.

To + infinitivo In order to + infinitivo For + ~ ing

So that So as to

RESÚMEN, RECAPITULACIÓN, CONCLUSIÓN: Introducen un enunciado que cierra, resuelve o concluye lo anteriormente dicho en el texto.

In conclusion In summary To summarize

CONTRASTE, OPOSICIÓN, CONTRADICCIÓN, CONTRAJUNCIÓN: vinculan frases cuyos contenidos son opuestos, adversos, contrarios, prevaleciendo la idea introducida por el conector. En la CONCESIÓN, prevalece la idea no introducida por el conector.

Though But Nevertheless

Although However Yet

Even though In contrast While

Whereas Instead On the other hand

Despite Conversely In spite of

DISYUNCIÓN O ALTERNANCIA: implican oposición entre dos ideas.

Either … or Neither … nor Whether … or

REPETICIÓN O ENFASIS:

Above all Particularly Actually

In other words In particular Indeed

Most importantly In fact Really

o Despite the increasing significance of precious metals secondary sources, the bulk are still recovered by tradicional mining processes.

A pesar de

o Hydrometallurgical schemes deal with the fundamental chemistry of the precious metals as well as extraction mechanisms.

asi como también

Page 12: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 12

o In spite of the positive aspects, there are still some drawbacks to secondary source precious metal recovery.

o The material on thermochemistry (Chapter 14) has been expanded to include energy changes at constant volume as well as at constant pressure.

o In order to write the formula, enter through the keyboard the power to which you wish to raise the number

o Ignore the minus sign if the exponent is a negative number.

o When homework assignments are returned and you find some problems marked wrong (in spite of your efforts), do something about it soon.

o The number need not be an integer, plus it may be less than one as well as larger than one.

o The mathematics used in general chemistry is elementary, involving only arithmetic and simple algebra. Nevertheless, if you don't understand it, you can expect troubles before long. Actually, before you can really get into chemistry, you need to master the mathematical operations in the first six chapters.

o Throughout this chapter, we talked as though every number we wish to use with a calculator must be entered through the keyboard. Frequently, however, we wish to use the result of a just-performed calculation (i.e. a number which is still visible in the lighted display) as part of the next calculation step.

Page 13: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 13

O UNIDAD 4 – GRADOS DE COMPARACIÓN DE ADJETIVOS – GRADO SUPERLATIVO

El GRADO COMPARATIVO puede ser de SUPERIORIDAD, de IGUALDAD, o de INFERIORIDAD.

A) COMPARATIVOS Y SUPERLATIVOS DE SUPERIORIDAD

Los adjetivos monosilábicos y algunos bisilábicos utilizan para su forma

comparativa: -er than, y para su forma superlativa the -est.

positive comperative superlative positive comperative superlative

strong stronger than The strongest big bigger than The biggest

small smaller than The smallest thin thinner than The thinnest

late later than The latest fat fatter than The fattest

nice nicer than The nicest white whiter than The whitest

Los demás se comparan con more... than, y su forma superlativa es the most.

positive comperative superlative

careful more careful than the most careful

expensive more expensive than the most expensive

difficult more difficult than the most difficult

tired more tired than the most tired

terrible more terrible than the most terrible

Irregular forms

positive comperative superlative positive comperative superlative

good better The best many more The most

bad worse The worst little less The least

much more The most

B) COMPARATIVOS DE IGUALDAD (AS... AS / SO...AS)

From a purely human viewpoint chemical kinetics is as important as The Second Law of Thermodynamics.

Nitrogen has proved to be as relevant as carbon in climate change.

C) COMPARATIVOS DE INFERIORIDAD (LESS ... THAN)

FDA's regulations are less stringent than some international standards

The chemical controls in the list to your left are safer to use than most chemical pesticides, and less expensive, too.

C) SUPERLATIVOS DE INFERIORIDAD (THE LEAST…)

Gold is likely the earliest metal known to humanity because it can be found in its native form and is easier to work (softer) than copper, which is also found in its native form. Gold is the least active of the metals.

Page 14: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 14

CONSIGNAS

1. Identifique los adjetivos en grado comparativo.

2. Defina de qué tipo de comparación se trata

1

2

3

4

5

6

7

8

DEPOLLUTION AND PHOTOCATALYSIS de http://www.precast.org/publications/solutions/2006_fall/feature_words.htm

Today, the industry has two new words to get acquainted with, words that may be even more important since they affect not just construction but the very quality of life in our communities: depollution and photocatalysis.

Depollution is the opposite of pollution and means the removal of contaminants and impurities from the environment. The newest tool for achieving depollution is a photocatalyst, a material that uses solar energy to accelerate chemical reactions without being consumed or depleted in the process. As new as these words are, they are rapidly entering the vocabulary of designers and builders around the world.

Ahora complete la siguiente ejercitación de Lecto-comprensión sobre estos textos.

REFERENCIA: ¿A qué remiten los términos destacados?

1. They (l.2)

2. Our (l.2)

3. They (l.7)

CONECTORES: ¿Qué tipo de relación establecen? Complete la estructura que les da sentido.

