25
Spectral analysis 1 Chương 1 : GIỚI THIỆU 1.1 TÍN HIỆU NĂNG LƯỢNG Năng lượng của tín hiệu x(t) E x = + - |x(t)| 2 dt = + - x(t)x*(t) dt = + - + - X(f)e j2πft df x*(t) dt = + - X(f) + - x*(t)e j2πft dt df = + - X(f)X*(f) df = + - |X(f)| 2 df E x = + - |x(t)| 2 dt = + - |X(f)| 2 df (đẳng thức Parseval) (1.1) S x (f) = |X(f)| 2 (mật độ phổ năng lượng) (1.2) Hàm tương quan chéo giữa các tín hiệu x(t) và y(t) r xy (τ) = + - x(t)y*(t-τ) dt (1.3) Hàm tự tương quan của tín hiệu x(t) r x (τ) = + - x(t)x*(t-τ) dt (1.4) Tính chất của hàm tự tương quan r x (0) = E x r x (0) | r x (τ) | , ∀τ nếu x(t) thực r x (τ) là hàm chẳn (theo τ) Định lý Wiener – Khintchine : Mật độ phổ năng lượng của tín hiệu x(t) F{r x (τ)} = + - r x (τ)e -j2πfτ dτ = + - + - x(t)x*(t-τ) dt e -j2πfτ dτ = + - x(t)e -j2πft + - x*(t-τ)e j2πf(t-τ) dt dτ = + - x(t)e -j2πft dt + - x*(t’)e j2πft’ dt’ = X(f)X*(f) = |X(f)| 2 S x (f) = + - r x (τ)e -j2πfτ dτ (1.5) Thí du : x(t) = 6e -2t 1(t) r x (τ), S x (f), E x y(t) = 8e -5t 1(t) r xy (τ)

Các tính chất phổ - Dương Hoài Nghĩa

Embed Size (px)

DESCRIPTION

Tóm tắt bài giảng môn các tính chất phổ - PGS.TS Dương Hoài Nghĩa - ĐH Bách Khoa, TpHCM

Citation preview

  • Spectral analysis 1

    Chng 1 : GII THIU

    1.1 TN HIU NNG LNG Nng lng ca tn hiu x(t)

    Ex = +

    -|x(t)|2 dt =

    +

    -x(t)x*(t) dt =

    +

    - +

    -X(f)ej2pift df x*(t) dt

    = +

    -X(f)

    +

    -x*(t)ej2pift dt df =

    +

    -X(f)X*(f) df =

    +

    -|X(f)|2 df

    Ex = +

    -|x(t)|2 dt =

    +

    -|X(f)|2 df (ng thc Parseval) (1.1)

    Sx(f) = |X(f)|2 (mt ph nng lng) (1.2)

    Hm tng quan cho gia cc tn hiu x(t) v y(t)

    rxy() = +

    -x(t)y*(t-) dt (1.3)

    Hm t tng quan ca tn hiu x(t)

    rx() = +

    -x(t)x*(t-) dt (1.4)

    Tnh cht ca hm t tng quan rx(0) = Ex rx(0) | rx() | , nu x(t) thc rx() l hm chn (theo ) nh l Wiener Khintchine : Mt ph nng lng ca tn hiu x(t)

    F{rx()} = +

    -rx()e

    -j2pif d = +

    - +

    -x(t)x*(t-) dt e-j2pif d

    = +

    -x(t)e-j2pift

    +

    -x*(t-)ej2pif(t-) dt d

    = +

    -x(t)e-j2pift dt

    +

    -x*(t)ej2pift dt = X(f)X*(f) = |X(f)|2

    Sx(f) = +

    -rx()e

    -j2pifd (1.5)

    Th du : x(t) = 6e-2t1(t) rx(), Sx(f), Ex y(t) = 8e-5t1(t) rxy()

  • Spectral analysis 2

    1.2 TN HIU CNG SUT Cng sut ca tn hiu x(t)

    Px = lim T 2T1

    T

    T-|x(t)|2 dt (1.6)

    Hm tng quan cho gia cc tn hiu x(t) v y(t)

    rxy() = E{x(t)y*(t-)} = lim T 2T1

    T

    T- x(t)y*(t-) dt (1.7)

    (gi thit ergodic) Hm t tng quan ca tn hiu x(t)

    rx() = E{x(t)x*(t-)} = lim T 2T1

    T

    T- x(t)x*(t-) dt (1.8)

