50
B 0 DK *0 崩壊の研究 東北大学 根岸 健太郎 1 ©H.Nakano 11/12/06 Bワークショップ @ 磐梯熱海

B DK*0崩壊の研究 - 東北大学大学院理学研究科物 …epx.phys.tohoku.ac.jp/eeweb/meeting/201112_bworkshop...CKM V † CKM =1 ユニタリ条件 各成分は複素数

Embed Size (px)

Citation preview

B0 → DK*0崩壊の研究

東北大学

根岸 健太郎

1

©H.Nakano

11/12/06 Bワークショップ @ 磐梯熱海

目次

•  序論 – Belle実験 – CP非保存角φ3

– B → DK崩壊

•  RDK*測定

•  まとめ

2

序論

Belle実験について CP非保存角φ3とは

φ3測定のためのB → DK崩壊

3

µ / KL detection

CsI(Tl)

Aerogel Cherenkov cnt.

Si vtx. det.

TOF conter

8 GeV e-

3.5 GeV e+

Central Drift Chamber

Belle実験 •  Belle実験

–  e+e-衝突でΥ(4S)(bbレゾナンス)を生成

•  KEKB加速器 –  e- : 8.0 GeV, e+ 3.5 GeV, 重心エネルギー10.6 GeV (非線形) –  e+e-衝突器として世界最高のルミノシティ

•  Belle検出器

Υ(4S) → B+B- ~ 50 % → B0B0 ~ 50 %

__

4

CP非保存角φ3

•  CKM(Caibbo-小林-益川)行列 ‒ 弱い相互作用のCharged currentに入ってくる行列 ‒ 質量の固有状態とフレイバーの固有状態を混合

U = (u, c, t) D = (d, s, b) UL, DL : 左巻き成分

Lint = − g√2(ULγµVCKMDLW+

µ ) + h.c.

W

D

U

5

CP非保存角φ3

•  CKM(Caibbo-小林-益川)行列 ‒ 弱い相互作用のCharged currentに入ってくる行列 ‒ 質量の固有状態とフレイバーの固有状態を混合

–  CKM行列はユニタリでなければならない

U = (u, c, t) D = (d, s, b) UL, DL : 左巻き成分

Lint = − g√2(ULγµVCKMDLW+

µ ) + h.c.

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

VCKMV †CKM = 1

ユニタリ条件

各成分は複素数 複素位相はVub, Vtdに押し込める事が出来る

6

CP非保存角φ3

•  CKM(Caibbo-小林-益川)行列 ‒ 弱い相互作用のCharged currentに入ってくる行列 ‒ 質量の固有状態とフレイバーの固有状態を混合

–  CKM行列はユニタリでなければならない

‒ 各項が複素数 → 複素平面上に三角形 → ユニタリ三角形

U = (u, c, t) D = (d, s, b) UL, DL : 左巻き成分

Lint = − g√2(ULγµVCKMDLW+

µ ) + h.c.

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

VCKMV †CKM =

1 0 00 1 00 0 1

VudV∗ub + VcdV

∗cb + VtdV

∗tb = 0

7

ユニタリ三角形

•  ユニタリ三角形

•  b → u遷移のある(Vubの含まれる)モードで観測する事となる。 ‒  どのように観測するか → 次ページ

φ3の精度が悪い 精度の向上 → SMパラメターの精密測定 → New Physicsの手掛かり?

φ1

φ2

φ3

VudV∗ub

VcdV∗cb

VtdV∗tb

φ1 = (21.15+0.90−0.88)

φ2 = (89.0+4.4−4.2)

φ3 = (68+13−14)

φ3 ≡ arg�

VudV ∗ub

−VcdV ∗cb

∼ − arg(Vub)

8

ICHEP 2010 EPS 2011

φ3測定とB → DK崩壊

•  D0, D0が同じ終状態 f へ崩壊 ‒ 終状態が同じ二つのtree diagramが干渉

•  経路Aにb → u遷移が含まれる → φ3の影響が入ってくる

D : D0 or D0

b

u

u

u

c

s

W

Vub

_ _

_

B-

D0 → f

K-

φ3の情報 _

_

経路A

b

u

u

u

s

c

W

_ _

_

B-

D0 → f

K-

経路B

9

_

かなりざっくりした説明↑ 勿論他にも色々効果が入って来る訳で、、、 もう少し具体的に、 •  どんな観測量を測るのか? •  どんな f を使うの?