Since (l-2)

FUNCIONES RETÓRICAS: Dé líneas de referencia y tradúzcalas en contexto

1. Definición: Depolution

2. Definición: Photocatalyst

Page 15: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 15

LECTOCOMPRENSIÓN: RESUELVA LAS CONSIGNAS EN RELACIÓN A ESTE TEXTO

ZINC

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21

Zinc is crystalline (hexagonal), moderately hard and brittle, and has a bluish-white color. Its vapor density corresponds with the formula Zn. It readily burns in air when the turnings are heated in a flame, or the metal is heated strongly in a crucible, producing a white cloud of oxide which settles out in the form of woolly flocks. These were called “Philosopher’s wool”, nix alba or pompholyx by the alchemists. A tassel of thin sheet of zinc tipped with a little burning sulphur burns brilliantly in oxygen. The metal oxidizes in moist air forming a greyish-white crust of the basic carbonate, and is attacked and dissolved by soft water, especially that containing peat acids, or sea water.

Zinc is more resistant to moist air than iron, and is used as a protection for this metal. The iron sheets or wire are cleaned by a sand-blast and “pickling” in dilute hydrochloric acid, and are dipped into molten zinc where an adherent coating of the latter is formed. This process is known as galvanizing and the product as galvanized iron. Iron particles may also be coated with zinc by spraying or by heating them in zinc dust (sherardizing). The zinc dissolves before iron in presence of oxygen and moisture, since it is more electropositive than iron. The metal is also used for the negative electrodes of the voltaic cell.

Zinc dissolves in dilute acid evolving hydrogen (except before nitric acid) and producing zinc salts containing the cations Zn”. It also dissolves readily in hot solutions of potassium or sodium hydroxides (magnesium is insoluble), evolving hydrogen and forming solutions of zincates.

1. En qué renglones se habla de los siguientes temas?

a. Disolución

b. Propiedades

c. Comparación del zinc y el hierro

d. Procesos de protección del hierro

2. REFERENCIA (A qué/quién remiten los términos?)

a. Its (l.2)

b. It (l.2)

c. These (l. 5)

d. That (l. 8)

e. Them (l. 15)

Page 16: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 16

3. RESOLVER

a. En la línea 16 hay una comparación. Diga si es de igualdad, superioridad o de inferioridad y qué se compara.

b. ¿Qué es el hierro galvanizado?

c. Describa el proceso de sherardising

d. Describa lo que dice el texto sobre la disolución del zinc

4. Busque en el texto ANTONIMOS de los siguientes términos.

Soft Hardly

Cooled Weakly

The former After

Cold

5. CONECTORES – Diga que tipo de relación establece y complete las funciones lógicas.

When (l.3)

Since (l.16)

6. Que expresan…?

a. By soft water a) Agente; b) método; c) propósito

b. By spraying or heating them a) Agente; b) método; c) propósito

c. Iron particles may also be coated a) obligación; b) posibilidad; c) habilidad

Page 17: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 17

UNIDAD 5 – USOS DEL INFINITIVO – EL FUTURO SIMPLE – REPASO DE LOS TIEMPOS

VERBALES PRESENTE SIMPLE Y PRESENTE CONTINUO

de http://www.nmsu.edu/~ucomm/Releases/2006/november/clean_water.htm

Students investigate methods to remove arsenic and fluoride from water

1 2

3 4

5 6

7 8 9

10 11 12 13

14 15

16 17 18 19

20 21 22 23

24 25 26 27 28

29 30

31 32 33

Skills learned while studying to become a chemical engineer are something A.M. Torres can take back home to share with her community in Palomas, Mexico.

Torres is working alongside two other junior chemical engineering students at New Mexico State University, to clean up drinking water in the border region.

“I have a personal interest in our water treatment project because I am from Mexico and the project involves USA-Mexico border water treatment,” Torres said.

The students hope to find a cost-efficient method of reducing the high levels of arsenic and fluoride in Columbus, N.M., and Palomas, Mexico, drinking water. “We will work as a team to solve this problem”..

Small communities along the border are suffering from a lack of practical water purification methods. Columbus, N.M., residents are allowed five gallons of water per day because the community cannot afford a big water purification facility, said Shuguang Deng, chemical engineering associate professor and head of the student research team.

High quantities of arsenic and fluoride in water are harmful when consumed and used for cleaning. Arsenic can cause cancer and fluoride can cause bone density problems.

The engineering students are working with mesoporous alumina, a material they hope will absorb arsenic from well water. The different sizes of pores found in the various mesoporous alumina materials make it a great candidate for sucking up harmful water pollutants.

“If the pore size is too small or too large it may not be useful. So we are trying to make them at a more optimal range for the removal of those pollutants,” Deng said.

The student research group hopes to manufacture a sol-gel derived mesoporous alumina-based absorbent that will have the right size pores.

The common method of water filtration in the border region is called reverse osmosis. Reverse osmosis uses pressure created by water to push more water through a membrane that extracts pollutants. Mesoporous alumina differs from reverse osmosis because it does not need to be powered and it does not use two gallons of water to purify just one gallon.

The team is now researching a cleverer way to remove fluoride. Deng said the students maybe able to remove fluoride by modifying the sol-gel alumina’s surface area.

As for Aley Torres, she’s just glad to have the opportunity to work on the project. “If we do a good job and it gets implemented, I will feel like I did something positive for the community as well as for my family.”

CONSIGNAS

1. Identifique los verbos, la Voz y el Tiempo en que se encuentran.

2. ¿Cuales verbos indican FUTURIDAD?

3. Identifique todos los verbos en INFINITIVO

4. Que función cumple el el infinitivo en cada caso? (Sujeto de la oración, completa el significado de otro verbo, indica própósito, complemento indispensable del predicado)

5. ¿Qué otra forma de indicar propósito encuentra en el texto?

6. ¿Qué funciones de la lengua predominan en este texto?