    (gi thit ergodic) Tnh cht ca hm t tng quan rx(0) = Px rx(0) | rx() | , nu x(t) thc rx() l hm chn (theo ) Cng sut v hm tng quan ca tn hiu chu k Th du : x(t) = 6sin(2t) rx(), Px y(t) = 8sin(4t) rxy()

    1.3 TRUYN TN HIU N TRNG QUA H THNG TUYN TNH n trng (white noise) e(t) n trng re() =

    2() (1.9) (() : phn b Dirac) Truyn tn hiu n trng qua h thng tuyn tnh e(t) : n trng vi 2 = 1

    Hnh 1.1

    x(t) = +

    -h(t)e(t-t)dt

    rx() = E{x(t)x*(t-)} = E{ +

    -h(t)e(t-t)dt

    +

    -h*(t)e*(t--t)dt}

    = +

    - +

    -h(t) h*(t) E{e(t-t)e*(t--t)} dtdt

  • Spectral analysis 3

    = +

    - +

    -h(t) h*(t) (+t-t) dtdt =

    +

    -h(t)h*(t-) dt

    Sx(f) = +

    -rx()e

    -j2pifd = +

    - +

    -h(t)h*(t-) dte-j2pifd

    = +

    -h(t) e-j2pift

    +

    -h*( t-) ej2pif(t-) d dt

    = +

    -h(t) e-j2pift

    +

    --h*(v) ej2pifv dv dt (t v = t-)

    = +

    -h(t) e-j2pift dt

    +

    -h*(v) ej2pifv dv = H(f)H*(f)

    Sx(f) = | H(f) |

    2 (1.10)

    1.4 MC TIU Xc nh mt ph cng sut ca tn hiu t cc d liu o vi chiu di hu hn {x(n), n = 0, 1, 2, , N-1} Phng php khng thng s : Periodogram da vo (1.2). Correlogram da vo (1.5). Phng php thng s : da vo (1.10) vi cc m hnh AR, MA, ARMA. M hnh Prony v Pisarenko : dng cho ph vch. Vn : phn gii v thi gian quan st. c lng : Lch Khng lch phn tn : variance Bi ging ny c bin son da vo [F1].

    [F1] G. Fleury, Analyse Spectrale. Mthodes non-paramtriques et paramtriques, Ellipses, 2001.

  • Spectral analysis 4

    Periodogram ca tn hiu 2cos(400pit), Ts = 1ms

    Periodogram ca tn hiu 2cos(400pit) + cos(440pit), Ts = 1ms

  • Spectral analysis 5

    Chng 2 : PERIODOGRAM

    2.1 NH NGHA Bin i Fourier

    X(f) = +

    pi

    -

    ftj2 dtx(n)e +

    =

    pi

    - n

    fnTj2 Tx(n)e (2.1)

    T : chu k ly mu (sampling period) T (1.2) mt ph cng sut

    P(f) = NT

    1|X(f)|2 (2.2)

    Periodogram

    PPER(f) = NT

    121-N

    0 n

    fnTj2x(n)eT =

    pi (2.3)

    2.2 TNH CHT

    XR(f) =

    =

    pi1N

    0 n

    fnTj2x(n)eT = +

    =

    pi

    - n

    fnTj2R (n)exT bin i Fourier ri rc

    vi xR(n) = x(n)wR(n), wR(n) =

    khacn,01Nn0,1 : ca s ch nht (ri rc)

    XR(f) = X(f)*WR(f) : chp ri rc

    WR(f) = fTj2-

    fNT-j2

    e-1

    e-1pi

    pi

    = e-jpifNT)fTsin(

    )fNTsin(pipi

    |WR(f)| = |)fTsin(

    )fNTsin(pipi

    |

    PPER(f) = NT

    1|XR(f)|

    2 = NT

    1| X(f)*WR(f) |

    2

    c lng khng lch tim cn nhng variance khng 0 khi N

    v )fTsin(

    )fNTsin(pipi

    phn gii Th d : x(t) = cos(2pift) X(f) WR(f) : v ph

    Tn hiu e(t) Periodogram ca tn hiu e(t)

  • Spectral analysis 6

    Periodogram ca tn hiu x(t) = cos(400pit)

    Periodogram ca tn hiu x(t) = cos(400pit) + 0.1e(t)

    Periodogram ca tn hiu x(t) = cos(400pit) + e(t)