φ3測定とB → DK崩壊

•  Charge conjugateで弱い相互作用の位相は符号が反転する。 •  経路A,B間でに異なる強い相互作用の位相δが入ってくる

•  観測されるのは赤い線の(経路A,Bの干渉を経た)二乗

D : D0 or D0

b

u

u

u

c

s

W

Vub

_ _

_

B-

D0 → f

K-

φ3の情報 _

_

経路A

b

u

u

u

s

c

W

_ _

_

B-

D0 → f

K-

経路B

経路B

 経路A = 経路A

_____

経路B _____

δ + φ3

δ - φ3 δは符号反転しない

10

B → DK崩壊に続くD崩壊の例 –ADS法– •  D → Kπ, Kππ0, Kπππ, etc

–  D崩壊がFlavor Specific (Favored, Suppressed mode) –  Sup. modeで崩壊振幅は小さい、CP非保存の影響が大きい

A(B-→D0K-) + A(D0→K+π-) = A(B+→D0K+) + A(D0→K-π+)

_ _

A(B+→D0K+) + A(D0→K-π+) A(B-→D0K-)

+ A(D0→K+π-)

_ _

A(B+→[K-π+]K+)

A(B-→[K+π-]K-) δB + δD + φ3 δB + δD - φ3

RADS =Γ(B− → DsupK−) + Γ(B+ → DsupK+)Γ(B− → DfavK−) + Γ(B+ → DfavK+)

= r2B + r2

D + 2rBrD cos(δB + δD) cos φ3

AADS =Γ(B− → DsupK−)− Γ(B+ → DsupK+)Γ(B− → DsupK−) + Γ(B+ → DsupK+)

=±2rBrD sin(δB + δD) sinφ3

RADS

典型的に求める二つの変数

11

D. Atwood, I. Dunietz and A. Soni, PRL78, 3257 (1997) PRD 63, 036005 (2001)

B-

D0K-

D0K-

[f]DK-

_ 経路A    φ3の効果

経路B

CF

DCS

Favored mode

Suppressed mode

B-

D0K-

D0K-

[f]DK-

_ 経路A    φ3の効果

経路B

DCS

CF

_

B → DK崩壊に続くD崩壊の例 –GLW法– •  D → Kπ, Kππ0, Kπππ, etc

–  D崩壊がFlavor Specific (Favored, Suppressed mode) –  Sup. modeで崩壊振幅は小さい、CP非保存の影響が大きい

•  D → KK, ππ, etc –  D崩壊がCP固有モード ‒  比較的大きな崩壊振幅

12

DCP± = √2

(D0 + D0) _ A(B+→D0K+)

A(B-→D0K-) _

A(B-→D0K-) = A(B+→D0K+) _

√2A(B+→DCP±K+)

√2A(B-→DCP±K-) δB + φ3 δB - φ3

R± =Γ(B− → D±K−) + Γ(B+ → D±K+)

Γ(B− → DfavK−) + Γ(B+ → DfavK+)= 1 + r2

B ± 2rB cos δB cos φ3

A± =Γ(B− → D±K−)− Γ(B+ → D±K+)Γ(B− → D±K−) + Γ(B+ → D±K+)

=±2rB sin δB sinφ3

典型的に求める二つの変数

M. Gronau and D. Wyler, PLB 265, 172 (1991)

0

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2 2.5 3m2

(GeV2/c4)

Entr

ies/

0.02

GeV

2 /c4

(c) (d)

B → DK崩壊に続くD崩壊の例 –Dalitz plot analysis– •  D → Kπ, Kππ0, Kπππ, etc

–  D崩壊がFlavor Specific (Favored, Suppressed mode) –  Sup. modeで崩壊振幅は小さい、CP非保存の影響が大きい

•  D → KK, ππ, etc –  D崩壊がCP固有モード ‒  比較的大きな崩壊振幅

•  D → KSππ, etc –  D崩壊が三体崩壊 ‒  三体崩壊のレゾナンス分布にφ3の影響が現れる

•  経由するレゾナンスにより強い相互作用の位相が異なる

A. Poluektov, PRL81, 112002 (2010)

φ3 = (78.4± 3.6(stat.)± 8.9(syst.)+11.6−10.8(model))◦

13

D*-→D0π-

D0→KSπ+π-

_ _

B → DKを用いたφ3測定

•  D → Kπ, Kππ0, Kπππ, etc –  D崩壊がFlavor Specific (Favored, Suppressed mode) –  Sup. modeで崩壊振幅は小さい、CP非保存の影響が大きい

•  D → KK, ππ, etc –  D崩壊がCP固有モード ‒  比較的大きな崩壊振幅

•  D → KSππ, etc –  D崩壊が三体崩壊 ‒  三体崩壊のレゾナンス分布にφ3の影響が現れる

•  経由するレゾナンスにより強い相互作用の位相が異なる

•  全部ひっくるめて、連立方程式を作る事になるので、 他のモードを解析すればする程φ3の制限がかかる!

14

φ3の測定の一般的なお話オワリ、 次からは自分の研究したB0→DK*0について

B0 → DK*0

•  Neutral Bを使うということは、、、

   B0-B0 mixingの効果 (φ3以外の効果)が入ってきてしまう

  

15

頑張ろうとすると、 Δt, qr, …色々測らないといけない物が増える。

   → 大変

_

B0 → DK*0

•  Neutral Bを使うということは、、、    B0-B0 mixingの効果(φ3以外の効果)が入ってきてしまう

–  K*0によるSelf Taggingで解決

   K*0 →

K+π- ~ 2/3 K0π0 ~ 1/3

16

OK!!

