Articulo-pollo.pdf

Embed Size (px)

Citation preview

  • 8/11/2019 Articulo-pollo.pdf

    1/7

    Temperature-dependent photosynthesis in the intertidal algaFucus

    gardneriand sensitivity to ongoing climate change

    Nicholas B. Colvard a,, Emily Carrington b, Brian Helmuth a

    a Marine Science Center, Northeastern University, Nahant, MA 01908, USAb Department of Biology and Friday Harbor Laboraties, University of Washington, Friday Harbor, WA, 98250, USA

    a b s t r a c ta r t i c l e i n f o

    Article history:

    Received 10 February 2014Received in revised form 29 April 2014

    Accepted 1 May 2014

    Available online 21 May 2014

    Keywords:

    Climate change

    Fucus gardneri

    Intertidal

    Photosynthesis

    Tidal cycle

    Understanding the photosynthetic responses of marine macroalgae to changes in their thermal environment is

    vital to characterizing the success of these habitat-forming primary producers in the face of climate change.We measured net photosynthesis in apical tips ofFucus gardnericollected from the intertidal zone of Friday

    Harbor, WA over a range of irradiancelevels(01500 mol photons m2 s1) at 10,14,and 18 Cto determine

    levels of saturating irradiance. We then recorded net photosynthesis at saturating irradiance in tips exposed to

    seawater temperatures ranging from 6 to 22 C, as well as dark respiration. Results show that F. gardneriat

    this location has a peak in net photosynthesis at 1618 C seawater temperature, with signicant declines in

    net photosynthesis at 20 and 22 C. Respiration showed a positive linear relationship with increasing seawater

    temperature. Using archived seawater temperature, irradiance, and tidal data, we produced a model of net pho-

    tosynthesis over two years (October 2010October 2012). Maximal seawater temperatures recorded at FHL

    rarely exceeded 14 C, suggesting that an increase of +2 and +4 C in seawater temperature would lead to

    increased net photosynthesis at this site. These results allowed us to develop a predictive model to forecast the

    net photosynthesis ofF. gardneriat different intertidal elevations to explore the effects of seawater temperature

    andirradiance on netphotosynthesis.We alsoexaminedthe effects of thetimingof hightide,testing thehypoth-

    esis thatnet photosynthesis will be highest at sites where submersion occursduring peak levelsof irradiance. Our

    results suggest that as seawater temperatures increase (up to +4 C above ambient) F. gardneribelow +1 m

    MLLW tidal elevation will experienceincreasesin net photosynthesis. These analyses also suggest thatthe effectsof environmental change may depend in part on tidal regime, which determines the extent to which algae are

    submerged during times of day when irradiance is high.

    2014 Elsevier B.V. All rights reserved.

    1. Introduction

    A fundamental goal of global climate change research is to under-

    stand how organisms will likely respond physiologically to novel envi-

    ronmental conditions (Chown and Gaston, 1999; Somero, 2002) and

    how the inuence of climatic factors may be modied by other non-

    climatic factors (e.g.,Mislan et al., 2011). Intertidal and shallow subtidal

    organisms have long served as model systems for examining the im-

    pacts of the physical environment on patterns of distribution in nature

    (Paine, 1994). To this end, many studies have examined the effects of

    lethal temperatures in setting the local and geographic distribution

    of intertidal and shallow subtidal organisms (Wethey et al., 2011). A

    number of recent studies have emphasized the importance of also

    considering the sublethal effects of environmental change on marine

    animals (Howard et al., 2013), for example theinuence of temperature

    on rates of foraging (Kordas et al., 2011; Sanford, 2002), growth

    (Almada-Villela et al., 1982), and reproduction (Petes et al., 2008).

    Comparable studies of macroalgae have been conducted examining

    the effects of temperature and desiccation on rates of survival, photo-

    synthesis, and growth (Bell, 1993; Matta and Chapman, 1995; Zou

    et al., 2007). A principal consideration is the importance of local factors,

    often non-climatic in nature, in modifying the inuence of environmen-

    tal factors related to climate change. For example, wave exposure and

    the timing of low tide can signicantly affect the risk of thermal stress

    in intertidal organisms (Mislan et al., 2011), and the vulnerability of

    invertebrates to thermal stress can be signicantly affected by food

    supply and the presence of other stressors, such as pollution (Howard

    et al., 2013).

    Several studies have shown that, for some populations, small

    increases in temperature may lead to increases in performance,

    especially at a species' poleward distributional limits or to decreases at

    their equatorial limits (Howard et al., 2013; Somero, 2002). Other stud-

    ies have suggested that prolonged exposure to sublethal conditions can

    lead to large-scale mortality due to the cumulative effects of environ-

    mental stress on energetics (Woodin et al., 2013). Surprisingly, how-

    ever, while lethal thermal limits have been relatively well studied for

    many species, complete thermal performance curves describing the

    Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    Corresponding author. Tel.: +1 781 581 7370x331; fax: +1 781 581 6076.

    E-mail address:[email protected](N.B. Colvard).

    http://dx.doi.org/10.1016/j.jembe.2014.05.001

    0022-0981/ 2014 Elsevier B.V. All rights reserved.

    Contents lists available at ScienceDirect

    Journal of Experimental Marine Biology and Ecology

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j e m b e

    http://dx.doi.org/10.1016/j.jembe.2014.05.001http://dx.doi.org/10.1016/j.jembe.2014.05.001http://dx.doi.org/10.1016/j.jembe.2014.05.001mailto:[email protected]://dx.doi.org/10.1016/j.jembe.2014.05.001http://www.sciencedirect.com/science/journal/00220981http://www.sciencedirect.com/science/journal/00220981http://dx.doi.org/10.1016/j.jembe.2014.05.001mailto:[email protected]://dx.doi.org/10.1016/j.jembe.2014.05.001http://crossmark.crossref.org/dialog/?doi=10.1016/j.jembe.2014.05.001&domain=pdf
  • 8/11/2019 Articulo-pollo.pdf