    2.3 CA S Ca s ch nht

    wR(n) =

    khacn 0,1Nn 0 ,1

    Ca s tam gic (Bartlett)

    wT(n) =

    khacn ,0

    Nn2

    N,N

    2n2

    2Nn0,

    N2n

    Ca s Hanning

  • Spectral analysis 7

    wV(n) =

    khacn , 0

    Nn 0 , )N

    n20.5cos( - 0.5 pi

    Ca s Hamming

    wH(n) =

    khacn , 0

    Nn 0 ),N

    n20.46cos( - 0.54 pi

    Ca s Blackman

    wB(n) =

    +

    khacn , 0

    Nn 0 ),N

    n40.08cos( )N

    n20.5cos( - 0.42 pipi

    So snh cc loi ca s [OS1]

    Ca s Peak side-lobe Width of main lobe (Hz) Ch nht -13 dB 2/NT Bartlett -25 dB 4/(N-1)T Hanning -31 dB 4/(N-1)T Hamming -41 dB 4/(N-1)T Blackman -57 dB 6/(N-1)T

  • Spectral analysis 8

    Periodogram ca tn hiu x(n) = cos(400pin) + 0.5cos(440pin) vi cc ca s khc nhau

    T = 1ms, N = 512

    2.4 BIN TH CA PERIODOGRAM Phng php ca Daniell

    PDAN(fk) = 12m

    1+

    +

    =

    mk

    m- k i PPER(fi)

    Phng php ca Bartlett : - Chia khong quan st thnh M on khng ph nhau - Xc nh periodogram ca tng on - Tnh trung bnh

    PBAR(f) = M

    1

    =

    1M

    0 i PPERi(f)

    Phng php ca Welch (thng dng nht) : Tng t Barlett nhng cc an ph nhau (thng 50%) Kt hp s dng ca s Hanning

    PPERi(f) = TN

    1

    i

    21-N

    0 n

    fnTj2i

    i(n)ew(n)xT

    =

    pi , i = 0, , M-1

    L = iN

    T

    =

    1N

    0 n

    i

    w2(n)

    PWEL(f) = ML

    1

    =

    1M

    0 i PPERi(f)

  • Spectral analysis 9

    Periodogram ca tn hiu x(n) = cos(400pin) + 0.5cos(440pin) + 0.2e(n)

    T = 1ms, N = 512, M = 8, 50% overlap

  • Spectral analysis 10

    Chng 3 : CORRELOGRAM

    3.1 NH NGHA (BLACKMAN TUKEY) Mt ph cng sut

    P(f) = +

    pi -

    fj2x d)e(r

    +

    =

    pi

    - m

    fmTj2x T(m)er

    -fs/2 f fs/2 , T = 1/fs : chu k ly mu (sampling period). Correlogram

    PCOR(f) = +

    =

    piM

    M- m

    fmTj2x (m)erT

    M N/10 (Blackman Tukey)

    3.2 C LNG HM TNG QUAN

    rx(m) = limN+ 12N

    1

    + =N

    N- n

    x(n+m)x*(n) (ergodic)

    Phng php 1

    rx(m) = mN

    1 =

    1-m-N

    0 nx(n+m)x*(n) , 0 m N-1

    rx(m) = rx*(-m) , -N+1 m 0 Tnh cht

    - c lng khng lch (unbiased) : E{rx(m)} = rx(m) - Nu m

  • Spectral analysis 11

    c lng hm tng quan cho

    rxy(m) =

    +

    +

    +

    =

    =

    1-mN

    0 n

    1-m-N

    0 n

    0m 1N- , m)-(n*x(n)ym-N

    1

    1Nm 0 , (n)*m)yx(nm-N

    1

    r( xy(m) =

    +

    +

    +

    =

    =

    1-mN

    0 n

    1-m-N

    0 n

    0m 1N- , m)-(n*x(n)yN

    1

    1Nm 0 , (n)*m)yx(nN

    1

    3.3 C LNG MT PH CNG SUT

    Phng php 1

    Pcor(f) = T =

    M

    M- mrx(m)e

    -j2pifmT

    E{Pcor(f)} = T =

    M

    M- mrx(m)e

    -j2pifmT = F{rx(m)(M

    2m)} bin i Fourier ri rc

    = Px(f)*fT)