Page 18: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 18

RESPONDER estas preguntas en español

1. ¿Cual es la motivación que tiene A.M. Torres para dedicarse al tratamiento de aguas?

2. ¿Que problemas enfrentan las comunidades fronterizas pequeñas en Nuevo Méjico?

3. Enumere los problemas que ocasiona el Arsénico.

4. ¿Qué influencia tiene el tamaño del poro del oxido de aluminio que se tutiliza en el tratamiento de aguas?

5. ¿Cómo es el método de osmosis inversa?

REFERENCIA – (¿A qué remiten?)

1. her (l. 2)

2. our (l. 5)

3. they (l.16)

4. them (l. 19)

5. it (l. 25)

6. my (l. 31) VERDADERO O FALSO – V/F

1. A.M.Torres pertenece a la comunidad de Columbus en Nueva Méjico.

2. La universidad de Columbus favorece el trabajo de los estudiantes mejicanos

3. El tamaño de los poros en el oxido de aluminio tiene significativa importancia a los fines de su utilidad como decontaminante

4. El método de osmosis reversa es mas costoso desde múltiples puntos de vista

5. Torres tiene fuertes motivaciones personales y familiares para participar de los proyectos

Page 19: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 19

UNIDAD 6 – TRADUCCIONES POSIBLES DE LA FORMA -ING – (sustantivo, adjetivo, como

gerundio (indicación de modo o método, verbo conjugado en tiempo continuo), simplificando una oración adjetiva (que + verbo conjugado), infinitivo (completando el significado de un verbo o

acompañando a una preposición), propósito, etc) – ¿INFINITIVO O –ING?

Las palabras terminadas en –ing pueden traducirse de diversas maneras, según la función que desempeñen dentro de la oración:

1. Como SUSTANTIVO

Decanting and centrifuging are two very important processes in Chemistry.

Reading is a rewarding habit.

2. Como ADJETIVO

The decanting bottle must be duly cleansed before filling it with a different solvent..

I forgot my reading glasses home.

Traveling is sometimes boring without a good deal of reading material.

3. Como gerundio, indicando el MODO en que algo sucede o se realiza

The molecules of the gas inside the pump are in constant motion, bumping into one another and into the walls of the pump.

Immiscible liquids (such as water and cooking oil) can be separated by using a separating funnel.

4. Como gerundio, indicando el MÉTODO de realización

The molecules of the gas inside the pump are in constant motion. They can be compressed by gently pushing down the piston.

You can separate a solution simply by letting the solvent evaporate.

Pollutants can be hidden from sight by covering the dumping area with soil.

5. Como gerundio, en los tiempos verbales CONTINUOS

The engineer cannot be disturbed. He is currently working on the restricted area of the manufacturing plant.

I was working hard on my new paper when the people from a nearby construction started making a terrible noise.

They are not working now, but they were working on that last week.

6. Como INFINITIVO, indicando propósito

These are the clues for understanding the theorem.

The elements for designing the matrix can all be found in the manual.

7. Como INFINITIVO, como objeto de una preposición

I cannot fully understand German texts without reading them twice.

In addition to implementing the zero-pressure standard satate, Twu, et al have investigated the infinite-pressure standard state.

8. Como INFINITIVO, acompañando a otro verbo

The students started making a great noise despite the QUIET sign on the wall.

9. Como QUE + VERBO CONJUGADO, cuando se usa para simplificar una oración adjetiva post-modificadora

Mixtures containing a solid and a solvent can be separated by using a decanter, and then simply pouring the liquid off.

Page 20: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 20

EJERCICIO

Ahora, para ejercitar estos nuevos conceptos sobre usos y traducciones de las palabras

terminadas en -ing, vuelva al texto “Students investigate methods to remove arsenic and

fluoride from water” de la página 16. Identifique de qué uso se trata.

Traduzca cada frase en el contexto que le da sentido.

USOS DE LA -ING –

1. while studying (l. 1)

2. chemical engineering students (l. 3)

3. a method of reducing (l. 7)

4. drinking water (l. 8)

5. are suffering from (l. 10)

6. are used for cleaning(l. 14)

7. are trying to make them (l. 19)

8. by modifying the sol-gel alumina (l. 29)

Page 21: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 21

LECTOCOMPRENSIÓN: RESUELVA LAS CONSIGNAS EN RELACIÓN A ESTE TEXTO

THE GASEOUS STATE

1 2 3

4 5 6 7 8 9 10 11

12 13 14 15 16 17

18

Gases are fluids which have no definite shape and no definite volume. They differ from liquids in possessing the power of expanding until they fill completely any vessel in which they are placed.

Gases and liquids are classed together as FLUIDS, on account of their ability to flow under the influence of very small forces. Thus, gases (which were former described as ELASTIC FLUIDS) will flow under the influence of their own elasticity until the space in which they are confined is filled completely. Liquids will flow under gravity, but viscous liquids flow only slowly. PLASTIC SOLIDS, such as lead or sodium, can be made to flow under pressure, e.g. by squirting through a nozzle; but this flow does not take place until a minimum limiting pressure is applied.

The behavior of gases is generally much simpler than that of solids and liquids. Thus, while the physical properties of liquids and solids vary widely from substance to substance, and have to be studied individually, it is often possible to state a simple rule which will describe the properties or behavior of all gases, e.g. their combination by volume (Chapter III) and their behavior on compression or on change of temperature. For this reason, it is convenient to begin the study of physical chemistry by considering the properties of gases.