    2/7

    effects of temperature on marine organism performance are compara-

    tively rare (Monaco and Helmuth, 2011). In cases where we do have a

    thorough knowledge of how populations are likely to respond to tem-

    perature, studies have shown that local adaptation (Kuo and Sanford,

    2009) and low genetic diversity (Pearson et al., 2010) can potentially

    create large differences in thermal tolerance between populations and

    among closely related species. This lack of information for many ecolog-

    ically important species limits our ability to predict how changing

    temperatures likely impact marine ecosystems.In this study we explore the effects of seawater temperature and

    irradiance on a common, ecologically important species of marine

    alga,Fucus gardneri.F. gardneriserves as a primary producer for the

    mid-intertidal region, and thus as a food source for littorine snails,

    isopods, and amphipods, and can produce large algal mats that serve

    as protection for intertidal invertebrates (Dethier, 1982). Given this spe-

    cies' foundational ecological role in the Northeastern Pacic intertidal

    zone, an explicit understanding of how F. gardneriis likely to respond

    to ongoingchange is paramount. It is well understood that temperature

    and irradiance inuence photosynthesis in fucoids (Kraufvelin et al.,

    2012; Nygard and Dring, 2008; Williams and Dethier, 2005 ). For

    example,Dethier and Williams (2009)showed thatF. gardneriphoto-

    synthesis, growth, and reproduction were most inuenced by seasonal

    differences in environmental temperature and irradiance levels. Previous

    studies of brown algae have documented the effects of irradiance levels

    on photosynthetic capacity (Dring and Brown, 1982; Dromgoole, 1987,

    1988; Johnson et al., 1998; Williams and Dethier, 2005), somatic growth

    (Davison and Pearson, 1996; Dethier and Williams, 2009; Falkowski and

    LaRoche, 1991; Kim et al., 2011; Kbler and Dudgeon, 1996; Lning,

    1971), and reproductive development (Davison and Pearson, 1996;

    Dethier and Williams, 2009). Several studies have also evaluated the

    photosynthetic performance of macroalgae in relation to environmental

    temperature (Bell, 1993; Kim et al., 2011; Kbler and Davison, 1993;

    Matta and Chapman, 1995; Williams and Dethier, 2005), where many

    have found an initial positive relationship between photosynthesis and

    increases in seawater temperature above current eld conditions.

    Research on Fucus vesiculosus (Alexandridis et al., 2012; Kraufvelin

    et al., 2012; Middelboe et al., 2006; Nygard and Dring, 2008; Terry and

    Moss, 1981) has demonstrated how light and temperature can inuencegermination, recruitment, growth, and photosynthesis in this alga.

    Although previous research has evaluated the photosynthetic activity

    ofthePacic species F. gardneri (previouslyF. distichus) to environmental

    change (Johnson et al., 1974; Quadir et al., 1979; Williams and Dethier,

    2005), these studies evaluated photosynthesis under a fairly narrow

    temperature range (e.g., summer temperatures).

    Our study expands upon previous work examiningF. gardneripho-

    tosynthesis in order to characterize how this species will likely respond

    to a range of seawater temperatures including those predicted in the

    near future. As previously described for other algal species (Bell, 1993;

    Dromgoole, 1988; Williams and Dethier, 2005), we hypothesized that

    increased seawater temperature would generally increase net photo-

    synthesis inF. gardneriup to some (previously unidentied) optimal

    temperature, but beyond this thermal optimum productivity woulddecline (Davison and Pearson, 1996). We further quantied patterns

    of seawater temperature in the intertidal zone at FHL to determine

    how close environmental conditions at this site currently are relative

    to this species' thermal optimum and how future increases in seawater

    temperature will likely affectF. gardneripopulations. Finally, we evalu-

    ated the potential role of the tidal regime in driving sensitivity to envi-

    ronmental change. While it is well recognized that the timing of low

    tide determines the frequency by which organisms are exposed at low

    tide to extreme aerial conditions of temperature and desiccation during

    the hottest parts of the day (Helmuth et al., 2002; Orton, 1929), a less

    explored corollary for intertidal algae is that maximal levels of photo-

    synthesis are likely to occur when high tides occur mid-day when

    irradiance levels are highest. The primary goals of this research were

    to (a) determine the photosynthetic performance curve for F. gardneri

    with increasing temperature at a saturating irradiance and in the dark;

    (b) develop a generic net photosynthesis model that can be used to pre-

    dict net photosynthesis (Pnet) under a range of future temperature and

    irradiance combinations at FHL; (c) to explore the relative importance

    of thetiming of high tide in driving sensitivity to environmental change;

    and (d) evaluate whether the current southern range limit ofF. gardneri

    is likely to be set by temperature.

    2. Materials and methods

    2.1. Study location and algal collection

    All algal specimens were collected from the mid-intertidal region

    (~0.51 m above Mean Lower Low Water, MLLW) along the coastline

    near FHL between May and August 2012. This tidal elevation harbors

    denseFucusalgal mats as well as herbivorous grazing littorine snails,

    isopods, and amphipods (Dethier, 1982; Dethier et al., 2005). All algal

    specimens collected were free of grazers and epiphytes, and had mini-

    mal tissue damage to the thallus or wingregions.

    Seawater temperatures collected from October 2010October 2012

    (http://depts.washington.edu/fhl/fhl_wx.html ) showed that seawater

    temperature at FHL rarely drops below 7 C, and rarely exceeds 14 C

    at 1.7 m depth (Fig. 1); though surface waters can exceed 14 C on

    warm summer days. Future climate models suggest an average increase

    in sea surface temperature of 2.3 C by the year 2090 for the North

    Pacic region (IPCC, 2007). Maximal water temperatures near the

    equatorial edge of this species' southern range (Monterey Bay, CA) are

    approximately 17.4 C from 2010 to 2012 (www.ndbc.noaa.gov). We

    therefore selected a temperature range of 6 to 22 C for our experi-

    ments, to encompass temperatures experienced by this species over

    much of its range, both now and in the near future.

    AllF. gardneriwere maintained in a ow-through seawater table

    where theywerekept for 2472 h before photosynthetic measurements

    were conducted. Experiments were conducted on the apical tip, the

    growing region, which was cut from a whole algal thallus 24 h prior

    to photosynthesis measurements to avoid wounding response. At

    the end of the experiment, the dry weights of all algal tissues were

    Fig. 1.Frequency distribution of surface seawater temperatures from October 2010 to

    October 2012 at Friday Harbor Laboratories, Washington (http://depts.washington.edu/

    fhl/fhl_wx.html). The rst peak in the frequency of temperature (78.5 C) is largely

    based on fall and winter-time measurements, whereas the second peak (9.510.5 C) is

    primarily comprised of spring and summer time measurements. The inset gure is of

    time-series data from which the frequency distribution was calculated, with hourly

    seawater temperature measurements ranging from 6 to 16 C (y-axis) from October

    2010 to October 2012 (x-axis).