    fMT)sin(2pipi

    sin( : ca s ch nht ri rc

    v )fTsin(

    )fNTsin(pipi

    phn gii Th d : x(t) = cos(2pift) X(f) WR(f) : v ph Phng php 2

    P(

    cor(f) = T =

    M

    M- mr( (m)e-j2pifmT

    E{ P(

    cor(f)} = T =

    M

    M- m(1-

    N|m|)rx(m)e

    -j2pifmT = F{rx(m)(1-N

    |m|)}

    = Px(f)*F{(1-N

    |m|)} : ca s tam gic ri rc

    v F{(1-N

    |m|)}

    phn gii Th d : x(t) = cos(2pift) X(f) WR(f) : v ph B c lng ca Blackman - Tukey

    PBT(f) = T =

    M

    M- mw(m)rx(m)e

    -j2pifmT w(m) : ca s vi w(0) = 1

  • Spectral analysis 12

    E{PBT(f)} = T =

    M

    M- mw(m)rx(m)e

    -j2pifmT = F{w(m)rx(m)}

    = Px(f)*W(f) chn ca s c W(f) > 0 E{PBT(f)} > 0 c lng mt ph cng sut cho

    Pxy(f) = T =

    M

    M- mw(m)rxy(m)e

    -j2pifmT

  • Spectral analysis 13

    Chng 4 : M HNH AR

    4.1 NGUYN L 1) Phn hoch pho

    e : n trng vi variance 2e = 1 Tn hiu lin tc

    Py(s) = H(s)H*(-s*)Pe(s) = H(s)H*(-s*)2e

    Py(f) = |H(j2pif)|2 2

    e = |H(j2pif)|2

    H(s) n nh v cc tiu pha. Tn hiu ri rc

    Py(z) = H(z)H*( *z1)Pe(z) = H(z)H*( *z

    1) 2e

    Py(f) = |H(ej2pifT)|2 2e = |H(e

    j2pifT)|2

    H(z) n nh v cc tiu pha.

    2) M hnh AR

    H(z) = pp

    22

    11

    o

    za...zaza1b

    ++++

    y(n) = - a1y(n-1) - a2y(n-2) - - apy(n-p) + boe(n) - c lng cc thng s a1, a2, , ap v bo t cc d liu o y(0), y(1), , y(N-1) - c lng mt ph cng sut Py(f) = |H(e

    j2pifT)|2

    4.2 D BO TUYN TNH V PHNG PHP BNH PHNG TI THIU 1) Phng php bnh phng ti thiu

    T cc d liu o y(0), y(1), , y(N-1), thnh lp h phng trnh sau

    +

    )1N(y

    )1p(y)p(y

    M =

    )1pN(y)3N(y)2N(y

    )1(y)1p(y)p(y)0(y)2p(y)1p(y

    L

    MLMM

    L

    L

    p

    2

    1

    a

    aa

    M +

    +

    )1N(e

    )1p(e)p(e

    Mbo

    y~ = R + bo e~ (N >> p) min || y~ - R ||2 = [RTR]-1RT y~

    E{|| y~ - R ||2} = bo2(N-p) c lng bo = pN

    ||R-y~|| 2

    2) ngha hnh hc : min || y~ - R ||2 khong cch t y~ n b mt sinh bi cc vect ct

    ca R

  • Spectral analysis 14

    3) D bo tuyn tnh

    y(n) = - a1y(n-1) - a2y(n-2) - - apy(n-p) + boe(n) y(n) = - a1y(n-1) - a2y(n-2) - - apy(n-p) Sai s d bo (n) = y(n) - y(n) = boe(n) trc giao vi cc quan st qu kh (nu e(n) l n trng) E{(n)y(n-k)} = 0 k > 0

    4) Gii thut bnh phng ti thiu quy B nghch o ma trn

    (A + BCD)-1 = A-1 - A-1B(C-1 + DA-1B)-1DA-1 Phin bn n gin

    (A + bdT)-1 = A-1 - bAd1

    AbdA1T

    1T1

    +

    Bnh phng ti thiu

    y~ k = Rk + ~ k k = [R Tk Rk]-1R Tk y~ k

    +1k

    k

    yy~

    =

    +T

    1k

    kR +

    +1k

    k~

    k+1 = [RTk Rk + k+1

    T1k+ ]

    -1[R Tk y~ k + k+1yk+1]

    [R Tk Rk+k+1T

    1k+ ]-1 = [R Tk Rk]

    -1 - 1k

    1k

    Tk

    T1k

    1k

    Tk

    T1k1k

    1k

    Tk

    ]RR[1]RR[]RR[

    +

    +

    ++

    +

    k+1 = [RTk Rk]

