25
Carbon Nanotube NanoNeedle Nanomeniscus Jean-Pierre Aimé  [email protected] Fronti er in Scanni ng Pr obe Microscopy PURDUE Oct ober 2006

Carbon Nanotube NanoNeedle Nanomeniscus

  • Upload
    liakman

  • View
    227

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 1/25

Carbon Nanotube NanoNeedle Nanomeniscus

Jean-Pierre Aimé

 [email protected] 

Frontier in Scanning Probe Microscopy

PURDUE October 2006

Page 2: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 2/25

Nano-Needle / FIB: D. Mariolle, F. Bertin, A. Chabli LETI-Minatec

Carbon Nanotube: C.V. Nguyen (NASA), A. M. Bonnot (LEPES)

I- Carbon Nanotubes as AFM probes:

competition between adhesion and elasticity

C. Bernard et al

II- Oscillating NanoNeedle at Air liquid Interface:

Dynamical behavior of NanoMeniscus

C. Jai et al

Page 3: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 3/25

CNT Possible Tip-Sample Interactions

Interaction

• Attractive interaction: van der Waals

• Repulsive interaction: (compression) / bending• Boundary conditions : sticked (clamped) / non sticked (sliding)

Geometry effects:

• kbending k~r 4L-3

• kcompression~ 103kbending

D. Dietzel, et al Physical Review B 72, 035445 (2005), Nanotechnology (2005) 16, p.S73-S78, JSPM (2006)

Page 4: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 4/25

Nanotube mechanical cycle

F

D

Compressive part

tube bending

Extension phase

∆ Elastic bending 

34  Lr  E k  NT  π ≈

Extension stiffness

k adh

cstek  E  adhT diss =Δ≈ 2

2

1Cycle area:

Approach:

Start to touch

CNT Pull off force

U. Dürig, New J. of Physics 2 , 5.1 (2000).

Page 5: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 5/25

SWNT’s FM AFM

frequency and damping curves

0

0,04

0,08

0,12

0,16

0 50 100 150 200Damping (V) Piezo displacement (nm)

Δz

contact

permanent

contact

intermittent

non contact

0

5

10

15

20

25

30

35

Δf (Hz)

 A = 50nm

1. Non contact

2. Intermittent

Contact

3. Permanent

Contact

(ΔZ < 2A)

Page 6: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 6/25

Page 7: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 7/25

SWNT vs MWNT

-50

0

50

100

150

200

250

300

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

SWNT(A=50nm)

MWNT (A=58nm)

Δf (Hz)

Z/A

Δf MWNT : typ. 200 Hz

SWNT : typ. 20 Hz

Page 8: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 8/25

( ) ( ))(cos1 122

0

2

0

2

d d d k 

k c

 NT  −−−=− π ω ω ω  d=Z/A

. D. Dietzel, et al Physical Review B 72, 035445 (2005), C. Bernard et al (submitted)

-1.0 -0 .5 0.0 0.5 1.0 1.5

0

15 0

30 0

45 0

60 0

kNT

=0.056 Nm-1

       Δ   f   (   H  z   )

d

kNT

=0.04 Nm-1

kNT =0.048 Nm-1

Elastic contribution

F

D∆  ( ) ( )⎥⎥⎦⎤

⎢⎢⎣⎡ ⎟

 ⎠ ⎞⎜

⎝ ⎛  −−=Δ ∫ 

Δ+dt t t 

 A

 zk T k 

res

res

adh

c

ω ω ω 

ω  τ τ 

τ 

coscos1

0

Adhesion Contribution

Page 9: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 9/25

Single Wall NT Mechanical properties

Adhesion mostly governs SWNT behavior 

k SWNT = 1*10 -3 N.m-1

dis= 1.5 10 -17 J 

Page 10: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 10/25

Multi Wall NT mechanical properties

MWNT with diameters 15-30 nm mixing of elastic and adhesion contribution

-50

0

50

100

150

200

250

300

-1.5 -1 -0.5 0 0.5 1 1.5 2

A=58nm

A=87nm

A=116nm

A=145nmA=174nm

Z/A

Δf (Hz)

-50

0

50

100

150

200

250

-1.5 -1 -0.5 0 0.5 1 1.5 2

Z/A

Δf (Hz)

A = 116 nm ; Δ = 75 nm

kMWNT

= 3.9*10-2

N.m-1

kadh

= 9.3*10 -2 N.m-1

Page 11: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 11/25

SWNT vs MWNT

1

10

100

20 40 60 80 100 120 140 160 180

MWNT Si lice

MWNT GraphiteMWNT Mica

SWNT Silice

Energie dissipée par période (10-17

J)