    7N.B. Colvard et al. / Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    http://depts.washington.edu/fhl/fhl_wx.htmlhttp://www.ndbc.noaa.gov/http://depts.washington.edu/fhl/fhl_wx.htmlhttp://depts.washington.edu/fhl/fhl_wx.htmlhttp://depts.washington.edu/fhl/fhl_wx.htmlhttp://depts.washington.edu/fhl/fhl_wx.htmlhttp://www.ndbc.noaa.gov/http://depts.washington.edu/fhl/fhl_wx.html
  • 8/11/2019 Articulo-pollo.pdf

    3/7

    measured (dried to constant weight at 80 C) in order to standardize all

    photosynthetic measurements.

    2.2. Photosynthetic measurements of Fucus gardneri

    Net photosynthesis of the apical tips (~ 2 cm2) of F. gardneri

    was measured using a Hansatech DW3 chamber system (Hansatech,

    Norfolk England) with a Clark-type oxygen electrode (Bell, 1993;

    Maberly, 1992). This 10 mL closed volume chamber was temperature-controlled by a recirculating water jacket connected to a chiller, and

    a 300-W quartz-halogen lamp projector was used as an external

    light source and light levels were manipulated using neutral density

    lters. All seawater used in the experiments was ltered through a

    10-micron lter bag, and the seawater was replaced for each individual

    alga measured.

    A preliminary set of experiments was conducted to quantify the sat-

    urating irradiance for F. gardneri apical tips by recording photosynthesis

    as a function of irradiance (PI curves) at 10, 14, and 18 C 0.1 C.

    These seawater temperatures are representative of ambient (recorded

    temperature), high, and extreme (respectively) summer conditions at

    FHL. The PI curves were generated using a range of irradiance levels

    from 0 to 1500mol photons m2 s1. Specimens were dark acclimat-

    ed for 1 h before respiration measurements. Apical tips (n = 3 per tem-

    perature) were non-reproductive (0.021 0.005 g dry wt., n = 9) to

    avoid tissue that did not contribute to photosynthesis (Fig. S1). Oxygen

    production was calculated based on rate of change in O2, normalized by

    dry oven weight of the algal tissue.

    A curve was t to all points in each of the three PI curves using the

    following equation (Jassby and Platt, 1976):

    Pnet Pgross; max tanh I=Pgross; max

    h iRd 1

    where Pnetis net photosynthesis (mol O2g dry wt.1 h1), Pgross,max

    is the maximum rate of gross photosynthesis at saturating irradi-

    ance (mol O2g dry wt.1 h1), is the initial slope of the curve

    ([mol O2 g dry wt.1][mol photons m2]1), I is irradiance

    (mol photons m2 s1), and Rdis the respiration rate in the dark(mol O2g dry wt.

    1 h1). Pgross,maxwas calculated posthoc from

    Pnet,max (the maximum rate of net photosynthesis at a saturating

    irradiance [mol O2 g dry wt.1 h1]) and Rd, where Pgross,max =

    Pnet,max + Rd. The saturation irradiance (Ik) was determined by

    Pgross,max/. These parameters allowed us to further test the photo-

    synthetic performance ofF. gardneri conditioned with a range of

    temperatures.

    2.3. Effect of seawater temperature on photosynthesis

    We measured net photosynthesis ofF. gardneri under saturating

    irradiance at 2 C intervals between 6 and 22 C. Based on the results

    of the preliminary PI curves (above), which showed no signicant

    difference in saturating irradiance (Ik) among the three temperaturestested, we used an irradiance of 1400 mol photons m2 s1 for all

    Pgross,max measurements, as this level was reliably above minimum satu-

    rating irradiance for all temperatures. For the dark respiration measure-

    ments, allalgal tissuewas dark-adapted forat least 1 h. We measured 10

    replicate apical tips ofF. gardnerifor each temperature evaluated.

    2.4. Net photosynthesis model

    Using parameters from our net photosynthesis measurements

    in conjunction with varying irradiance (I, 01500 mol photons

    m2 s1) and water temperature (622 C) combinations, we devel-

    oped a simple model to predict net photosynthesis (Pnet). This predic-

    tive model is based on best curve ts for Pgross,max (second order

    polynomial curve t) and Rd(a linear equation); both parameters are

    dependent on seawater temperature. However, there were no differ-

    ences in initial slope of the PI curve () between temperatures, there-

    fore a xed value was used for all conditions. The Pnetmodel, which is

    dependent only on water temperature and irradiance, is valid only for

    submersed conditions, and we are assuming that Pnet 0 during aerial

    exposure, since the mean net photosynthesis for F. gardnerihas been

    shown to be as much as two orders of magnitude lower in air than in

    water (Williams and Dethier, 2005).

    We thenusedthismodel to reconstruct Pnet based on environmentalconditions recorded at FHL over two years (October 2010October

    2012) (http://depts.washington.edu/fhl/fhl_wx.html). Seawater tem-

    perature was measured in situ and underwater downwelling irradiance

    was estimated from surface irradiance and water depth following Beer's

    Law:

    Id;uw z IaireKdz

    2

    where Id,uwis the downwelling underwater irradiance (mol photons

    m2 s1) atdepthz (in meters),Iair is the downwelling irradiance mea-

    sured inair(mol photons m2 s1), Kd is the vertical light attenuation

    coefcient for summer (0.373 m1, based onDethier and Williams,

    2009). Tidal predictions were used to estimate water depth (z) at an

    intertidal elevation of + 1 m MLLW (Xtide,http://tbone.geol.sc.edu/

    tide). Thus, when the predicted tidal level was b+1 m MLLW, then

    the alga was assumed to be aerially exposed and Pnet= 0.

    To evaluate the impact an increase in seawater temperature would

    have on Pnetover the tidal range ofF. gardneri, we calculated the yearly

    average Pnetfor FHL from hourly recorded data, and compared it to

    simulated increases in temperature +2 C and +4 C above recorded

    temperatures at intertidal elevations ranging from 1.0 m to +2.5 m

    MLLW, at 0.1 m intervals. Using only recorded temperature conditions

    at FHL, we then manipulated the timing of the tide to quantify yearly

    average Pnet, shifting the tidal timing at FHL by 6 h, 3 h, +3 h,

    and + 6 h from ambient (+ 0 h difference). We then evaluated the dif-

    ference in yearlyaverage Pnet atthe ve tidal adjustments using thetidal

    cycle at Tatoosh Island, WA. Tatoosh Island is located ~190 km west of

    FHL, typically exhibiting a 35 h difference in tidal timing ahead of

    FHL (Xtide). Preliminary results suggested that the greatest differencein yearly average Pnetwas between +0 m and 0.5 m MLLW intertidal

    elevation, therefore we used these two elevations to explore the effects

    of exposure and submersion time on yearly average Pnet.