    -1R Tk y~ k - 1k

    1k

    Tk

    T1k

    1k

    Tk

    T1k1k

    1k

    Tk

    ]RR[1]RR[]RR[

    +

    +

    ++

    +

    R Tk y~ k +

    + [R Tk Rk]-1k+1yk+1 -

    1k1

    kTk

    T1k

    1k

    Tk

    T1k1k

    1k

    Tk

    ]RR[1]RR[]RR[

    +

    +

    ++

    +

    k+1yk+1

    (ha ng mu s)

    = k + 1k

    1k

    Tk

    T1k

    1k1k1

    kTk

    T1k1k

    1k

    Tk

    ]RR[1y]RR[]RR[

    +

    +

    ++

    ++

    +

    + k

    = k + 1k

    1k

    Tk

    T1k

    T1k1k1k

    1k

    Tk

    ]RR[1]y[]RR[

    +

    +

    +++

    +

    k

    t

    Kk+1 = 1k

    1k

    Tk

    T1k

    1k1

    kTk

    ]RR[1]RR[

    +

    +

    +

    +

    Gk+1 = [RT

    1k+ Rk+1]-1 = Gk -

    1k1

    kT

    1k

    kT

    1k1kk

    G1GG

    +

    +

    ++

    +

    = Gk - k

    T1k1k GK ++

    Gk+1 = [I - Kk+1T

    1k+ ]Gk

  • Spectral analysis 15

    Kk+1 = 1kk

    T1k

    1kk

    G1G

    ++

    +

    +

    Gii thut quy (0) Khi ng tr : 1 = 0, G1 = aI (a ln) (1) Vi k = 1, 2, 3, 4,

    Kk+1 = 1kk

    T1k

    1kk

    G1G

    ++

    +

    +

    (nx1)

    k+1 = k + Kk+1[yk+1 - T

    1k+ k] (nx1)

    Gk+1 = [I - Kk+1T

    1k+ ]Gk (nxn) Quay v (1)

    5) c lng bc p ca m hnh :

    AIC = )ln 2o(bN2p

    +

    FPE = 2ob1)(p-N1)(pN

    +++

    BIC = )ln 2o(bNp.ln(N)

    +

    4.3 PHNG TRNH YULE-WALKER

    y(n) = - a1y(n-1) - a2y(n-2) - - apy(n-p) + boe(n)

    e(n) : n trng vi variance = 1 rey(m) =

    >

    =

    0mneu,00mneu,b o

    { }=

    p

    0kk )mn(y)kn(yEa =

    >

    =

    0mneu,00mneu,b 2o

    =

    0

    0b

    a

    a1

    )0(R)1p(R)p(R

    )1p(R)0(R)1(R)p(R)1(R)0(R 2o

    p

    1

    yyyyyy

    yyyyyy

    yyyyyy

    MM

    L

    MMMM

    L

    L

    c lng ma trn tng quan cc thng s ai bo

    4.4 PHNG PHP AUTOCORRELATION V COVARIANCE

    E1 =

    p

    2

    1

    e

    e

    e

    M, E2 =

    +

    +

    N

    2p

    1p

    e

    e

    e

    M, E3 =

    +

    +

    +

    pN

    2N

    1N

    e

    e

    e

    M, Y1 =

    p

    2

    1

    y

    y

    y

    M, Y2 =

    +

    +

    N

    2p

    1p

    y

    y

    y

    M, Y3 =

    +

    +

    +

    pN

    2N

    1N

    y

    y

    y

    M-

  • Spectral analysis 16

    R1 =

    0y

    0yy

    00y

    000

    1p

    12

    1

    LL

    MLLM

    L

    L

    L

    , R2 =

    ++

    +

    pN2N1N

    31p2p

    2p1p

    11pp

    yyy

    yyy

    yyy

    yyy

    L

    MLMM

    L

    L

    L

    R3 =

    +

    +

    +

    N

    3pN

    2pNN

    1pN1NN

    y00

    y00

    yy0

    yyy

    L

    MLLM

    L

    L

    L

    4.5 CHUYN I LIN TC RI RC 1) Phng php 1 : o hm

    nTt

    a

    dt

    (t)dx

    =

    T

    1)-x(n-x(n)

    s = T

    z-1 -1

    2) Phng php 2 : tch phn

    =t

    d)(x)t(y y(n) = y(n-1) + 2

    T[x(n) + x(n-1)]