えらい楽

K+π-でK*を組んだ → K*0 → B0の崩壊 K-π+でK*を組んだ → K*0 → B0の崩壊

_ _

_

B0 → DK*0

•  Neutral Bを使うということは、、、    B0-B0 mixingの効果(φ3以外の効果)が入ってきてしまう

–  K*0によるSelf Taggingで解決

   Charged Bの測定とは独立     干渉の効果が大きい

  DKπ non-resonant modeの効果

•  ここで求めるのは

b

d

u

d

c

s

W

_ _

_Vub

B0 _

D0 _

K*0 _

b

d

c

d

u

s

W

_ _

_

B0 _

D0

K*0 _

経路A, B共に Color Suppressed

K*0 → K+π- ~ 2/3 K0π0 ~ 1/3

RDK∗ ∼=Γ(B0 → [K+π−]DK∗0) + Γ(B0 → [K−π+]DK∗0)Γ(B0 → [K−π+]DK∗0) + Γ(B0 → [K+π−]DK∗0)

= r2S + r2

D + 2krSrD cos(δS + δD) cos φ3 Favored mode

Suppressed mode

17

OK!!

_

RDK*測定

B0 → [Kπ]D[Kπ]K*0

18

Selection Criteria •  K±/π±同定

–  Efficiency = 90 %, Fake rate ~ 10 %

•  D0, K*0の再構成 –  D0 : |MKπ – MD0| < 0.015 GeV (±3σ) –  K*0 : |MKπ – MK*0| < 0.050 GeV (±1Γ)

•  B0の再構成 ‒  二つの運動学的変数を利用

• 再構成したBの不変質量に対応 • |Mbc – MB0| < 0.008 GeV (±3σ)

• エネルギーの保存に対応シグナルだと ~ 0 • Fit → シグナルの導出

Mbc ≡�

E2beam − (pD0 + pK∗0)2

∆E ≡ ED0 + EK∗0 − Ebeam

)2 (GeV/cDM1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.910

200400600800

1000120014001600180020002200

= 5 [MeV]1

cut mass 3rec0D

)2 (GeV/c*KM0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 10

100200300400500600700800900

= 50 [MeV]*K

cut mass 1rec*0K

)2 (GeV/cbcM5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.30

200400600800

1000120014001600

= 2.7[MeV]1

cut mass 3bcM

)2E (GeV/c-0.1 -0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 0.10

200400600800

1000120014001600

EE

19

Signal MC

)2 (GeV/c±K*0KM1.75 1.8 1.85 1.9 1.95 20

20

40

60

80

100

120

140

160

180

+-D0 B +-D0 B

)2 (GeV/c±K*0KM1.5 2 2.5 3 3.5 4 4.5 50

1000

2000

3000

4000

5000

6000

7000

Signal MC Signal MC

M0.12 0.13 0.14 0.15 0.16 0.17 0.18

Probability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

バックグラウンドの抑制

•  φ3測定のモードはは基本的にバックグラウンドとの戦いである –  BBバックグラウンド : B → XY… –  qqバックグラウンド : e+e- → qq (q = (u, d, s, c))

•  BBバックグラウンドの抑制 ‒  終状態が同じになる崩壊を抑制

•  [K-K-π+]D-π+

–  D*イベント •  D*+ → D0π+崩壊のD0を捉えシグナルを再構成してしまうΔM < 0.15 GeV のイベントを除去

ΔM :MD*± − mD0 ΔM ~ mπ (0.140 GeV)にピーク

赤:シグナル 黒:BB BG 青:qq BG 緑:charm 紫:u, d, s

20

[K-K-π+]D-π+ Signal MC

MKKπ分布

この範囲 (青い線は二本あります) のイベントを落とす

•  崩壊の形状(KSFW) •  cosθB Belleの解析で 典型的に使う変数

qqバックグラウンドの抑制 •  Neural Network (NeuroBayes)

–  qqバックグラウンドとシグナルで分布の違う変数をインプットし、 Neural Networkで分離させる、B→DKでは新しい手法

•  |cosθthr| •  Δz •  cosθK

D •  |qr| •  ΔQ •  DK*の距離 •  cosθB シグナルとBGで 分布が違うと考えられる 変数(7つ)

NB output

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

No

rmalized

nu

mb

er

of

even

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

シグナル qqバックグラウンド

この分布(NB)を で変換し、 (ΔE, NB’)二次元Fit

NB� ≡ ln�

NB + 0.61.0−NB

21

NB = f(LRKSFW, cosθB, |cosθthr|, …)

NeuroBayes

Signal

qq BG

勉強中

NeuroBayes Expert Data

このDataの シグナルっぽさは これくらい(NB)です

適当図解

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

5

10

15

20

25

30

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

5

10

15

20

25

30

NB’-10 -5 0 5 10

Even

ts /

( 0.4

)

05

1015202530354045

NB’-10 -5 0 5 10

Even

ts /

( 0.4

)

05

1015202530354045

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

10

20

30

40

50

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

10

20

30

40

50

NB’-10 -5 0 5 10

Even

ts /

( 0.4

)

0

5

10

15

20

25

30

35

40

NB’-10 -5 0 5 10

Even

ts /

( 0.4

)

0

5

10

15

20

25

30

35

40

Result •  B0→[Kπ]DK*0でRADSを測定

Favored mode

Suppressed mode

•  得られたシグナル数 –  Nfav. = 190 ± 22 –  Nsup. = 7.7 ± 10

•  得られたRDK*

•  過去のBelleやBaBarより強い上限値

RDK∗ =Nsup./�sup.