    In order to evaluate the likelihood that the southern latitudinal

    range limit ofF. gardneriwas set by seawater temperature conditions,

    we compared the yearly average Pnet using temperatures recorded

    during 20102012 at FHL, as well as at Monterey, CA, the recorded

    southern limit ofF. gardneri(Blanchette et al., 2008), and at San Diego,

    CA, considerably farther south than the current range limit. We also

    estimated Pnet at each of these sites using temperature increases

    of 2 C and 4 C above current conditions. Seawater temperature data

    for the three sites were obtained from NOAA Buoy Center (www.ndbc.

    noaa.gov). We recognize that this analysis is based only on seawater

    temperatures, and thus ignores all other environmental conditionslikely to change over this range. The analysis also does not consider

    any potential physiological differences among populations. However,

    we made the assumption that if any differences do exist, populations

    farther south are likely to be even more thermally tolerant than those

    at FHL. Our comparison thus provides a conservative estimate of yearly

    average Pnetfor F. gardnerialong the northeastern Pacic, and actual

    values could be higher at southern sites if algae were acclimatized or

    adapted to those conditions.

    A linear regression was used to determine the relationship between

    algal respiration and temperature. A two-factor mixed model ANOVA

    wasused to compare yearly average Pnet at FHL at current temperatures

    and increasesof 2 C and 4 C with changes in tidal elevation. Sensitivity

    analyses were used to evaluate differences in yearly average P netbe-

    tween FHL and Tatoosh Island, and compare yearly average Pnetwith

    8 N.B. Colvard et al. / Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    http://depts.washington.edu/fhl/fhl_wx.htmlhttp://tbone.geol.sc.edu/tidehttp://tbone.geol.sc.edu/tidehttp://www.ndbc.noaa.gov/http://www.ndbc.noaa.gov/http://www.ndbc.noaa.gov/http://www.ndbc.noaa.gov/http://tbone.geol.sc.edu/tidehttp://tbone.geol.sc.edu/tidehttp://depts.washington.edu/fhl/fhl_wx.html
  • 8/11/2019 Articulo-pollo.pdf

    4/7

    response to temperature differences between latitudinal sites (Friday

    Harbor, WA, Monterey, CA, and San Diego, CA). All statistical tests

    were run with Systat 12.

    3. Results

    3.1. Effect of seawater temperature on photosynthesis

    Best curve

    ts were applied to the photosynthetic performancemeasurements ofF. gardneriin response to changes in temperature in

    the dark (Rd) and at a saturating irradiance (Pgross,max) (Fig. 2). A linear

    regression analysis showed a signicant increase in respiration, Rd, with

    temperature (r2 = 0.798, P b 0.001) from 34.70 2.41 mol CO2g dry wt.1 h1 at 6 C up to 49.33 3.17 mol CO2g dry wt.

    1 h1

    at 22 C. A non-linear regression (second order polynomial) curve was

    t to the photosynthesis data to describe the effect of temperature on

    Pgross,max, and showed a maximum value of 16 C, followed by a de-

    crease in Pgross,maxfrom 18 to 22 C (Fig. 2). Temperature had a small

    effect on the light-saturated, maximum rate of photosynthesis of sub-

    mergedF. gardneri, with Q10values of 1.52 at 616 C, 1.59 at 818 C,

    and 1.15at 1020 C, demonstrating the greatest rate of change in pho-

    tosynthesis associated to temperature changefor the818C range,and

    quickly declining for the 1020 C range.

    3.2. Net photosynthesis model

    The predictive model of PnetforF. gardneribased on the measured

    seawater temperature and downwelling irradiance calculated from

    aerial measurements at FHL (shown as points overlaid on the contour

    plot, Fig. 3), suggest that submerged F. gardneri at FHL never experienced

    temperatures above optimal levels. The two-factor mixed model ANOVA

    showed a signicant difference in net photosynthesis for F. gardneri

    when evaluating the interaction of tidal elevation temperature change

    (F2,102 = 3.939, P = 0.022) (Fig. S2). As expected, simulations show that

    photosynthesis decreases with increased tidal elevation, especially N +

    1 m MLLW.

    The Pnet model simulations for different adjustments to the timingof

    the tide for FHL showed the greatest increase in Pnetwith shifts in tidal

    timing of6 h and +6 h (Fig. S3). Using tide predictions for Tatoosh

    Fig. 2. Maximum gross photosynthesis (Pgross, max-closed circles) and dark respiration

    (Rd-open circles) for apical tips ofFucus gardneriin seawater. Symbols are means

    SE of n = 10 replicates per temperature. A linear regression analysis showed there

    was a signicant increase (r2 = 0.798, P b 0.001) in Rd(mol CO2g dry wt1 h1)

    increasing with temperature, from 6 to 22 C. For Pgross,max(mol O2g dry wt1 h1),

    the photosynthetic output increases with temperature up to 18 C, after which Pgross,max

    shows a decline at 20 and 22 C.

    Fig. 3. Contour plot of thepredictivemodelof Pnet for Fucus gardneri (mol O2 g dry wt.1

    h1) for a range ofirradiance(01500 mol photons m2 s1) and seawater temperature

    (6

    22 C) combinations. The overlaid points are environmental databased on temperatureand underwater irradiance measurements from October 2010 to October 2012 at Friday

    Harbor Laboratories, WA.

    Fig. 4.The Pnetmodel simulations using ambient temperature conditions, evaluating the

    difference in tidal timing for 0 m tidal elevation (A) and 0.5 m tide tidal elevation (B) for

    Friday Harbor Laboratories (black bars) and Tatoosh Island (white bars). The yearly average

    Pnet forthe ve tidal timing shifts (6 h to+6 h)showed the lowestPnet at0 h tidal timing

    for FHL,but was lowest at+3 h forTatooshIslandat 0 m and 0.5m tidalelevation ofthealga.