Lowry and Cavell. Intermediate Chemistry. Macmillan and Co. London, p.453

1. De ejemplos de

a. Fluidos

b. Fluidos Elásticos

c. Solidos Plásticos

2. REFERENCIA (A qué/quién remiten los términos?)

a. they (l.1)

b. their (l.4)

c. their (l.6)

d. That (l. 12)

e. their (l. 16)

3. USOS DE LA TERMINACIÓN -ING (Diga de qué uso se trata y traduzca los conceptos que dan sentido al uso)

a. In posessing (l.2)

b. By squirting (l.9)

c. Limiting (l.10)

d. By considering (l.18)

Page 22: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 22

4. Busque en el texto SINONIMOS de los siguientes términos.

established having

Because of forced

broadly performance

variation appropriate

5. CONECTORES – Diga que tipo de relación establece y complete las funciones lógicas.

Until (l.2)

On account of (l.4)

thus (l.5)

e.g. (l.9)

e.g. (l.15)

For this reason. (l.17)

Page 23: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 23

UNIDAD 7 – VERBOS MODALES Y ESTRUCTURAS ANÁLOGAS: CAN, COULD, MAY, MIGHT,

MUST, SHOULD, OUGHT TO, BE ABLE TO, HAVE TO, NEED (TO)

I can go to New York - Puedo ir a New York (posibilidad física)

You can go to New York - Puedes ir a New York (posibilidad física /o/ permiso)

I could go to New York - Podría ir a New York (opción personal /o/ posibilidad en pasado)

I may go to New York - Puedo ir a New York (posibilidad, opción personal)

You may go to New York - Puedes ir a New York (posibilidad física /o/ permiso)

I might go to New York - Podría ir a New York (posibilidad remota) (Potencial)

I must go to New York - Debo ir a New York (obligación)

You must be from New York – Debes ser de New York (deducción)

I should go to New York - Debería ir a New York (conveniencia)

You should go to New York - Debería ir a New York (consejo)

I ought to go to New York - Debo ir a New York (obligación moral)

I need (to) go to New York - Necesito ir a New York (necesidad)

Un Verbo Modal (modal, modal auxiliary verb, modal auxiliary) es un tipo especial de verbo

auxiliar que se usa para imprimir modalidad al verbo principal al cual acompaña (posibilidad, habilidad, permiso, obligación, necesidad). Componen una clase diferente de verbos en el idioma inglés.

Los verbos modales, en general, comparten ciertas características gramaticales entre sí:

1. Son verbos “auxiliares” como be, do, y have, es decir, que acompañan a un verbo principal, portador del sentido principal, pero a diferencia de éstos, imprimen al verbo principal una modalidad, modificando el sentido funcional.

2. Como “auxiliares”, permiten la inversión necesaria para armar interrogaciones, y aceptan la forma de negaciones (la partícula negativa “not”)

3. Son verbos defectivos, y como tales, no son conjugables en tiempos distintos. Existen, no obstante, expresiones modales sinónimas que pueden ser usadas en todos los tiempos conjugados, e incluso aceptan ser acompañados por verbos modales.

I am able to go to New York now (posibilidad física)

I was able to go to New York last summer

I will be able to go to New York next summer

I have not been able to go back to New York since I lost my passport

I might have been able to visit NY if I had attended the congress

I have to go to New York (obligación)

I had to go to New York, but I couldn’t.

I will have to go to New York if I want to attend the congress

I could have to go to New York next summer

4. Van siempre acompañados del verbo principal en forma de infinitivo sin la partícula “to”, salvo el modal “ought to” que la contiene.

Page 24: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 24

EJERCICIOS

1. Observa qué tipo de modalidad imprime cada uno de los verbos modales marcados en el texto.

2. Determina si se trata de modalidad sobre el eje del Poder / Deber / Necesidad, y la subcategoría.

3. Traducelos en el contexto que les da sentido.

1 2 3 4 5 6 7 8 9 10 11 12

Some of the mechanisms involved in alterations in toxicity have been studied and have been shown to be a consequence of changes in the toxicokinetics and/or toxicodynamics of one chemical by another. Toxicokinetic changes affect the absorption, distribution, metabolism and/or excretion of a chemical and can have profound effects on dose-response relationships. Changes at the toxicodynamic level might involve a competition between chemicals for binding to a target site, such as a receptor or alter the susceptibility of target cells to the effects of another agent. This could also include changes in signal transduction pathways and cell cycle control. Though some of these alterations may have been described for simple mixtures of two components, unraveling the effects of complex mixtures with up to hundreds of chemicals need and must still be attempted.

de http://grants.nih.gov/GRANTS/guide

1 2 3 4 5

6 7 8 9 10

11 12 13

14 15 16 17

Solar power remains the ultimate Olympic gold-medal dream of a clean, efficient and sustainable source of energy. The problem has been that in order to replace fossil fuels, we need to get a lot more proficient at harvesting sunlight and converting it into energy. Nature has solved this problem through photosynthesis; all we have to do is emulate it. But first we need a much better understanding of how photosynthesis works at the molecular and electronic levels. "After working on the problem for about 3 billion years, nature has achieved an energy transfer efficiency of approximately 97 percent," says Graham Fleming, director of Berkeley Lab's Physical Biosciences Division and an internationally acclaimed leader in spectroscopic studies of photosynthetic processes. "If we can get a complete understanding as to how this is done, creating artificial versions of photosynthesis should be possible." ... "If we can follow the steps in transferring energy from donor to acceptor molecules, we might be able to design new and much more effective strategies for synthetic light harvesters," Fleming says. Because the extra energy being transferred from one molecule to the next changes the way each molecule absorbs and emits light, the flow of energy can be spectroscopically followed. To do this, however, Fleming and his experimental research team need to know what spectroscopic signals they should be looking for.