Nfav./�fav.

= (4.1+5.6+2.8−5.0−1.8)× 10−2

< 0.16 (95%C.L.)

22

シグナル - - - BB BG • • • qq BG ー ー ー D0ρ0 - • - • - D0Κ+ - •• - •• -

D0π+ - ••• - ••• -

まとめ

23

Summary and Plan •  まとめ

–  SMのパラメータの測定それ自体とても重要 •  New Physicsの手掛かりとなる可能性

–  Neutral Bでのφ3測定は未だ行われていない

•  Charged Bでの結果とのクロスチェック

–  B0→[Kπ]DK*0でのRDK*の上限値を更新する事に成功

•  RDK* < 0.24 (95% C.L.) @BaBar 2009 with 465M BB < 0.16 (95% C.L.) @Belle My result with 772M BB

•  ただいま論文を書いている所です。大変です。

•  今後の方針、課題 –  B0→[KSππ]DK*0のDalitz解析 •  一生懸命頑張りたいと思います。

24

BACK UP

25

RDK* 26

RDK∗ ≡ Γ(B0 → [K+π−]DK + π−) + Γ(B0 → [K−π+]DK−π+)Γ(B0 → [K−π+]DK+π−) + Γ(B0 → [K+π−]DK−π+)

= r2S + r2

D + 2kkDrSrD cos(δS + δD) cos φ3

ADK∗ ≡ Γ(B0 → [K+π−]DK + π−)− Γ(B0 → [K−π+]DK−π+)Γ(B0 → [K+π−]DK+π−) + Γ(B0 → [K−π+]DK−π+)

=2kkDrSrD sin(δS + δD) sinφ3

RDK∗

r2S ≡

Γ(B0 → D0K+π−)Γ(B0 → D0K+π−)

=�

dpA2A(p)�

dpA2B(p)

keiδS ≡�

dpAA(p)AB(p)eiδ(p)

��dpA2

A(p)�

dpA2B(p)

r2D ≡

Γ(D0 → K+π−)Γ(D0 → K−π+)

=�

dmA2DCS(m)�

dmA2CF (m)

kDeiδD ≡�

dmADCS(m)ACF (m)eiδ(m)

��dmA2

DCS(m)�

dmA2CF (m)

他の実験で良く測定されている

B0→DK*0モードに特有

Neurobayes 27

Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bac

kgro

und

reje

ctio

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bac

kgro

und

reje

ctio

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LR0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nor

mal

ized

num

ber o

f eve

nts

0

0.05

0.1

0.15

0.2

0.25

NB-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Nor

mal

ized

num

ber o

f eve

nts

00.020.040.060.08

0.10.120.140.160.18

0.20.220.24

TRANSNB-10 -8 -6 -4 -2 0 2 4 6 8 10

Nor

mal

ized

num

ber o

f eve

nts

0

0.02

0.04

0.06

0.08

0.1

0.12

LR(KSFW, cosθB) NB(9 para.)

NeuroBayes training Phi-T

TeacherNeuroBayes

Training iteration20 40 60 80 100 120 140

arb.

uni

ts

0.004

0.002

0

0.002

0.004

0.006

0.008

Error

Training iteration20 40 60 80 100 120 140

arb.

uni

ts

0.006

0.004

0.002

0

0.002

0.004

0.006

Error Testsample

Training iteration20 40 60 80 100 120 140

arb.

uni

ts

0

.0002

.0004

.0006

.0008

0.001

.0012

regularisation param. * weights

Training iteration20 40 60 80 100 120 140

arb.

uni

ts

0.004

0.002

0

0.002

0.004

0.006

0.008

Err-Weight Learnsample

Phi-T TeacherNeuroBayes

Network output-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

even

ts

02000400060008000

100001200014000160001800020000

Output Node 1Output Node 1

Network output-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

purit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

28

NeuroBayes training Phi-T

TeacherNeuroBayes

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al e

ffici

ency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Gini index = 46.1%, max possible = 49.9%

Phi-T TeacherNeuroBayes

0.5 25.5 50.5 75.5 100-0.1

0.1

0.3

0.5

0.7

0.9

1.1Output Node 2

29

NeuroBayes training

Phi-T TeacherNeuroBayes

0.5 25.5 50.5 75.5 100-0.1

0.1

0.3

0.5

0.7

0.9

1.1Output Node 2

Phi-T TeacherNeuroBayes

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

correlation matrix of input variables

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

30

NeuroBayes training Phi-T

TeacherNeuroBayes

1 2 3 4 5 6 7 8 9 10 11

11

10

9

8

7

6

5

4

3

2

1

correlation matrix of input variables

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Phi-T TeacherNeuroBayes

Input node 2 : k0lrksfw PrePro: only this 274.32corr. to others 75.40%

1st most importantadded signi. 274.32signi. loss 89.69

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

100012001400160018002000

flat

0.00411 0.0277 0.0356 0.0437 0.0512 0.0562 0.0626 0.0691 0.0771 0.0863 0.0968 0.1085555 0.1217634 0.1363846 0.1527715 0.1711791 0.1919617 0.21459 0.2408578 0.2707362 0.3036703 0.3386178 0.3780639 0.4206024 0.4670333 0.513757 0.5602144 0.6083206 0.6554167 0.7013494 0.7453929 0.7835921 0.8193789 0.8513414 0.8791555 0.9027795 0.9224075 0.9387981 0.9521092 0.9628142 0.9714955 0.9784776 0.984129 0.9885805 0.9918954 0.9947158 0.9967051 0.9981172 0.9991112 0.999761 1