    9N.B. Colvard et al. / Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    http://localhost/var/www/apps/conversion/tmp/scratch_5/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_5/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_5/image%20of%20Fig.%E0%B2%80
  • 8/11/2019 Articulo-pollo.pdf

    5/7

    Island, only 6 h and 3 h tidal timing shift predicted an increase in

    yearly average Pnetfor all intertidal elevations. However, a tidal timing

    shift of +6 h caused a decrease in Pnet at tidal elevations b+1 m

    MLLW, but an increase in Pnet at tidal elevations N+1 m MLLW

    (Fig. S3). Theyearlyaverage Pnet for shifts in tidal timings demonstrated

    the lowest Pnetat 0 h tidal timing for FHL at 0 m and 0.5 m tidal eleva-

    tion, however for Tatoosh Island, yearly average Pnet was lowest at

    +3 h for both tidal elevations (Fig. 4).

    The model simulations evaluating yearly average Pnetfor currentrecorded temperatures (+0 C), and increases of 2 C and 4 C for San

    Diego, CA, Monterey, CA, and Friday Harbor, WA revealed differences

    in sensitivity to temperature increases between the three locations,

    but more importantly show that the current southern limits is likely

    not set by thermal performance (Fig. 5). Modeled Pnetfor San Diego,

    CA temperatures showed positive yearly average Pnet, even though

    this location is further south than the southern range limit for this

    species (Blanchette et al., 2008). However, the model predictions for

    this location suggest a decline in Pnet with increased seawater tempera-

    ture, assuming that thermal sensitivity is comparable to algae from the

    northern site. In contrast, there is no difference in yearlyaverage Pnet for

    F. gardneribased on current and projected temperatures for Monterey,

    CA. Andnally, yearly average Pnetat FHL is predicted to increase with

    increasing seawater temperature (Fig. 5).

    4. Discussion

    This study demonstrated that the photosynthetic response of

    F. gardneri is strongly dependent on surrounding seawater temperature

    at high levelsof irradiance, andthat at most sites an increase in seawater

    temperature will either have no effect on performance, or will slightly

    increase photosynthetic performance. Whereas previous studies have

    explored the plasticity of fucoids to wave action (Blanchette et al.,

    2000; Dethier and Williams, 2009), desiccation (Dethier and Williams,2009; Gylle et al., 2009; Harker et al., 1999), and habitat type

    (Chapman, 1995; Schonbeck and Norton, 1978, 1980; Wernberg et al.,

    2011), this study is one of the rst to characterize the net photosynthe-

    sis ofF. gardneriunder a range of irradiance and temperature combina-

    tions in submerged conditions (but seeAlexandridis et al., 2012).

    Our results show that 1618 C is the optimal temperature for

    F. gardneri in submerged conditions at Friday Harbor, suggesting a

    strong link between the organism's tness and the thermal envi-

    ronment (Prtner, 2010) while undergoing maximum rates of gross

    photosynthesis. The initial positive effect of temperature (b16 C) is

    attributed to the role of temperature in carbon xation during photo-

    synthesis up to a thermal maximum (Davison, 1991). This increase in

    photosynthetic activity to increasing temperature is quantied by a

    Q10value, which for F. gardnerihas been shown to vary between 1.1

    Fig. 5.Fucus gardneriyearly average Pnetmodel predictions for current recorded temperatures (+ 0 C), and increases of 2 C and 4 C for Friday Harbor, WA (insert A), Monterey, CA

    (insertB), andSan Diego, CA (insert C).The dashed line(near Monterey,CA) is thecurrentlyrecorded southernlimitofF. gardneri (Blanchette et al.,2008). These data show yearly average

    Pnetis predicted to increase with increasing seawater temperature for Friday Harbor, WA, not differ in yearly average Pnetfor Monterey, CA, and decline in P netwith increased seawater

    temperature in San Diego, CA. However, San Diego, CA is modeled to have positive net photosynthesis, though this location is further south than the southern limit ofFucusalgae in

    the northeastern Pacic.

    10 N.B. Colvard et al. / Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    http://localhost/var/www/apps/conversion/tmp/scratch_5/image%20of%20Fig.%E0%B5%80
  • 8/11/2019 Articulo-pollo.pdf

    6/7

    and 1.5 (Madsen and Maberly, 1990, present study), for temperatures

    between 6 and 20 C. Reduction in gross photosynthesis at tem-

    peratures above 18 C can be attributed to several factors such as tem-

    perature sensitive enzymes of photophosphorylation and electron

    transport and plastoquinone diffusion (Davison, 1991). Oxygen-

    dependent thermal tolerancecould also explain the near linear increase

    in respiration with increasing temperature observed in submerged

    conditions (Allakhverdiev et al., 2008; Zou et al., 2007). However, our

    results should be interpreted with caution because they were conduct-ed on individuals from one location; there was a low power of compar-

    ison among thePI curves (n = 3 per temperature), and becausethe net

    photosynthesis model is based on the algal tissue from the apical tip

    rather than the entire thalli. Moreover, experiments measuring temper-

    ature effects were conducted at saturating irradiance, and modeled at

    lower irradiance levels using a generic PI curve. Thus, explicit tests at

    lower irradiance levelsare still needed. Additionally, we did not account

    for the effect of ultraviolet radiation (UVR) onFucusphotosynthetic

    activity over the range of temperatures evaluated;however, we suggest

    that in situ UVR may also affect macroalgal net photosynthesis, primar-

    ily during shallow submerged conditions and aerial exposure (Raven

    and Hurd, 2012).

    The optimum temperature of 16 C is ~2 C warmer than thehighest

    recorded seawater temperature at FHLfrom 2010 to 2012. This suggests

    thatF. gardnerimay be able to withstand the projected average sea-

    water temperature increase of 2.3 C by the year 2090 for the North

    Pacic region. Notably, however, this increase is based on changes in

    average conditions only and it is highly likely that temperatures in

    excess of the optimum will occur during rare, extreme events such as

    those recorded in other parts of the world. For example, in summer

    2012 temperatures in the Gulf of Maine were up to 3 C higher than

    the 19822011 climatology (Mills et al., 2013).Somero (2010)sug-

    gestedthat with projectedfutureclimate changeand organism acclima-

    tization to increasing temperature, there will be winners and losers in

    the intertidal; thendings from this study suggest F. gardneri at FHL will

    likely increase net photosynthesis with increasing seawater tempera-

    tures. These simulations predict that F. gardneriat low tidal elevations

    (b+1 m MLLW) will experience an approximately10% increase in year-

    ly average photosynthesis with a 4 C increase in seawater temperatureabove ambient.