de http://www.lbl.gov/Science-Articles

Page 25: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 25

UNIDAD 8 – – IDEA PRINCIPAL – IDEAS SECUNDARIAS – ORGANIZACIÓN DEL TEXTO –– EL

TIEMPO VERBAL PASADO SIMPLE – REPASO GENERAL DE UNIDADES

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Chemical bond From Wikipedia, the free encyclopedia

A chemical bond is the physical process responsible for the attractive interactions between atoms and molecules, and that which confers stability to diatomic and polyatomic chemical compounds. The explanation of the attractive forces is a complex area that is described by the laws of quantum electrodynamics. In practice, however, chemists usually rely on quantum theory or qualitative descriptions that are less rigorous but more easily explained to describe chemical bonding. In general, strong chemical bonding is associated with the sharing or transfer of electrons between the participating atoms. Molecules, crystals, and diatomic gases, indeed most of the physical environment around us, are held together by chemical bonds, which dictate the structure of matter. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as "strong", whereas hydrogen bonds and van der Waals bonds are generally considered to be "weak". Care should be taken because the strongest of the "weak" bonds can be stronger than the weakest of the "strong" bonds.

1 2 3 4 5 6 7 8 9

10 11 12 13

14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Valence bond theory From Wikipedia, the free encyclopedia

In the year 1927, valence bond theory was formulated which argued essentially that a chemical bond forms when two valence electrons, in their respective atomic orbitals, work or function to hold two nuclei together, by virtue of system energy lowering effects. In 1931, building on this theory, chemist Linus Pauling published what some consider one of the most important papers in the history of chemistry: “On the Nature of the Chemical Bond”. In this paper, building on the works of Lewis, and the valence bond theory (VB) of Heitler and London, and his own earlier work, he presented six rules for the shared electron bond, the first three of which were already generally known:

1. The electron-pair bond forms through the interaction of an unpaired electron on each of two atoms.

2. The spins of the electrons have to be opposed. 3. Once paired, the two electrons cannot take part in additional bonds.

His last three rules were new:

4. The electron-exchange terms for the bond involves only one wave function from each atom.

5. The available electrons in the lowest energy level form the strongest bonds. 6. Of two orbitals in an atom, the one that can overlap the most with an orbital

from another atom will form the strongest bond, and this bond will tend to lie in the direction of the concentrated orbital.

Building on this article, Pauling’s 1939 textbook: On the Nature of the Chemical Bond would become what some have called the “bible” of modern chemistry. This book helped experimental chemists to understand the impact of quantum theory on chemistry. However, the later edition in 1959 failed to address adequately the problems that appeared to be better understood by molecular orbital theory. The impact of valence theory declined during the 1960s and 1970's as molecular orbital theory grew in popularity and was implemented in many large computer programs. Since the 1980s, the more difficult problems of implementing valence bond theory into computer programs have been largely solved and valence bond theory has seen a resurgence

Page 26: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 26

Chemical bond – ejercicios

1. ¿Cuál es la idea principal del texto? ¿Cuán relacionada está con el título?

2. ¿Cual es la función lingüística que predomina en la oración que sirve de idea principal?

3. Señale al menos 3 ideas secundarias. ¿Qué función lingüística se utilizó en ellas?

GRAMMAR

1. ¿A qué remiten? THAT – WHICH – THEIR

2. ¿Que tipo de relación introducen? HOWEVER– INDEED – OFTEN – BECAUSE

3. ¿Cuántos tipos de comparativos hay en el texto? Indique el tipo de comparativo, los términos comparados y como se los compara.

4. Subraye todas las formas –ing. Diga cómo las traduce.

5. ¿Qué voz predomina en la primera mitad del texto? ¿Y en la segunda?

6. Identifique e interprete los verbos modales presentes en el texto.

Valence bond theory – ejercicios

1. ¿Cuál es la idea principal del texto? ¿Cuán relacionada está con el título?

2. ¿Cual es la función lingüística que predomina en la oración que sirve de idea principal?

3. Señale al menos 3 ideas secundarias. ¿Qué función lingüística se utilizó en ellas?

GRAMMAR

4. Subraye todos los verbos conjugados en tiempo Pasado Simple.

5. Identifique la expresión temporal que sirve de marco referencial temporal a cada uno.

6. ¿Qué otros tiempos verbales identifica en el texto?

7. Identifique los sustantivos con formas plurales irregulares.

8. Subraye todas las formas –ing. Diga cómo las traduce.

9. Subraye todos los infinitivos. Diga cómo los interpreta – Qué indican.

10. ¿A qué remiten? WHICH–THEIR– HIS– HE– WHICH– THE ONE– THIS -

11. ¿Que tipo de relación introducen? WHEN - ALREADY – ONCE –HOWEVER– DURING - AS–SINCE

12. ¿Cuántos tipos de comparativos/superlativos hay en el texto? Indique el tipo de comparativo/superlativo, los términos comparados y como se los compara.