    s

    1 =

    2T

    1

    1

    z1z1

    + =

    2T

    1z1z

    +

    s = T2

    1z1z

    +

    3) Phng php 3 : ly mu p ng xung

    G(s) = =

    p

    1i i

    ips

    b

    h(t) = =

    p

    1i

    tpi

    ieb 1(t)

    h(n) = =

    p

    1i

    nTpi

    ieb 1(nT) H(z) = +

    =nh(n)z-n

    H(z) = =

    p

    1i+

    =n

    nnTpi zeb i

    = =

    p

    1i1Tp

    i

    ze1b

    i

    cc pi Tp ie

  • Spectral analysis 17

    Chng 5 : M HNH MA

    5.1 NGUYN L 1) M hnh MA

    e : n trng vi variance 2e = 1

    H(z) = =

    q

    0i

    ii zb y(n) =

    =

    q

    0ii )in(eb

    2) Cc c trng thng ke E{y(n)} = 0

    E{y(n)2} = =

    q

    0i

    2ib

    3) Cc phng php c lng mt ph cng sut

    Phng php 1 : - c lng cc thng s bo, b1, , bq t cc d liu o y(0), y(1), , y(N-1). - c lng mt ph cng sut

    Py(f) = |H(ej2pifT)|2 = |

    =

    piq

    0i

    fTi2ji eb |

    2 vi -fs/2 < f < fs/2.

    Phng php 2 : - c lng hm t tng quan ry(m)

    ry(m) =

    >

    +

    =

    q|m|,0

    q|m|,bb)mq,qmin(

    )m,0max(imii , |m| q

    - c lng mt ph cng sut dng nh l Wiener-Khintchine

    Py(f) = | =

    q

    qm

    fTmj2y (m)er

    pi |2 vi -fs/2 < f < fs/2.

    5.2 NHN DNG THNG S 1) Phng php moments :

    Dng phng php lp, th d Newton-Raphson, gii phng trnh sau c lng cc thng s bo, b1, , bq

    000b

    0bbbbb

    q

    21

    q1o

    MNMM

    L

    L

    q

    1

    o

    b

    bb

    M =

    q

    1

    o

    r

    rr

    M

  • Spectral analysis 18

    Phng php lp n gin : gii phng trnh x = f(x). Phng php Newton-Raphson : gii phng trnh f(x) = 0.

    f(xn+1) f(xn) + f(xn)[xn+1 - xn] = 0 xn+1 = xn - )x('f

    )x(f

    n

    n

    2) Phng php Durbin

    Xp x H(z)

    H(z) = =

    q

    0i

    ii zb

    =

    P

    0i

    ii z

    1 vi N >> P >> q

    =

    P

    0ii y(n-i) = (n)

    Hm mc tiu

    J = E{(n)2} = E{=

    P

    0ii y(n-i)

    =

    P

    0kk y(n-k)} =

    =

    P

    0i=

    P

    0kikE{y(n-i)y(n-k)}

    = =

    P

    0i=

    P

    0kikry(k-i)

    mt khc

    ry(m) =

    >

    +

    =

    q|m|,0

    q|m|,bb)mq,qmin(

    )m,0max(imii

    Ta c

    J = =

    P

    0i=

    P

    0k=

    q

    0likblbl-k+i

    min J jb

    J

    = 0 vi k = 1, 2, , q; bo = 1

    jb

    J

    = =

    P

    0i=

    P

    0kikbj-k+i +

    =

    P

    0i=

    P

    0kikbj+k-I = 2

    =

    P

    0i=

    P

    0kikbj-k+i

    = 2=

    P

    0i+

    +=

    ij

    qijk

    ikbj-k+i (v 0 j-k+i q )

    - c lng cc thng s i t d liu : m hnh AR

  • Spectral analysis 19

    - Xc nh bi : min J

  • Spectral analysis 20

    Chng 6 : M HNH ARMA

    6.1 NGUYN L 1) M hnh MA

    e : n trng vi trung bnh = 0 v variance 2e = 1

    H(z) =

    =

    =

    p

    0i

    ii

    q

    0i

    ii

    za

    zb vi ao = 1

    y(n) = -=

    p

    1ii )in(ya +

    =

    q

    0ii )in(eb

    2) Cc c trng thng ke

    E{y(n)} = 0 (gi thit =

    p

    0iia 0 h thng n nh tim cn)

