Bioenergetics Module 3. Sabah

Embed Size (px)

Citation preview

  • 8/3/2019 Bioenergetics Module 3. Sabah

    1/69

    Prof. Dr. Sabah Abdel-Hady

  • 8/3/2019 Bioenergetics Module 3. Sabah

    2/69

    Bioenergetics describes the energy changes

    during biochemical processes.

    Energy is the capacity to perform work

  • 8/3/2019 Bioenergetics Module 3. Sabah

    3/69

    a) Heat energy that maintains the bodytemperature at 37oC

    b) Free energy that performs work e.g.mechanical work muscle contraction

    electrical work nerve impulses transmission

    chemical work synthetic reactions

    osmotic work active secretion & active

    absorption

  • 8/3/2019 Bioenergetics Module 3. Sabah

    4/69

    *** High-Energy compounds liberate on hydrolysismore than 7 Kcal/mole.

    High energy phosphate bonds:

    Contain high-energy and is written as e.g. 1,3-

    biphosphoglycerate , phosphoenol pyruvate,

    creatine phosphate, nucleotides as ATP

    High energy sulphate bonds:

    1- S-adenosyl methionine (SAM).

    2- Phosphoadenosine phosphosulfate (PAPS).

    *** Low-energy compounds produce, onhydrolysis, 2-4 (below 7) Kcal. of free energy permole, e.g. phosphate ester bond in sugar

    phosphates G-6P.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    5/69

    Storage of energy

    1) ATP; the common currency of energy

    2) Creatine phosphate

    ATP+ Creatine

    creatine kinase

    ADP+ creatine phosphate.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    6/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    7/69

    Cells harvest energy by breaking bonds

    and shifting electrons from one molecule

    to another.

    aerobic respiration - final electron acceptor isoxygen

    anaerobic respiration - final electron acceptor

    isinorganic molecule other than oxygen

  • 8/3/2019 Bioenergetics Module 3. Sabah

    8/69

    Mechanism of energy collection.

    1)Substrate level

    2)Oxidative phosphorylation at the

    respiratory chain

  • 8/3/2019 Bioenergetics Module 3. Sabah

    9/69

    1)Substrate level phosphorylation inwhich high-energy phosphate is transferred

    from the substrate to ADP to form ATP. e.g.

    conversion of 1,3 biphosphoglycerate to 3-

    phosphoglycerate by phosphoglycerate kinase

    with the formation of ATP.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    10/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    11/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    12/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    13/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    14/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    15/69

    Mitochondrial Electron Transport

    Chain

    System of Linked

    Electron Carriers

  • 8/3/2019 Bioenergetics Module 3. Sabah

    16/69

    Components of Electron

    Transport Process

    Reoxidation of NADH and FADH2

    Sequential oxidation-reduction ofmultiple redox centers (four enzymecomplexes)

    Production of proton gradient acrossthe mitochondrial membrane

  • 8/3/2019 Bioenergetics Module 3. Sabah

    17/69

    Oxidative Phosphorylation

    Synthesis of ATP driven by free

    energy of electrochemicalgradient

  • 8/3/2019 Bioenergetics Module 3. Sabah

    18/69

    Overall Reaction

    (Oxidation of NADH by O2)

    N A D H + H + + 1/2 O2

    N A D + + H2O

    E o ' = + 0.815 V ( 0.315 V ) = 1.130 V

    G o ' = nFE o '

    G o ' = 218 kJ /m o l

  • 8/3/2019 Bioenergetics Module 3. Sabah

    19/69

    ATP Synthesis

    A DP + P i ATP

    G o ' = + 30.5 k J/m ol

  • 8/3/2019 Bioenergetics Module 3. Sabah

    20/69

    It is final common pathway in aerobiccellsby which electrons derived from varioussubstances are transferred to O2 to form H2O.

    ETC is formed of a series of electron carriers,which catalyze the transfer of electrons fromreduced coenzymes to oxygen.

    The energy released is utilized for

    synthesis of high energy phosphate bonds(conversion of ADP + Pi ATP).

    Heat production

  • 8/3/2019 Bioenergetics Module 3. Sabah

    21/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    22/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    23/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    24/69

    Hydrogen and electrons flow through the

    respiratory chain from the more electronegative

    components ( NADH) to the more electropositive

    O2i.e. in the order of increase in redox potential.

    The redox span from NAD+/NADH to O2/H2O is 1.1volts

    Electrons move from a carrier with low

    reduction potential (high tendency to donateelectrons) toward carriers with higherreduction potential (high tendency to acceptelectrons).

  • 8/3/2019 Bioenergetics Module 3. Sabah

    25/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    26/69

    The respiratory chain exists in the inner

    mitochondrial membrane and consists of a series of

    catalysts (= redox carriers) that collect and transportreducing equivalents (hydrogen or electrons) from

    NAD-linked dehydrogenase system, through

    flavoproteins and cytochromes, and finally to

    molecular oxygen to form water.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    27/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    28/69

    Kinetics and Mechanismsof

    Transport

  • 8/3/2019 Bioenergetics Module 3. Sabah

    29/69

    The components of the respiratory chain

    Located in the inner mitochondrial membrane.