Page 27: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 27

TEXTOS CON EJERCICIOS – TEXTO I

BASES OF ELECTROCHEMICAL CORROSION

An instructive instance of electrochemical corrosion occurs in the working of the Daniell cell, diverse aspects of which are discussed in other chapters. In this cell a zinc electrode is immersed in a solution of zinc sulphate contained in a porous pot, which itself stands in a copper can filled with copper sulphate solution. When the circuit is completed externally between the zinc and the copper, an electric current spontaneously flows and electrochemical reactions take place at the metal surfaces. At the copper cathode, cupric ions discharge from the copper sulphate solution to form copper metal; while at the anode zinc ions are formed by dissolution of zinc. In other words the zinc electrode is corroding and passing into the solution; and the entire system constitutes a corrosion cell with copper as cathode. The corrosion current is the same as the external current, which gives the rate of solution of the zinc anode.

1 5

Example 39.- A Daniell cell is discharging at 1/20 amp. What is the rate of corrosion of the zinc rod anode which is 1 cm diameter and immersed to a depth of 10 cm in the electrolyte? (Density of zinc = 7.0 g/c.c.)

10

From Table II, Chapter I, the electrochemical equivalent of zinc is 0.3387 mg/coulomb. The rate of dissolution of the zinc anode is, therefore, 0.3387/20 mg per sec al 1/20 amp, i.e., 0.01694 mg/sec, or 2.42 x 10

-6

c.c./sec.

Since the area of immersed anode is (10 + /4) sq. cm, i.e., 32.20 sq. cm, the rate of corrosion of the zinc

anode is (2.42 x 10-6

) / 32.20 = 7.52 x 10

-6 cm/sec, i.e., 2.56 x 10

-3 in/day. It follows that the rate of corrosion

of the zinc anode is approximately one fortieth of an inch per day.

15

It may be noted that this rate of corrosion is far greater that is usually encountered in atmospheric corrosion processes; here the rate is frequently quoted in units of inches per year contracted to ipy). Rates are also quoted in terms of weight loss, and a common unit here is milligrammes/square decimetre/day (contracted to mdd)

20

Dissimilar Metal Corrosion

The corrosion cell involved in Example 39 is so designed to be of practical use as a source of an electric current, but if this is not the objective we can simplify the system so that it consists of a zinc plate immersed in excess of a solution of copper sulphate. In accordance with zinc being a less noble metal than copper in the electromotive series, zinc begins to ionize into the solution

25

I. CONTESTE ESTAS PREGUNTAS (0.5 x 8 = 4 p)

1. ¿Dónde se presenta un ejemplo instructivo de corrosión electroquímica? 2. ¿Qué se analiza en otros capítulos? 3. ¿Qué funciones del discurso científico se encuentra en las líneas 2 a 7? 4. Explique de forma clara y concisa el concepto contenido en la anterior pregunta 3. 5. ¿Qué se puede observar en este tipo de corrosión? 6. ¿Qué significan las siglas ipy y mdd en español? 7. ¿Para qué se puede utilizar la celda de corrosión del Ejemplo 39? 8. ¿Cómo se simplifica el sistema?

II. CONECTORES – Qué tipo de relación introducen? (0.5 x 5 = 2.5 p)

1. in other words (l. 7)

2. therefore (l. 13)

3. since (l. 15)

4. it follows that (l. 16)

5. so that (l. 23) III. REFERENCIA – (¿A qué remiten?) (0.5 x 4 = 2 p)

1. which (l. 3)

2. which (l. 9)

3. this (l. 23)

4. it (l. 23) IV. FUNCIONES ( Diga qué se compara y de línea de referencia ) (0.5 x 3 = 1.5 p)

1. Un comparativo (superioridad)

2. Un comparativo (inferioridad)

3. Un comparativo (igualdad)

Page 28: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 28

TEXTOS CON EJERCICIOS – TEXTO II

Evaporation is the process by which molecules in a liquid state (e.g. water) spontaneously become gaseous (e.g. water vapor), without being heated to boiling point. It is the opposite of condensation. Generally, evaporation can be seen by the gradual disappearance of a liquid, when exposed to a significant volume of gas.

The reason a liquid evaporates is that its molecules are all in motion in nearly random directions and speeds, and the energy of that movement can be compared to the heat needed to boil that liquid. On average, the molecules do not have enough energy to escape from the liquid, or else the liquid would turn into vapor quickly. When the molecules collide, they transfer energy to each other in varying degrees, based on how they collide. Sometimes the transfer is so one-sided that one of the molecules ends up with enough energy to be considered past the boiling point of the liquid. If this happens near the surface of the liquid it may actually fly off into the gas and thus "evaporate".

Liquids that do not appear to evaporate visibly at a given temperature in a given gas (e.g. cooking oil at room temperature) have molecules that do not tend to transfer energy to each other in a pattern sufficient to frequently give a molecule the "escape velocity" - the heat energy - necessary to turn into vapor. However, these liquids are evaporating, it's just that the process is much slower and thus significantly less visible.

Evaporation is an essential part of the water cycle. Solar energy drives evaporation of water from oceans, lakes, moisture in the soil, and other sources of water. In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration.

For molecules of a liquid to evaporate, they must be located near the surface, be moving in the proper direction, and have sufficient kinetic energy to overcome liquid-phase intermolecular forces. Only a small proportion of the molecules meet these criteria, so the rate of evaporation is limited. Since the kinetic energy of a molecule is proportional to its temperature, evaporation proceeds more quickly at higher temperature. As the faster-moving molecules escape, the remaining molecules have lower average kinetic energy, and the temperature of the liquid thus decreases. This phenomenon is also called evaporative cooling. This is why evaporating sweat cools the human body. Evaporation also tends to proceed more quickly with higher flow rates between the gaseous and liquid phase and in liquids with higher vapor pressure. For example, laundry on a clothes line will dry (by evaporation) more rapidly on a windy day than on a still day. Three key parts to evaporation are heat, humidity and air movement.