bin #0 0.2 0.4 0.6 0.8 1

purit

y

0

0.2

0.4

0.6

0.8

1

purity

final netinput-3 -2 -1 0 1 2 3

even

ts

0

5001000

1500

20002500

3000

3500background

Underflow 1Overflow 61

backgroundUnderflow 1Overflow 61

final netinput-3 -2 -1 0 1 2 3

even

ts

0

5001000

1500

20002500

3000

3500background

Underflow 1Overflow 61

signalUnderflow 0Overflow 973

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation31

NeuroBayes training Phi-T

TeacherNeuroBayes

Input node 7 : cosk_d PrePro: only this 173.54corr. to others 33.00%

2nd most importantadded signi. 98.59signi. loss 77.43

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

10001200140016001800

flat

-1 -0.966 -0.933 -0.898 -0.858 -0.816479 -0.773435 -0.729 -0.68 -0.629 -0.578 -0.526 -0.474 -0.42 -0.368064 -0.314 -0.26 -0.204 -0.15 -0.0956 -0.0396 0.0164 0.0719 0.1265281 0.1811162 0.2351606 0.2893161 0.3421754 0.3931383 0.4450936 0.4955871 0.5433254 0.5893053 0.6336302 0.6757472 0.7147875 0.7502285 0.7829212 0.8123604 0.8385111 0.8615099 0.8823961 0.9006727 0.917411 0.9325914 0.9466161 0.9592036 0.9707099 0.9810616 0.9907424 0.9999999

bin #10 20 30 40 50 60 70 80 90 100

purit

y

00.10.20.30.40.50.60.70.80.9 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

0

5000

10000

15000

20000

25000background

Underflow 0Overflow 0

backgroundUnderflow 0Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

0

5000

10000

15000

20000

25000background

Underflow 0Overflow 0

signalUnderflow 0Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

Phi-T TeacherNeuroBayes

Input node 4 : dz PrePro: only this 144.22corr. to others 26.80%

3rd most importantadded signi. 78.22signi. loss 78.43

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

1000120014001600

flat

-9.407985 -0.0781 -0.0549 -0.0435 -0.0363 -0.0308 -0.0265 -0.023 -0.0201 -0.0177 -0.0155 -0.0136 -0.0119 -0.0105 -0.00912 -0.00795 -0.00686 -0.00588 -0.005 -0.00415 -0.00332 -0.00258 -0.00188 -0.0012 -0.000534 0.000147 0.000822 0.00149 0.00218 0.0029 0.00364 0.00442 0.00525 0.00614 0.00712 0.00819 0.00936 0.0107 0.0121 0.0137 0.0155 0.0176 0.02 0.023 0.0264 0.0304896 0.0359 0.0433 0.0544 0.0775 7.9887

bin #10 20 30 40 50 60 70 80 90 100

purit

y

0.20.30.40.50.60.70.80.9

1 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

0100020003000400050006000700080009000

backgroundUnderflow 0Overflow 0

backgroundUnderflow 0Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

0100020003000400050006000700080009000

backgroundUnderflow 0Overflow 0

signalUnderflow 0Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation32

NeuroBayes training Phi-T

TeacherNeuroBayes

Input node 10 : dist_d_h PrePro: only this 131.60corr. to others 27.70%

4th most importantadded signi. 71.94signi. loss 64.17

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

100012001400160018002000

flat

4.38e-08 0.000144 0.00029 0.000431 0.00058 0.000727 0.000877 0.00103 0.00118 0.00133 0.00149 0.00165 0.00181 0.00197 0.00214 0.00231 0.00249 0.00266 0.00285 0.00304 0.00325 0.00346 0.00368 0.0039 0.00414 0.00439 0.00466 0.00495 0.00525 0.00558 0.00594 0.00632 0.00675 0.00723 0.00775 0.00838 0.00911 0.01 0.0111 0.0125 0.0143 0.0168212 0.0203803 0.0255 0.0333 0.0446 0.0614 0.0867 0.1300547 0.2121755 2.239522