    Formed of a series of 4 complexes ,

    coenzyme Q and cytochrome C .

  • 8/3/2019 Bioenergetics Module 3. Sabah

    30/69

    Mitochondrial Electron Transport

    Chain

  • 8/3/2019 Bioenergetics Module 3. Sabah

    31/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    32/69

    NAD+

    FMN

    FeS

    ubiquinoneFAD FeS

    Cyt b

    FeS Cyt c1 Cyt c Cyt a Cyt a3

    1/2 O2

    ubiquinone

    NAD+ or FAD

    There are 2 sites of entry

    for electrons into the

    electron transport chain:

    Both are coenzymes for

    dehydrogenase enzymes

    The transfer of electrons is not directly to oxygen but

    through coenzymes

  • 8/3/2019 Bioenergetics Module 3. Sabah

    33/69

    Electron Transport chain(respiratory chain)

    The electron transport chain in the innermitochondrial membrane can be isolated infour proteins complexes(I, II, III, IV).

    A lipid soluble coenzyme (Q) and a watersoluble protein (cyt c) shuttle betweenprotein complexes

    Electrons transfer through the chain - fromcomplexes I and II to complex IV

  • 8/3/2019 Bioenergetics Module 3. Sabah

    34/69

    Complex I: is (NADH:ubiquinone oxidoreductase,or NADH dehydrogenase.)

    It is formed of :

    Many polypeptides

    FMN coenzyme

    Seven iron sulfur centers(fes) which are

    necessary for the transfer of hydrogen atoms tothe next member of the chain (coenzyme Q).

    It catalyzes the transfer of electrons from NADH

    +H+ to coenzyme Q(ubiquinon).

    Electrons or hydrogens are transferred fromNADH to FMN then to different fes centers and

    finally to UQ to form reduced UQ H2 (ubiqinol) .

  • 8/3/2019 Bioenergetics Module 3. Sabah

    35/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    36/69

    H3C

    H3CN

    N

    N O

    O

    N

    CH2 CH CH CH CH2

    OH OH OH

    O P OH

    OH

    O

    riboflavin monophosphate(flavin mononucleotide, FMN)

    H3C

    H3C NN

    N O

    O

    N

    CH2 CH CH CH CH2

    OH OH OH

    O P O P O

    OH

    O

    OH

    O

    CH2 O

    OH OH

    N

    N

    NH2

    N

    N

    flavin adenine dinucleotide (FAD)

    FAD Always a 2-electron reaction transferring 2 e- and 2 H+

  • 8/3/2019 Bioenergetics Module 3. Sabah

    37/69

    Fe

    Fe

    SS

    S

    FeFe

    S

    S

    S

    S

    S

    Cys

    Cys

    Cys

    Cys

    S

    Fe

    S

    Fe

    S

    S

    S

    S

    Cys

    CysCys

    Cys

    Iron-Sulfur CentersTwo iron-sulfur centers

    from complex I

    4-iron Fe-S

    2-iron Fe-S

  • 8/3/2019 Bioenergetics Module 3. Sabah

    38/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    39/69

    Coenzyme Q(CoQ, Q or ubiquinone) is lipid-soluble.

    It dissolvesin the hydrocarbon core of a membrane.

    the only electron carrier not bound to a protein.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    40/69

    Complex II: ( succinate:ubiquinoneoxidoreductase.)

    Is formed of:

    Succinate dehydrogenase.FAD coenzyme.

    Two iron sulfur centers.

    It catalyzes the transfer of electrons or

    hydrogens from succinate to UQ to form

    UQH2.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    41/69

    COO

    C

    C

    COO

    H H

    H H

    COO

    C

    C

    COO

    H

    H

    Q QH2

    via FAD

    succinate fumarate

    Succinate Dehydrogenase

    Com lex II

  • 8/3/2019 Bioenergetics Module 3. Sabah

    42/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    43/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    44/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    45/69

    The heme iron can undergo 1 e- transitionbetween ferric and ferrous states: Fe3+ + e-

    Fe2+

    Copper ions besides two heme A groups (aand a3) act as electron carriers in Cyta,a3

    Cu2++e- Cu+

    Heme is a prosthetic group ofcytochromes.