    E{y(n)2} = E{y(n).[-=

    p

    1ii )in(ya +

    =

    q

    0ii )in(eb ]} = -

    =

    p

    1iyi )i(ra +

    =

    q

    0iyei )i(rb

    p ng xung : H(z) = +

    =

    0i

    iizh

    rye(m) = E{y(k)e(k-m)} = E{+

    =0i

    hie(k-i)e(k-m)} = +

    =0i

    hiE{e(k-i)e(k-m)} = hm2

    rye(m) =

    q

    =

    p

    0iyi )ik(ra = 0 k > q ry(k) = -

    =

    p

    1iyi )ik(ra k > q

    ++

    ++

    +

    )q(r)2pq(r)1pq(r

    )2pq(r)q(r)1q(r)1pq(r)1q(r)q(r

    yyy

    yyy

    yyy

    L

    MOMM

    L

    L

    p

    2

    1

    a

    aa

    M =

    +

    +

    +

    )pq(r

    )2q(r)1q(r

    y

    y

    y

    M ai

    - Lc y(n) dng b lc =

    p

    0i

    ii za : w(n) =

    =

    p

    0ii )in(ya

    w(n) = =

    q

    0ii )in(eb

    - Dng cc phng php ca m hnh MA : c lng mt ph cng sut ca w(n)

    Pw(f) = | =

    piq

    qm

    fTmj2w (m)er |

    2

    Py(f) = 2p

    0i

    fTi2ji

    w

    ea

    )f(P

    =

    pi

    hoc c lng cc thng s bi

    Py(f) = |H(ej2pifT)|2 =

    2

    p

    0i

    fTi2ji

    q

    0i

    fTi2ji

    ea

    eb

    =

    pi

    =

    pi

  • Spectral analysis 22

    Chng 7 : M HNH PRONY V M HNH PISARENKO

    7.1 M HNH PRONY 1) M hnh Prony

    y(n) = =

    p

    1i

    Ymi nie cos(2pifin+i) ==

    p

    1i

    Ymi nie

    + ++

    2

    ee )npif2j()npif2j( iiii

    = =

    p

    1i

    [ ])npif2j()npif2j(nmi iiiii eee2

    Y ++ +

    = =

    2p

    1i 2

    Ymi )nf2(jn iii ee +pi = =

    2p

    1i

    i ije n)f2j( iie pi+

    = =

    2p

    1i

    niizh (7.1)

    vi i = i+p , fi = -fi+p , i = -i+p , i = i+p = 2

    Ymi , i p

    hi = i ije , zi = ii f2je pi+ Vn : c lng hi v zi t cc d liu o v xc nh mt ph cng sut ca tn hiu.

    2) a thc c trng nh ngha

    P(z) = =

    2p

    1ii )z(z =

    =

    2p

    0i

    i2piza , ao = 1 (7.2)

    T (7.1) ta c

    =

    2p

    0ii i)y(ka =

    =

    2p

    0iia

    =

    2p

    1m

    ikmmzh =

    =

    2p

    1mmh

    =

    2p

    0i

    ikmiza

    = =

    2p

    1mmh

    2pkmz

    =

    2p

    0i

    i2pmiza = 0 (do P(zi) = 0)

    Vy y(n) tha m hnh AR vi p chn

    =

    2p

    0ii i)y(ka = 0 (7.3)

    3) c lng m hnh Prony

    - c lng cc thng s ai : t (7.3)

    1)y(2p3)y(4p2)y(4p

    y(1)1)y(2py(2p)

    y(0)2)y(2p1)y(2p

    L

    MLMM

    L

    L

    2p

    2

    1

    a

    a

    a

    M = -

    +

    1)y(4p

    1)y(2p

    y(2p)

    M (7.4)

  • Spectral analysis 23

    - c lng zi : nghim ca phng trnh c trng =

    p

    0i

    ipmi za = 0 zi

    - c lng hi : y(n) = =

    p

    1i

    nii zh hi

    1pp

    1p2

    1p1

    p21

    zzz

    zzz111

    L

    MLMM

    L

    L

    p

    2

    1

    h

    hh

    M =

    )1p(y

    )1(y)0(y

    M (7.5)

    4) Ph ca m hnh Prony

    y(n) = =

    2p

    1i

    niizh

    Y(z) = =

    2p

    1i1

    i

    i

    zz1

    h (7.6)

    Py(f) = |TY(ej2pifT)|2 (7.7)

    7.2 M HNH PISARENKO 1) M hnh Pisarenko

    y(n) = =

    +pip

    1iiii )nf2cos(h + e(n) (7.8)

    e(n) : n trng vi trung bnh bng 0, variance 2e

    i : bin ngu nhin phn b u trn [0, 2pi]