bin #10 20 30 40 50 60 70 80 90 100

purit

y

00.10.20.30.40.50.60.70.8 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

02000400060008000

1000012000140001600018000 background

Underflow 0Overflow 0

backgroundUnderflow 0Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

02000400060008000

1000012000140001600018000 background

Underflow 0Overflow 0

signalUnderflow 0Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

Phi-T TeacherNeuroBayes

Input node 6 : cos_thr PrePro: only this 251.47corr. to others 74.00%

5th most importantadded signi. 59.05signi. loss 57.09

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

10001200140016001800

flat

8.73e-07 0.0351 0.071 0.10576 0.1414505 0.1771298 0.2116694 0.2467453 0.2812724 0.3159564 0.3496312 0.3833656 0.4162889 0.447926 0.4798878 0.5109822 0.5420669 0.5709213 0.6001819 0.6272383 0.6528854 0.678482 0.7021538 0.7249701 0.7472961 0.7678135 0.7869214 0.8048639 0.8214124 0.8369501 0.8513731 0.8643463 0.8764442 0.8875926 0.8982489 0.9078957 0.9171706 0.9261758 0.9339755 0.941535 0.9484559 0.9549959 0.9612545 0.9671364 0.9725984 0.9778548 0.982677 0.9873806 0.9918017 0.9960631 0.999999

bin #10 20 30 40 50 60 70 80 90 100

purit

y

0

0.2

0.4

0.6

0.8

1

1.2 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

02000400060008000

100001200014000160001800020000

backgroundUnderflow 0Overflow 0

backgroundUnderflow 0Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

02000400060008000

100001200014000160001800020000

backgroundUnderflow 0Overflow 0

signalUnderflow 0Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation33

NeuroBayes training Phi-T

TeacherNeuroBayes

Input node 3 : abs(cosb) PrePro: only this 100.29corr. to others 19.10%

6th most importantadded signi. 46.15signi. loss 46.82

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

100012001400160018002000

flat

1.72e-06 0.0162767 0.0324 0.0481 0.064 0.0802 0.0962 0.1124013 0.1286394 0.144614 0.1604724 0.1766835 0.1930672 0.2089626 0.2254335 0.2421527 0.2587866 0.275427 0.2922882 0.3090863 0.3256571 0.3429104 0.3602988 0.3776129 0.3954089 0.4132876 0.4309418 0.4488318 0.4672273 0.4857579 0.5039746 0.5230165 0.5423017 0.5619794 0.5814505 0.6008424 0.6215734 0.6423954 0.663543 0.6851069 0.7074391 0.7306939 0.7550933 0.7803758 0.8062712 0.8334218 0.8620234 0.8928782 0.9254805 0.9605521 0.9999921

bin #10 20 30 40 50 60 70 80 90 100

purit

y

00.10.20.30.40.50.60.70.8 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

0

200040006000

800010000

1200014000

backgroundUnderflow 4369Overflow 0

backgroundUnderflow 4369Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

0

200040006000

800010000

1200014000

backgroundUnderflow 4369Overflow 0

signalUnderflow 428Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

Phi-T TeacherNeuroBayes

Input node 5 : abs(qr) PrePro: only this 105.70corr. to others 20.90%

7th most importantadded signi. 44.10signi. loss 43.56

0 0.2 0.4 0.6 0.8 1

even

ts

0

500

1000

1500

2000

2500

flat

0 0.00991 0.019 0.0227 0.0258 0.035 0.0526654 0.0594 0.0613 0.0674 0.0686433 0.0824 0.0886 0.0976 0.1097218 0.1212504 0.1452074 0.1533695 0.1722147 0.1906269 0.2140266 0.2338687 0.260423 0.2875817 0.3199208 0.3538814 0.3767371 0.4171922 0.4595433 0.474594 0.498922 0.5261084 0.550571 0.5722758 0.5953112 0.6147454 0.6348338 0.6630188 0.6829533 0.7028671 0.7299885 0.7559963 0.7807374 0.8111962 0.842518 0.8697069 0.9028022 0.9327118 0.9636363 0.992124 1

bin #10 20 30 40 50 60 70 80 90 100

purit

y

0.2

0.4

0.6

0.8

1

1.2 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

0100020003000400050006000700080009000 background

Underflow 0Overflow 304

backgroundUnderflow 0Overflow 304

final netinput-3 -2 -1 0 1 2 3

even

ts

0100020003000400050006000700080009000 background

Underflow 0Overflow 304

signalUnderflow 0Overflow 7375

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation34

NeuroBayes training Phi-T

TeacherNeuroBayes

Input node 8 : cosd_b PrePro: only this 54.89corr. to others 13.60%

8th most importantadded signi. 31.19signi. loss 31.20

0 0.2 0.4 0.6 0.8 1

even

ts

0200400600800

100012001400

flat

-1 -0.969 -0.936 -0.9 -0.865 -0.828 -0.79 -0.75 -0.711 -0.671 -0.629 -0.586 -0.541 -0.495 -0.449 -0.401 -0.353 -0.305 -0.257 -0.209 -0.16 -0.112 -0.0631 -0.0133 0.0354793 0.0849 0.1339009 0.1831186 0.228985 0.2761396 0.3204489 0.3642389 0.4080389 0.4514048 0.4934022 0.5331558 0.5734177 0.6102691 0.6468877 0.6820701 0.7162797 0.7504887 0.7828635 0.8134346 0.8431394 0.8717378 0.8996451 0.9265851 0.9519891 0.9768357 0.9999978