1 5 10 15 20 25 30

I. Provea un título para el texto (0.5 p)

II.

III. RESPONDER estas preguntas en español (5 x 0.5 = 2.5 p)

a. ¿Cómo se define el proceso de Evaporación en el texto? b. ¿Porqué se evaporan los líquidos? c. ¿A qué se denomina evapo-transpiración? d. ¿Porqué la evaporación es más rápida a altas temperaturas?. e. ¿Qué es el enfriamiento evaporativo?

IV. CONECTORES – Qué tipo de relación introducen? (0.5 x 4 = 2 p)

a. when (l. 8) b. e.g. (l. 13) c. however (l. 16) d. as (l. 26)

Page 29: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 29

V. REFERENCIA – (¿A qué remiten?) (0.5 x 4 = 2 p)

a. its (l. 5) b. they (l. 9) c. they (l.22) d. its (l. 25)

VI. CONTENIDO / NO CONTENIDO (de línea de referencia ) (0.5 x 4 = 2 p)

1. La transferencia de energía entre moléculas varía según el modo en que colisionen

2. De suceder cerca de la superficie del líquido, las moléculas pueden eyectarse.

3. La energía solar es una parte esencial del ciclo del agua

4. En los lavaderos la ropa se seca mas rápido que al viento.

TEXTOS CON EJERCICIOS – TEXTO III

Matter comes in three states that are distinguished by the strength of the bonds holding the molecules of the matter together. The three states of matter are:

Solids: The strong bonds between molecules make solids rigid and very difficult to deform.

Liquids: The relatively weak bonds between molecules allow liquids to be deformed without effort. Liquids have a fixed volume, but their shape is determined by the shape of the container holding them.

Gases: Virtually no bonds exist between gas molecule so that gases can spread into any available space. The volume of a gas is determined by the size of the container holding it.

The molecules of a solid don't move around very much. They tend to stay relatively close to each other. If a solid has molecules arranged in an orderly fashion, we say it is crystalline. If the molecules of a solid are not arranged in any order, we call the solid amorphous. Many polymers are crystalline solids, while others are amorphous solids.

The molecules of a liquid move around a lot. They're always moving relative to each other. This is why liquids don't hold their shape and why they can be poured. But even though the molecules of a liquid move relative to each other, they are still bound to each other through intermolecular forces. This is why liquids hold their volume.

Another important difference between gases and liquids is that molecules in the liquid state interact with each other through intermolecular forces. These forces hold liquid molecules together. When molecules are in the gas state, they don't interact much. This is why liquids keep their volume but gases do not. Gas molecules aren't held together strongly, so they can spread out, filling as much space as they can.

Solids can melt and become liquids, and liquids can boil to become gases. Likewise, gases can condense to become liquids, and liquids can freeze to become solids. Sometimes solids can even become gases without ever becoming liquids. This is called subliming. But what makes solids melt, and what makes gases condense?

The simple answer is heat. Heat is a form of energy. Heat is the energy of moving molecules. Let's think about an ice cube. An ice cube is a solid, that is, its molecules aren't moving relative to each other. They may be shaking and vibrating, but they stay put. If we heat the ice cube, its molecules start moving around more. If we heat the ice cube enough, the molecules will start moving around relative to each other, and when this happens, the solid ice melts and becomes liquid water. If we keep heating the liquid water, eventually the water molecules will be moving so fast that the liquid water becomes a gas÷water vapor.

All this can happen backwards, too. If the water vapor gets cold enough, it will condense back into liquid water, and if we keep cooling the water, it will freeze to become ice again.

1 5 10 15 20 25 30 35

Page 30: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 30

I. En qué líneas se encuentra la idea principal del texto. Fundamente su respuesta II. RESPONDER estas preguntas en español

a. ¿Cómo se distinguen los estados de la materia? b. ¿Qué función retórica predomina entre las líneas 1 y 8? c. ¿Qué tipo de sólidos se mencionan? Descríbalos. d. ¿Porqué los líquidos mantienen su volumen?. e. ¿Qué es sublimación?

III. USOS DE LA -ING – Diga de cuál uso se trata. Traduzca la frase que las contiene?

a. holding (l. 8) b. moving (l. 13) c. filling (l. 21) d. becoming (l. 24)

IV. REFERENCIA – (¿A qué remiten?)

a. their (l. 5) b. them (l. 6) c. it (l.8) d. they (l. 28)

V. CONECTORES (de qué tipo se trata? Traduzca las seguencias lógicas que completan su sentido )

a. if (l. 11)

b. even though (l. 14)

c. so (l.21)

d. that is (l. 27)

e. if (l.30)

VI. CONTENIDO / NO CONTENIDO (de línea de referencia ) (0.5 x 4 = 2 p)

1. Las moléculas de un líquido interactúan a través de fuerzas intermoleculares.

2. Las moléculas de gas tienden a ocupar el recipiente que las contienen.

3. El calor, como forma de energía, es responsable de los cambios de estado.

4. si se sacude y se hace vibrar a un cubo de hielo, se derrite..

VII. Traduzca esta oración (1 p)

If we keep heating the liquid water, eventually the water molecules will be moving so fast that the liquid water becomes a gas - water vapor.