    Heme contains an iron atom in a porphyrin ring

    system.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    46/69

    N

    N

    N

    N

    CH3 HC

    CH3

    S CH2

    CH3

    CH S CH2

    CH3

    CH2

    CH2

    COO

    CH3

    H3C

    CH2CH2

    OOC

    protein

    protein

    Fe

    Heme c

  • 8/3/2019 Bioenergetics Module 3. Sabah

    47/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    48/69

    NAD+, flavins and Q carry electrons and H+

    Cytochromes and non-haem iron proteins carry only

    electrons

    NAD+ FAD undergoes only a 2 e- reaction;

    cytochromes undergo only 1e- reactions

    FMN Q undergoes 1e- and 2 e- reaction

    Electron carriers

  • 8/3/2019 Bioenergetics Module 3. Sabah

    49/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    50/69

    NAD+

    FMN

    FeS

    ubiquinoneFAD FeS

    Cyt b

    FeS Cyt c1 Cyt c Cyt a Cyt a3

    1/2 O2

    ubiquinone

    I

    II

    III IV

    NADH Dehydrogenase

    Succinate

    dehydrogenase

    CoQ-cyt c Reductase

    Cytochrome Oxidase

  • 8/3/2019 Bioenergetics Module 3. Sabah

    51/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    52/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    53/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    54/69

    When a substrate is oxidized via NAD-linked

    dehydrogenase, three molecules of ATP are

    formed.

    when a substrate is oxidized via aflavoprotein-linked dehydrogenase, only

    two molecules of ATP are Formed

  • 8/3/2019 Bioenergetics Module 3. Sabah

    55/69

    Mechanism of oxidative phosphorylation (Mitchell'schemiosmotic theory)

    Oxidation of components of the respiratory chainleads to generation of protonsinside themitochondrial matrix that are pumped to the outsideof the inner membrane.

    ComplexesI,III and IV act as proton pumps

    This resultsin accumulation of protons outside theinner membrane which in turn creates anelectrochemical potential difference across the innermembrane leading to formation of ATP from ADP andPi by the enzyme ATP synthase

    ATP synthase is formed of two subunits F0 & F1 .

    The F0 subunit protrude into mitochondrial matrixand acts as a gate or channel for protons

    F1 subunits present in the inner mitochondrialmembrane, it catalyzes the synthesis of ATP.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    56/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    57/69

    As protonscross the membrane through the channel

    in the base of ATP synthase

    the FO proton-driven motor rotate

    This movement provides the energy

    for the active sites of F1

    that produces and then releases ATP

  • 8/3/2019 Bioenergetics Module 3. Sabah

    58/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    59/69

    ADP/ATP Exchanger

    Electrogenic Antiporter

    Driven by electrochemical gradient

  • 8/3/2019 Bioenergetics Module 3. Sabah

    60/69

    Control of Respiratory Chain

    The respiratory chain iscontrolled by thelevels of ADP and Pi as well as by the

    availability of ADP/ATP transporter.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    61/69

    Inhibitors of the respiratory

    chain.A) Inhibitors of the respiratory chain proper.

    B) Inhibitors of oxidative phosphorylation.

    C) Uncouplers of oxidative phosphorylation.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    62/69

    A) Inhibitors ofthe respiratory chain proper.

    They inhibit the respiratory chain at four sitesSite 1: between FeS and Qin complex I. It is

    inhibited by barbiturates, piericidin A(antibiotic) and rotenone (insecticide and fishpoison)

    Site 2: between cytochrome b and cytochromec1 in complex III. It isinhibited by antimycinand dimercaprol.

    Site 3: at cytochrome oxidase in complex IV. Itisinhibited by hydrogen sulfide (H2S), carbon

    monoxide (CO), and cyanide.Site 4: between succinate dehydrogenase and Q

    in complex II. It isinhibited by carboxin.

  • 8/3/2019 Bioenergetics Module 3. Sabah

    63/69

    B) Inhibitors of oxidative phosphorylation.

    They include Oligomycin that inhibits thetransport of ADP into and the transport of ATPout of the mitochondria. Atractyloside isanother inhibitor.

    C) Uncouplers of oxidative phosphorylation.

    They dissociate oxidation in the respiratory

    chain from phosphorylation. Oxidation becomes unlimited since it is not

    controlled by the concentration of ADP or Pi.

    They include 2,4 dinitrophenol, dinitrocresol,

    pentachlorophenol, thyroxine, Ca2+

    and m-chlorocarbonyl cyanide phenyl hydrazone(CCCP).

  • 8/3/2019 Bioenergetics Module 3. Sabah

    64/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    65/69

    Oxidation of extramitochondrial NADH.

    NADH is produced in the cytosol duringglycolysisin the reaction catalyzed by

    glyceraldehydes -3- phosphate

    dehydrogenase.

    This NADH can not enter the respiratorychain in the mitochondria because the inner

    mitochondrial membrane isimpermeable toit.

    reducing equivalents are transferred fromextramitochondrial NADH to the

    mitochondria by one of two shuttles

  • 8/3/2019 Bioenergetics Module 3. Sabah

    66/69

    No NADH Transporter

  • 8/3/2019 Bioenergetics Module 3. Sabah

    67/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    68/69

  • 8/3/2019 Bioenergetics Module 3. Sabah

    69/69

    Aerobic glycolysis yeilds

    8 ATPs if malate shuttle is used

    6 ATPs if glycerophosphate shuttle is used

    and accordingly complete oxidation of 1mol of glucose yields 38 or 36 ATPs.