    The comparison of the Pnetmodels for F. gardneri based on tidal

    timing suggests that the timing of high tide can theoretically inuence

    yearly net photosynthesis by as much as 25% (Fig. 4). The tidal timing

    and submergence time can inuence photosynthesis by determining

    algal submergence during midday irradiance exposure, though this is

    dependent on tidal elevation ofFucusalgae. The tidal regimes of FHL

    and Tatoosh Island demonstrate that the timing of the tide, tidal

    range,and duration of exposure time between these twolocationsinu-

    ences yearly average PnetofF. gardneri; however, these effects are likely

    to be compounded with differences in irradiance and water tempera-

    ture between the two sites. The Pnetmodel simulations showed FHL

    tidal timing manipulations caused the greatest change in net photosyn-

    thesis when shifting the tide 6 h and +6 h from current conditions(i.e., ambient), though Tatoosh Island demonstrated an increase in net

    photosynthesis when shifting the tide 6 h and 3 h from ambient.

    Because simulations for Tatoosh Island used the same environmental

    temperature and irradiance conditions measured at FHL, differences

    observed in the yearly average Pnetare only attributable to differences

    in tidal timing and range for these two locations, and do not include

    the effects of differences in other environmental conditions(e.g., irradi-

    ance, water temperature).

    The Pnetmodel comparison for temperature data from San Diego,

    CA, Monterey, CA, and Friday Harbor, WA suggests that F. gardneri

    has a positive net photosynthesis at all three locations, though

    Monterey, CA has been identied as the approximate southern

    limit of this species. This suggests the southern limit for F. gardneri

    is not solely temperature dependent, and is potentially limited by

    other environmental conditions (i.e., spatial competition, foraging

    pressure), or by some combination of stressors. However, macroalgae

    at the more southern sites are expected to display a reduced photosyn-

    theticresponse with increasingtemperature conditions,whereas Friday

    Harbor shows a continued increase in photosynthesis with an increase

    of 2 and 4 C in seawater temperature.

    Future applications of this Pnet model should incorporate aerial

    exposure and other abiotic conditions and biotic interactions that are

    drivingFucus

    tness in the intertidal zone. Duration of aerial exposureand environmental conditions duringexposure can dictate algal success

    and net photosynthesis (Williams and Dethier, 2005).In our simplePnetmodel we suspended photosynthetic activity during aerial exposure

    and did not account for potential deleterious effects of desiccation,

    UVR, and heat stress during low tide events, especially during warm

    summerdays. Other abiotic conditions thatmay inuence photosynthe-

    sis along with temperature and irradiance are nutrient levels (Nygard

    and Dring, 2008), salinity (Gylle et al., 2009; Nygard and Dring, 2008),

    and CO2 concentrations (Zou and Gao, 2002). Future studies canexplore

    the role these other environmental conditions may have on the Pnetof

    F. gardneri.

    This study is an initial step at describing the net photosynthesis of

    F. gardneriusing a range of seawater temperatures, and therefore is a

    critical rst step that can be expanded upon to explore how other envi-

    ronmental factors (e.g., salinity, grazing pressure, water motion, and

    aerial exposure) contribute to net photosynthesis in this intertidal alga.

    Supplementary data to this article can be found online athttp://dx.

    doi.org/10.1016/j.jembe.2014.05.001.

    Acknowledgments

    This work was supported by an Alan and Marian Kohn Fellowship

    to NC from UW Friday Harbor Laboratories, as well as the US National

    Science Foundation (NSF OCE_0926581 to BH and OCE_ 0824903

    to EC) and National Aeronautics and Space Administration (NASA

    NNX07AF20G to BH). We are grateful to M. Bracken and M. Zippay for

    their comments on previous drafts of this manuscript. We would like

    to thank two anonymous reviewersand editorial comments forimprov-ing this manuscript. We thank K. Sebens and the staff of the Friday

    Harbor Laboratories for hosting our visit, as well as H. Hayford, O.

    Moulton, and L. Newcomb for their support in the data collection. This

    is publication number 314 of the Northeastern University Marine

    Science Center.[SS]

    References

    Alexandridis, N., Oschlies, A., Wahl, M., 2012. Modeling the effects of abiotic and bioticfactors on the depth distribution ofFucus vesiculosus in the Baltic Sea. Mar. Ecol.Prog. Ser. 463, 5972.

    Allakhverdiev, S., Kreslavski, V., Klimov, V., Los, D., Carpentier, R., Mohanty, P., 2008. Heatstress: an overview of molecular responses in photosynthesis. Photosynth. Res. 98,541550.

    Almada-Villela, P.C., Davenport, J., Gruffydd, L.D., 1982. The effects of temperature on theshell growth of young Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 59, 275288.

    Bell, E.C., 1993.Photosynthetic response to temperature and desiccation of the intertidalalgaMastocarpus papillatus. Mar. Biol. 117, 337346.

    Blanchette, C.A., Thornber, C., Gaines, S., 2000. Effects of wave exposure on intertidalfucoid algae. Proc. Calif. Islands Symp. 5, 347355.

    Blanchette, C.A., Miner, C.M., Raimondi, P.T., Lohse, D., Heady, K.E.K., Broitman, B.R., 2008.Biogeographical patterns of rocky intertidal communities along the Pacic coast ofNorth America. J. Biogeogr. 35, 15931607.

    Chapman, A.R.O.,1995. Functionalecology of fucoidalgae: twenty-threeyears of progress.Phycologia 34, 132.

    Chown, S.L., Gaston, K.J., 1999.Exploring links between physiology and ecology atmacro-scales: the role of respiratory metabolism in insects. Biol. Rev. Camb. Philos.Soc. 74, 87120.

    Davison, I.R., 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol.27, 28.

    Davison, I.R., Pearson, G.A., 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32,197211.

    Dethier, M.N., 1982.Pattern and process in tidepool algae: factors inuencing seasonality

    and distribution. Bot. Mar. 25, 55

    66.

    11N.B. Colvard et al. / Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    http://dx.doi.org/10.1016/j.jembe.2014.05.001http://dx.doi.org/10.1016/j.jembe.2014.05.001http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0045http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0045http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0045http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0045http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0050http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0050http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0050http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0050http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0060http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0060http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0060http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0060http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0065http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0065http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0065http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0065http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0070http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0065http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0065http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0060http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0060http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0055http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0050http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0050http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0040http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0045http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0045http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0030http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0020http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0015http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0010http://dx.doi.org/10.1016/j.jembe.2014.05.001http://dx.doi.org/10.1016/j.jembe.2014.05.001
  • 8/11/2019 Articulo-pollo.pdf

    7/7

    Dethier, M.N., Williams, S.L., 2009.Seasonal stresses shift optimal intertidal algal habitats.Mar. Biol. 156, 555567.