    2) Hm t tng quan

    Ry(m) = E{y(n)y(n-m)} = )m()mpif2cos(h2

    1 p

    1i

    2ei

    2i

    =

    +

    = )m(eh4

    1 p

    -pi

    2e

    mpif2j2i

    i=

    + vi

    ==

    =

    0h,hh

    ff

    oii-

    ii- (7.9)

    3) c lng m hnh Pisarenko

    Trng hp e(n) 0

    yo(n) = =

    +p

    -pi

    )nfj(2i

    iieh2

    1 pi vi

    =

    ==

    =

    ii

    oii-

    ii-

    0h,hhff

    (7.10)

    m hnh Pisarenko l trng hp ring ca m hnh Prony vi zi = exp(-j2pifi) : a thc c trng c 2p nghim trn vng trn n v

  • Spectral analysis 24

    P(z) = =

    2p

    1kk )z(z =

    =

    2p

    0k

    k2pkza , ao = 1

    P(z)yo(n) = =

    +2p

    0k

    ok k)2p(nya = =

    2p

    0kka

    =

    ++p

    -pi

    )k]-2p[nfj(2i

    iieh2

    1 pi=

    = =

    +p

    -pi

    )nfj(2i

    iieh2

    1 pi =

    2p

    0k

    k)-(2pfj2k

    iea pi

    = =

    +p

    -pi

    )nfj(2i

    iieh2

    1 pi =

    2p

    0k

    k-2pikza = 0 (do P(zi) = 0)

    =

    +2p

    0k

    ok k)2p(nya = 0 (7.11)

    Trng hp e(n) 0 yo(n) = y(n) e(n)

    =

    +2p

    0kk k)2py(na =

    =

    +2p

    0kk k)-2pe(na (7.12)

    Vy y(n) tha m hnh ARMA vi cc h s ca phn AR = cc h s ca phn MA.

    c lng 2e v cc h s ai

    yT(n) = eT(n) (7.13) vi

    y(n) =

    +

    +

    y(n)

    1)2py(n

    2p)y(n

    M e(n) =

    +

    +

    e(n)

    1)2pe(n

    2p)e(n

    M =

    2p

    1

    o

    a

    a

    a

    M

    l cc vect (2p + 1) x 1. E{y(n)yT(n)} = E{y(n)eT(n)}

    E{y(n)yT(n)}=

    )0(r)1p2(r)p2(r

    )1p2(r)0(r)1(r)p2(r)1(r)0(r

    yyy

    yyy

    yyy

    L

    MOMM

    L

    L

    E{y(n)eT(n)}=

    2e

    2e

    2e

    00

    0000

    L

    MOMM

    L

    L

    (y(n) = =

    +pip

    1iiii )nf2cos(h + e(n) : y(n) khng tng quan vi e(n+k), k0)

  • Spectral analysis 25

    Ry = 2e (7.14) 2e v l tr ring v vect ring ca ma trn tng quan Ry.

    Ry l ma trn i xng, xc nh khng m c th phn tch thnh Ry = V*D*VT vi D

    l ma trn dng cho cha cc tr ring (thc v khng m) ca Ry v V l ma trn vung vi cc ct l cc vect ring (trc chun VTV = VVT = I) ca Ry. Hn na

    2e l

    tr ring nh nht ca ma trn tng quan Ry. Tht vy, gi i l cc tr ring ca ma trn Ry, ma trn tng quan ca tn hiu khng nhiu (e(n) 0) Ro = Ry -

    2e I

    c cc tr ring l i - 2e . Do Ro xc nh khng m, i - 2e 0 i i

    2e I

    c lng 2e v bi tr ring nh nht v vect ring tng ng ca Ry. Do (7.14) khng duy nht, ta c th s dng iu kin buc ao = 1.

    c lng fi bng cch gii phng trnh c trng P(z) = 0. c lng hi da vo

    Ry(m) = )m()mpif2cos(h2

    1 p

    1i

    2ei

    2i

    =

    +

    TI LIU THAM KHO

    [F1] G. Fleury, Analyse Spectrale. Mthodes non-paramtriques et paramtriques, Ellipses, 2001.

    [OS1] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall International, 1989.

    [JW1] G.M. Jenkins, D.G. Watts, Spectral Analysis and its applications, Holden-Day, 1968. [H1] M.H. Hayes, Statistical Digital Signal Processing and Modelling, John Wiley & Sons,

    1996.