bin #10 20 30 40 50 60 70 80 90 100

purit

y

0.3

0.4

0.5

0.6

0.7

spline fitfinal netinput-3 -2 -1 0 1 2 3

even

ts

0

2000

4000

6000

8000

10000

12000 backgroundUnderflow 0Overflow 0

backgroundUnderflow 0Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

0

2000

4000

6000

8000

10000

12000 backgroundUnderflow 0Overflow 0

signalUnderflow 0Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

Phi-T TeacherNeuroBayes

Input node 9 : dq PrePro: only this 19.57corr. to others 10.30%

9th most importantadded signi. 3.04signi. loss 3.04

0 0.2 0.4 0.6 0.8 1

even

ts

02000400060008000

1000012000140001600018000 flat

-29 -7 -5 -5 -4 -4 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 5 5 7 23

bin #10 20 30 40 50 60 70 80 90 100

purit

y

0.350.4

0.450.5

0.550.6

0.650.7 spline fit

final netinput-3 -2 -1 0 1 2 3

even

ts

0

5000

10000

15000

20000

25000 backgroundUnderflow 0Overflow 0

backgroundUnderflow 0Overflow 0

final netinput-3 -2 -1 0 1 2 3

even

ts

0

5000

10000

15000

20000

25000 backgroundUnderflow 0Overflow 0

signalUnderflow 0Overflow 0

final

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation

signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sign

al p

urity

0

0.2

0.4

0.6

0.8

1

separation35

NeuroBayes training Phi-T

TeacherNeuroBayes

1

2

3

4

5

6

7

8

9

10

11

input layer hidden layer

1

output layer

36

NeuroBayes input parameters 37

LR(KSFW)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nor

mal

ized

num

ber o

f eve

nts

0

0.05

0.1

0.15

0.2

0.25

NeuroBayes input parameters 38

|B|cos0 0.10.2 0.3 0.40.5 0.6 0.70.8 0.9 1

Probability

0

0.005

0.01

0.015

0.02

0.025

0.03

NeuroBayes input parameters 39

|thr|cos0 0.10.2 0.3 0.40.5 0.6 0.70.8 0.9 1

Probability

00.020.040.060.080.10.120.140.16

NeuroBayes input parameters 40

z-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Probability

00.020.040.060.080.10.120.140.160.180.20.220.24

NeuroBayes input parameters 41

Distance of tracks for D and K*0 0.01 0.02 0.03 0.04 0.05 0.06

Prob

abili

ty

00.020.040.060.08

0.10.120.140.160.180.2

NeuroBayes input parameters 42

DKcos

-1 -0.8-0.6-0.4-0.2 0 0.2 0.40.6 0.8 1

Probability

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

NeuroBayes input parameters 43

BDcos

-1 -0.8-0.6-0.4-0.2 0 0.2 0.40.6 0.8 1

Probability

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

NeuroBayes input parameters 44

Q-10 -5 0 5 10

Probability

00.020.040.060.080.10.120.140.16

NeuroBayes input parameters 45

|qr|0 0.10.2 0.3 0.40.5 0.6 0.70.8 0.9 1

Probability

00.020.040.060.080.10.120.140.160.18

PDF

PDF for ΔE

•  Signal: a double Gaussian fixed from signal MC

•  Combinatorial BB: free exponential

•  D0ρ0 : •  D0K+:

•  D0π+ :

•  Peaking BGs: fixed from MC ‒  [K*0π-]D- K+

•  qq: free 1st order Chebychev

PDF for NB’

•  Signal: a double Gaussian fixed from signal MC

•  Comb. BB:

•  D0ρ0: •  D0K+: •  D0π+: •  Peaking BGs:

•  qq: a double Gaussian fixed from Mbc sideband of the data.

46

Fixed from MC

Double Gaussians Fixed from MC

We perform ΔE-NB’ 2D fit.

E-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

NB

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

NB

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

47

D0K+

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

120

/ndf = 2.022

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

120

NBtrans-10 -5 0 5 10

Even

ts /

( 0.5

)

0

50

100

150

200

250

300 0.18± = 1.54 1µ TRANSNB

0.29± = 4.02 2µ TRANSNB

0.057± = 2.180 1 TRANSNB 0.097± = 0.616 1/2 TRANSNB

0.074±/Y = 0.812 1 YTRANSNB 0.27±bb_e = -4.053

33±drho = 352 60±other bb = 1952

/ndf = 0.972

NBtrans-10 -5 0 5 10

Even

ts /

( 0.5

)

0

50

100

150

200

250

300

D0π+ •  The yields and shapes are fixed in the fit on signal MC.

Fit for 4 streams of BB MC (no signal).