    Dethier, M.N., Williams, S.L., Freeman, A., 2005. Seaweeds under stress: manipulatedstress and herbivory affect critical life-history functions. Ecol. Monogr. 75, 403418.

    Dring, M.J., Brown, F.A., 1982.Photosynthesis of intertidal brown algae during and afterperiods of emersion: a renewed search for physiological causes of zonation. Mar.Ecol. Prog. Ser. 8, 301308.

    Dromgoole, F.I., 1987.Photosynthesis of marine algae in uctuating light. I. Adjustmentofrate in constant and uctuating light regimes. Funct. Ecol. 1, 377386.

    Dromgoole, F.I., 1988. Light uctuations andthe photosynthesis of marine algae. II.Photo-synthetic response to frequency, phase ratio and amplitude. Funct. Ecol. 2, 211219.

    Falkowski, P.G., LaRoche, J., 1991.Acclimation to spectral irradiance in algae. J. Phycol. 27,814.Gylle, A.M., Nygard, C.A., Ekelund, N.G.A., 2009.Desiccation and salinity effects on marine

    and brackishFucus vesiculosusL. (Phaeophyceae). Phycologia 48, 156164.Harker, M., Berkaloff, C., Lemoine, Y., Britton, G., Young, A., Duval, J.C., Rmiki, N.E.,

    Rousseau, B., 1999. Effects of high light and desiccation on the operation of thexanthophyll cycle in two marine brown algae. Eur. J. Phycol. 34, 3542.

    Helmuth, B., Harley, C.D.G., Halpin, P.M., O'Donnell, M., Hofmann, G.E., Blanchette, C.A.,2002.Climate change and latitudinal patterns of intertidal thermal stress. Science298, 10151017.

    Howard, J., Babij, E., Grifs, R., Helmuth, B., Himes-Cornell, A., Neimier, P., Orbach, M.,Petes, L., Allen, S., Auad, G., Beard, R., Boatman, M., Bond, N., Boyer, T., Brown, D.,Clay, P., Crane, K., Cross, S., Dalton, M., Diamond, J., Diaz, R., Dortch, Q., Duffy, E.,Fauquier, D., Fisher, W., Graham, M., Halpern, B., Hansen, L., Hayum, B., Herrick, S.,Hollowed, A., Hutchins, D., Jewett, E., Jin, D., Knowlton, N., Kotowicz, D., Kristiansen,T., Little, P., Lopez, C., Loring, P., Lumpkin, R., Mace, A., Mengerink, K., Morrison, J.R.,Murray, J., Norman, K., O'Donnell, J., Overland, J., Parsons, R., Pettigrew, N., Pfeiffer,L., Pidgeon, E., Plummer, M., Polovina, J., Quintrell, J., Rowles, T., Runge, J., Rust, M.,Sanford, E., Send, U., Singer, M., Speir, C., Stanitski, D., Thornber, C., Xue, Y., 2013.

    Oceans and marine resources in a changing climate. Oceanogr. Mar. Biol. Annu. Rev.51, 71192.

    IPCC, 2007.Climate Change 2007: Synthesis Report. Contribution of Working Groups I, IIand III to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange. In: Core Writing Team, Pachauri, R.K., Reisinger, A. (Eds.), IPCC, Geneva,Switzerland, 104 pp.

    Jassby, A.D., Platt, T., 1976.Mathematical formulation of the relationship between photo-synthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540547.

    Johnson, W.S., Gigon, A., Gulmon, S.L., Mooney, H.A., 1974. Comparative photosyntheticcapacities of intertidal algae under exposed and submerged conditions. Ecology 55,450453.

    Johnson, M.P., Hawkins, S.J., Hartnoll, R.G., Norton, T.A., 1998.The establishment of fucoidzonation on algal-dominated rocky shores: hypotheses derived from a simulationmodel. Funct. Ecol. 12, 259269.

    Kim, J.-H.,Kang, E.,Park,M., Lee,B.-G.,Kim, K.,2011. Effects of temperature and irradianceon photosynthesis and growth of a green-tide-forming species Ulva linza in theYellow Sea. J. Appl. Phycol. 23, 421432.

    Kordas, R.L., Harley,C.D.G., O'Connor,M.I., 2011. Communityecology in a warming world:the inuence of temperature on interspecic interactions in marine systems. J. Exp.Mar. Biol. Ecol. 400, 218226.

    Kraufvelin, P., Ruuskanen, A., Bck, S., Russell, G., 2012. Increased seawater temperatureand light during early springs accelerate receptacle growth ofFucus vesiculosusinthe northern Baltic proper. Mar. Biol. 159, 17951807.

    Kbler, J.E., Davison, I.R., 1993.High-temperature tolerance of photosynthesis in the redalgaChondrus crispus. Mar. Biol. 117, 327335.

    Kbler, J.E., Dudgeon, S.R., 1996.Temperature dependent change in the complexity ofform ofChondrus crispusfronds. J. Exp. Mar. Biol. Ecol. 207, 1524.

    Kuo, E.S.L., Sanford, E., 2009.Geographic variation in the upper thermal limits of an inter-tidal snail. Mar. Ecol. Prog. Ser. 388, 137146.

    Lning, K., 1971.Seasonal growth ofLaminaria hyperborea under recorded underwaterlight conditions near Helgoland. Proc 4th European Marine Biology Symposium.Cambridge University Press.

    Maberly, S.C., 1992.Carbonate ions appear to neither inhibit nor stimulate use of bicar-bonate ions in photosynthesis by Ulva lactuca. Plant Cell Environ. 15, 255260.

    Madsen, T.V., Maberly, S.C., 1990. A comparisonof air andwateras environmentsfor pho-tosynthesis by the intertidal alga Fucus spiralis(Phaeophyta). J. Phycol. 26, 2430.

    Matta, J.L., Chapman, D.J., 1995.Effects of light, temperature and desiccation on the netemersed productivity of the intertidal macroalgae Colpomenia peregrina Sauv.(Hamel). J. Exp. Mar. Biol. Ecol. 189, 1327.

    Middelboe, A., Sand-Jensen, K., Binzer, T., 2006.Highly predictable photosynthetic pro-duction in natural macroalgal communities from incoming and absorbed light.Oecologia 150, 464476.