A (nm)

kMWNT

= 3.9*10-2

N.m-1

kSWNT

= 1.2*10-3

N.m-1

0 50 100 150 200

0.0001

0.001

0.01

0.1

MWNT helicoidal

MWNT

SWNT

kélastique

A (nm)

Energy loss

MWNT : 1.5*10-16J

SWNT : 1.5*10-17JkMWNT≈

30 kSWNT

Edissip (10-17 J)kNT (Nm-1)

Page 12: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 12/25

Summary

CNT Adhesion / elasticity

SWNT:

- adhesion governs CNT-Surface interaction,

- strong modification may occur due to change of contact area between

SWNT and surface

MWNT:

-Mixing of the rwo (adhesion and elasticity) strongly dependant on tube diameter.

FM-AFM: tool to make accurate analysis for nanomaterials contact mechanics.

Page 13: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 13/25

Oscillating NanoNeedle at Air liquid

Interface Dynamical behavior of NanoMeniscus

C. Jai, J.P. Aimé, R. Boisgard (University Bordeaux I)

D. Mariolle, F. Bertin (LETI-MINATEC)( Nanoletter Vol 6 issue 11, 2006)

• Q>>Qwater 

• Φ interface• Nanometer scale Wetting deWetting

processes

• Dynamical stability attoliter 

• No- substrat

• Weak perturbation for Membranes

and proteins

Page 14: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 14/25

( ) nN  f cap 51cos −== θ γφ 

 pN 

e

v f dis 100102 −=≈ φ η 

nma

r h 100ln ≈≈δ 

Dynamical behavior of NanoMeniscus

Page 15: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 15/25

( ) ( )

2 2sin cos

log log

mk 

 R R

γ γ π θ θ π θ  

δ δ 

≈ ≈

km

( )2

0 0 *

1

sin cos2 ln 2

added m

k R m

π γ 

ν ν θ θ ν  δ Δ ≈ −

= 10-2 Nm-1

Frontier Elasticity : Triple line Air-Liquid-Solid

Page 16: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 16/25

Water 

η=1.10−3 Pa.s

γ=72.8mN/m²

ρ=1000g/L

Glycerol

η=1.485 Pa.s

γ=63.4mN/m²

ρ=1260g/Lm

d dis

v

 f  θ η ≈2

0

d k 

vθ 

γ 

ν  ≈Δ

FrequencyshiftMeniscusShape ViscousDamping

Thinningeffect

Page 17: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 17/25

Oscillating at the air-liquid interface

Nano-Meniscus

C. Jai et al

•High Viscosity: 103 water viscosity

•Stable Interface

Glycerol

Page 18: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 18/25

( ) ( )2 2cos cos2

d el e d e f γφ 

γφ θ θ θ θ  = − ≈ −

Meniscus Dynamical Shape

dis

 f v

≈θ 

η =

Θd

v

Θe

Θd

Δν

f dissipation

V

2

1d d 

c

v

v

θ θ − −⎛ ⎞

= −⎜ ⎟⎝ ⎠

Page 19: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 19/25

f dissipation

ΔνΘ

d

v

Θe

Meniscus Dynamical Shape

Critical velocity vc : v > vc complete wetting of the nanoneedle

2

1d d 

c

vv

θ θ − −

⎛ ⎞= −⎜ ⎟⎝ ⎠

Page 20: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 20/25

IMAGING air-LIQUID interface

Page 21: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 21/25

WATER

Evaporation and ultra thin meniscus

Page 22: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 22/25

Θ(nΔτ)

Θe (t=0)

Viscosity very low, dynamical effect small

Pinned triple line Ultra thin meniscus

Water 

Θ(Δτ)

Ultra thin meniscus until it

breaks

to zero

« Infinite »

2

θ ν  ≈Δ

θ 

1≈dis f 

Page 23: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 23/25

f dissipation

Δν

« Infinite »

to zero

until it breaks

Page 24: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 24/25

Relationship between nanomeniscus shape and dissipation

2θ ≈

( ) 2

2int2

1ln2e

 A A Rk  θ 

ω γφ ν φ 

ω δ γ  +Δ−≈

Page 25: Carbon Nanotube NanoNeedle Nanomeniscus

8/7/2019 Carbon Nanotube NanoNeedle Nanomeniscus

http://slidepdf.com/reader/full/carbon-nanotube-nanoneedle-nanomeniscus 25/25