Page 31: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 31

TEXTOS PARA PRÁCTICA

Heat and Work Heat and work are both forms of energy. They are also related forms, in that one can be transformed into the other. Heat energy (such as steam engines) can be used to do work (such as pushing a train down the track). Work can be transformed into heat, such as might be experienced by rubbing your hands together to warm them up. Work and heat can both be described using the same unit of measure. Sometimes the calorie is the unit of measure, and refers to the amount of heat required to raise one (1) gram of water one (1) degree Celsius. Heat energy is measured in kilocalories, or 1000 calories. Typically, we use the SI units of Joules (J) and kilojoules (kJ). One calorie of heat is equivalent to 4.187 J. You will also encounter the term specific heat, the heat required to raise one (1) gram of a material one (1) degree Celsius.

The values for specific heat that are reported in the literature are usually listed at a specific pressure and/or volume, and you need to pay attention to these settings when using values from textbooks in problems or computer models.

Two other common heat variables are the heat of fusion and the heat of vaporization. Heat of fusion is the heat required to melt a substance at its normal melting temperature, while the heat of vaporization is the heat required to evaporate the substance at its normal boiling point.

Energy You might remember the first law of thermodynamics: energy cannot be created or destroyed. Energy can only change form. Chemically, that usually means energy is converted to work, energy in the form of heat moves from one place to another, or energy is stored up in the constituent chemicals. You have seen how to calculate work. Heat is defined as that energy that is transferred as a result of a temperature difference between a system and its surroundings. Mathematically, we can look at the change in energy of a system as being a function of both heat and work:

dE = q - w - Where: dE is the change in internal energy of a system, in joules

q is the heat flowing into the system in joules

w is the work being done on the system in joules

If q is positive, we say that the reaction is endothermic, that is, heat flows into the reaction from the outside su rroundings. If q is negative, then the reaction is exothermic, that is, heat is given off to the external surroundings.

You might also remember the terms kinetic energy and potential energy. Kinetic energy is the energy of motion -- the amount of energy in an object that is moving. Potential energy is stationary, stored energy. If you think of a ball sitting on the edge of a table, it has potential energy in the energy possible if it falls off the table. Potential energy can be transformed into kinetic energy if and when the ball actually rolls off the table and is in motion. The total energy of the system is defined as the sum of kinetic and potential energies. In descriptions of the energy of a system, you will also see the phrase "state properties". A state property is a quantity whose value is independent of the past history of the substance. Typical state properties are altitude, pressure, volume, temperature, and internal energy.

Entropy Entropy is a measure of the disorder of a system. Take your room as an example. Left to itself, your room will increase in entropy (i.e., get messier) if no work (cleaning up) is done to contain the disorder. Work must be done to keep the entropy of the system low. Entropy comes from the second law of thermodynamics, which states that all systems tend to reach a state of equilibrium. The significance of entropy is that when a spontaneous change occurs in a system, it will always be found that if the total entropy change for everything involved is calculated, a positive value will be obtained. Simply, all spontaneous changes in an isolated chemical system occur with an increase in entro py. Entropy, like temperature, pressure, and enthalpy, is also a state property and is represented in the literature by the symbol "S". Like enthalpy, you can calculate the change of S (dS or delta S).

dS = Sfinal - S initial or dS = S(products) - S(reactants) Where:

dS (or delta S) is change in entropy

Sfinal and Sinitial are the final and initial entropies, respectively

The following table shows the relationship between the state of a substance and its entropy: (....)

Page 32: Apunte Ingles i - Ingenieria Quimica 2015

INGLES TÉCNICO I – Recopilación y ejercitación: MBA Adriana Deza 32

PERIODIC TABLE

The integer that you find in each box of the Periodic Chart is the atomic number. The atomic number is the number of protons in the nucleus of each atom. Another number that you can often find in the box with the symbol of the element is not an integer. It is oversimplifying only a little to say that this number is the number of protons plus the average number of neutrons in that element. The number is called the atomic weight or atomic mass.

The versatility of the word UP

This two-letter word in English has more meanings than any other two-letter word, and that word is 'UP.' It is listed in the dictionary as an [adv], [prep], [adj], [n] or [v].

It's easy to understand UP, meaning toward the sky or at the top of the list, but when we awaken in the morning, why do we wake UP?

At a meeting, why does a topic come UP? Why do we speak UP, and why are the officers UP for election and why is it UP to the secretary to write UP a report? We call UP our friends, brighten UP a room, polish UP the silver, warm UP the leftovers and clean UP the kitchen. We lock UP the house and fix UP the old car.

At other times, this little word has real special meaning. People stir UP trouble, line UP for tickets, work UP an appetite, and think UP excuses.

To be dressed is one thing but to be dressed UP is special.

And this UP is confusing: A drain must be opened UP because it is stopped UP.

We open UP a store in the morning but we close it UP at night. We seem to be pretty mixed UP about UP!

To be knowledgeable about the proper uses of UP, look UP the word UP in the dictionary. In a desk-sized dictionary, it takes UP almost 1/4 of the page and can add UP to about thirty definitions.

If you are UP to it, you might try building UP a list of the many ways UP is used. It will take UP a lot of your time, but if you don't give UP, you may wind UP with a hundred or more.

When it threatens to rain, we say it is clouding UP. When the sun comes out, we say it is clearing UP. When it rains, it soaks UP the earth. When it does not rain for awhile, things dry UP. One could go on and on, but I'll wrap it UP, for now . . . my time is UP!

Oh . . . one more thing: What is the first thing you do in the morning and the last thing you do at night?

U P!