    Mills, K.E., Pershing, A.J., Brown, C.J., Chen, Y., Chiang, F.-S., Holland, D.S., Lehuta, S.,Nye, J.A., Sun, J.C., Thomas, A.C., Wahle, R.A., 2013. Fisheries management in achanging climate: lessons from the 2012 ocean heat wave in the NorthwestAtlantic. Oceanography 26, 191195.

    Mislan, K.A.S., Blanchette, C.A., Broitman, B.R., Washburn, L., 2011.Spatial variability of

    emergence, splash, surge, and submergence in wave-exposed rocky-shore ecosys-tems. Limnol. Oceanogr. 56, 857866.Monaco, C.J., Helmuth, B., 2011.Tipping points, thresholds and the keystone role of

    physiology in marine climate change research. Adv. Mar. Biol. 60, 123160.Nygard, C.A., Dring, M.J., 2008. Inuence of salinity, temperature, dissolved inorganic

    carbon and nutrient concentration on the photosynthesis and growth ofFucusvesiculosusfrom the Baltic and Irish Seas. Eur. J. Phycol. 43, 253262.

    Orton, J.H., 1929.Observations onPatella vulgataPart III. Habitat and habits. J. Mar. Biol.Assoc. U. K. 16, 277288.

    Paine, R.T., 1994. Marine rocky shores and community ecology: an experimentalist'sperspective. Ecology Institute, Oldendorf/Luhe, Germany.

    Pearson, G., Hoarau, G., Lago-Leston, A., Coyer, J., Kube, M., Reinhardt, R., Henckel, K.,Serro,E., Corre,E., Olsen,J., 2010. Anexpressedsequence taganalysis ofthe intertidalbrown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta,Phaeophyceae) in response to abiotic stressors. Mar. Biotechnol. 12, 195213.

    Petes, L.E., Menge, B.A., Harris, A.L., 2008.Intertidal mussels exhibit energetic trade-offsbetween reproduction and stress resistance. Ecol. Monogr. 78, 387402.

    Prtner, H.-O., 2010.Oxygen- and capacity-limitation of thermal tolerance: a matrix forintegrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213,

    881893.Quadir, A., Harrison, P.J., DeWreede, R.E., 1979.The effects of emergence and submer-

    gence on the photosynthesis and respiration of marine macrophytes. Phycologia 18,8388.

    Raven, J.A., Hurd, C.L., 2012.Ecophysiology of photosynthesis in macroalgae. Photosynth.Res. 113, 105125.

    Sanford, E., 2002.Water temperature, predation, and the neglected role of physiologicalrate effects in rocky intertidal communities. Integr. Comp. Biol. 42, 881891.

    Schonbeck, M., Norton, T.A., 1978.Factors controlling the upper limits of fucoid algae onthe shore. J. Exp. Mar. Biol. Ecol. 31, 303313.

    Schonbeck, M.W., Norton, T.A., 1980.Factors controlling the l ower limits of fucoid algaeon the shore. J. Exp. Mar. Biol. Ecol. 43, 131150.

    Somero, G.N., 2002.Thermal physiology and vertical zonation of intertidal animals:optima, limits, and costs of living. Integr. Comp. Biol. 42, 780789.

    Somero, G.N., 2010.The physiology of climate change: how potentials for acclimatizationand genetic adaptation will determine winners andlosers. J. Exp. Biol. 213, 912920.

    Terry, L.A., Moss, B.L., 1981.The effect of irradiance and temperature on the germinationof four species of Fucales. Br. Phycol. J. 16, 143151.

    Wernberg, T., Thomsen, M.S., Tuya, F., Kendrick, G.A., 2011.Biogenic habitat structure ofseaweeds change along a latitudinal gradient in ocean temperature. J. Exp. Mar.Biol. Ecol. 400, 264271.

    Wethey, D.S., Woodin, S.A., Hilbish, T.J., Jones, S.J., Lima, F.P., Brannock, P.M., 2011.Response of intertidal populations to climate: effects of extreme events versus longterm change. J. Exp. Mar. Biol. Ecol. 400, 132144.

    Williams, S.L., Dethier, M.N., 2005.High and dry: variation in net photosynthesis of theintertidal seaweedFucus gardneri. Ecology 86, 23732379.

    Woodin, S.A., Hilbish, T.J., Helmuth, B., Jones, S.J., Wethey, D.S., 2013. Climate change,species distribution models, and physiological performance metrics: predictingwhen biogeographic models are likely to fail. Ecol. Evol. 3, 33343346.

    Zou, D.H., Gao, K.S., 2002.Effects of desiccation and CO2concentrations on emersed pho-tosynthesis inPorphyra haitanensis (Bangiales, Rhodophyta), a species farmed inChina. Eur. J. Phycol. 37, 587592.

    Zou, D.H., Gao, K.S., Xia, J.R., Xu, Z.G., Zhang, X., Liu, S.X., 2007.Responses of dark respira-tion in the light to desiccation and temperature in the intertidal macroalga, Ulvalactuca(Chorophyta) during emersion. Phycologia 46, 363370.

    12 N.B. Colvard et al. / Journal of Experimental Marine Biology and Ecology 458 (2014) 612

    http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0075http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0075http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0075http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0075http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0080http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0080http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0080http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0080http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0100http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0100http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0100http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0100http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0110http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0110http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0110http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0110http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0120http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0120http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0120http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0120http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0125http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0125http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0125http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0125http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0135http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0135http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0135http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0135http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0185http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0185http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0185http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0185http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0230http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0230http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0230http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0230http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0245http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0245http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0255http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0255http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0255http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0255http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0270http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0270http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0270http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0270http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0275http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0275http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0275http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0275http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0280http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0280http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0280http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0280http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0285http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0285http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0285http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0285http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0295http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0295http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0295http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0295http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0305http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0305http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0305http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0305http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0320http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0320http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0320http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0320http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0340http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0335http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0330http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0325http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0320http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0320http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0310http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0305http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0305http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0300http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0295http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0295http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0285http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0285http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0280http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0280http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0275http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0275http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0270http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0270http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0265http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0260http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0255http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0255http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0250http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0245http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0245http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0240http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0235http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0230http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0230http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0225http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0220http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0215http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0205http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0195http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0190http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0355http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0185http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0185http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0180http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0175http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0165http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0160http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0150http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0145http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0140http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0135http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0135http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0350http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0125http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0125http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0120http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0120http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0110http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0110http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0105http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0100http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0100http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0095http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0090http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0085http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0080http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0080http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0075http://refhub.elsevier.com/S0022-0981(14)00120-8/rf0075