D0ρ0

Double bifurcated Gauss. Crystal ball

48

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

020406080

100120140160180

310× 0.000015± = 0.001194 µE 0.000013± = 0.008790 1E

0.056± = 9.079 1/2E 0.00051±/Y = 0.93770 1E Y 0.024± = 1.936

1µ TRANSNB

0.027± = 4.201 2µ TRANSNB

0.0063± = 2.1691 1 TRANSNB 0.0063± = 0.7304 1/2 TRANSNB

0.010±/Y = 0.663 1 YTRANSNB 649±sig = 420961

/ndf = 261.862

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

020406080

100120140160180

310×

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)0

5000

10000

15000

20000

25000

30000/ndf = 83.002

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)0

5000

10000

15000

20000

25000

30000

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0100002000030000400005000060000700008000090000 0.000021± = 0.001190 µE

0.000018± = 0.008776 1E 0.079± = 9.096 1/2E

0.00072±/Y = 0.93786 1E Y 0.038± = 1.903

1µ TRANSNB

0.039± = 4.139 2µ TRANSNB

0.0093± = 2.1769 1 TRANSNB 0.0090± = 0.7393 1/2 TRANSNB

0.016±/Y = 0.644 1 YTRANSNB 458±sig = 209847

/ndf = 124.652

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0100002000030000400005000060000700008000090000

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)

0

2000

4000

6000

8000

10000

12000

14000

/ndf = 39.402

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)

0

2000

4000

6000

8000

10000

12000

14000

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

120

140

/ndf = 6.052

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

120

140

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)

0

50

100

150

200

250

300 0.033±E_slp = -0.2277

0.041± = -0.7307 1µ TRANSNB

0.12± = 1.74 1 TRANSNB 0.16± = 1.51 1/2 TRANSNB 0.18±/Y = 0.79 1 YTRANSNB

63±bkg = 3240

/ndf = 17.302

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)

0

50

100

150

200

250

300

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

50

100

150

200

250

300

350/ndf = 5.612

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

50

100

150

200

250

300

350

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)

0100200300400500600700800900 0.019±E_slp = -0.0719

0.021± = -0.7787 1µ TRANSNB

0.075± = 1.591 1 TRANSNB 0.054± = 1.514 1/2 TRANSNB

0.11±/Y = 0.69 1 YTRANSNB 104±bkg = 9563

/ndf = 47.702

TRANSNB-10 -5 0 5 10

Even

ts /

( 0.4

)

0100200300400500600700800900

Favored mode Suppressed mode

Signal

qq Mbc sideband

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

120

/ndf = 2.022

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

120

NBtrans-10 -5 0 5 10

Even

ts /

( 0.5

)

0

50

100

150

200

250

300 0.18± = 1.54 1µ TRANSNB

0.29± = 4.02 2µ TRANSNB

0.057± = 2.180 1 TRANSNB 0.097± = 0.616 1/2 TRANSNB

0.074±/Y = 0.812 1 YTRANSNB 0.27±bb_e = -4.053

33±drho = 352 60±other bb = 1952

/ndf = 0.972

NBtrans-10 -5 0 5 10

Even

ts /

( 0.5

)

0

50

100

150

200

250

300

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100/ndf = 0.862

E (GeV)-0.1 0 0.1 0.2 0.3

Even

ts /

( 0.0

1 )

0

20

40

60

80

100

NBtrans-10 -5 0 5 10

Even

ts /

( 0.5

)

020406080

100120140160180 0.13± = 1.42

1µ TRANSNB

0.65± = 5.00 2µ TRANSNB

0.068± = 2.206 1 TRANSNB 0.18± = 0.49 1/2 TRANSNB 0.038±/Y = 0.954 1 YTRANSNB

0.23±bb_e = -3.835 24±drho = 112

45±other bb = 1604

/ndf = 0.592

NBtrans-10 -5 0 5 10

Even

ts /

( 0.5

)

020406080

100120140160180

BB MC 4streams

Systematic uncertainty

•  Detection efficiency: MC statistics and PID calibration.

•  PDF: –  Uncertainties due to fixed shape

parameters are obtained by varying them ±1s.

–  Uncertainty due to NB′ PDF of BB BG is estimated by applying signal PDF. Assign obtained difference to + and - sides (conservative).

–  Uncertainty due to the peaking background is estimated by applying 0-2 times the expected yields.

–  Uncertainties due to the D0K+ and D0p+ yields are obtained by applying the error of efficiency and BR.

•  Fit bias: obtain the pull distribution from 10,000 pseudo-experiments.

Sig. + 0.05 - 0.17

D0r0 + 0.04 - 0.08

D0K+ + 0.01 - 0.03

D0p+ + 0.01 - 0.05

BB + 1.76 - 1.17

qq + 2.19 - 1.40

Peaking + 0.07 - 0.12

sum + 2.81 - 1.85

Source RDK* [10-2]

Det. Eff. + 0.08 - 0.08

PDF + 2.81 - 1.85

Fit bias + 0.36 - 0.01

Total + 2.83 - 1.85

RDK* = (4.1 ) × 10-2 + 5.6 - 5.0

+ 2.8 - 1.8

_

_

_

Upper limit on RDK*

•  We obtain the upper limit by using an asymmetric Gaussian, where the positive and negative widths correspond to positive and negative errors including the syst. err.

RDK* = (4.1 ) × 10-2

< 0.16 (95 % C.L.) BaBar’09 RDK* < 0.24 (95 % C.L.)

asymmetric Gaussian µ = 0.041 upper σ = 0.063 lower σ = 0.054

0.16 (95 % C.L.)

Integrated

50

+ 5.6 - 5.0

+ 2.8 - 1.8