35
原子核物理と応用分野の架け橋としての 核データ研究 Study of nuclear data as crossover between nuclear physics and applications RCNP/九大研究会 「ハドロン物理と原子核物理のクロスオーバー」 201394-6@ 九大・箱崎キャンパス 渡辺 幸信 九州大学 大学院総合理工学研究院 Email: [email protected] 1

原子核物理と応用分野の架け橋としての 核データ研究...原子核物理と応用分野の架け橋としての 核データ研究 – Study of nuclear data as crossover

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • 原子核物理と応用分野の架け橋としての 核データ研究

    – Study of nuclear data as crossover between

    nuclear physics and applications –

    RCNP/九大研究会 「ハドロン物理と原子核物理のクロスオーバー」 2013年9月4日-6日 @ 九大・箱崎キャンパス

    渡辺 幸信 九州大学 大学院総合理工学研究院

    Email: [email protected]

    1

  • Contents

    • Introduction: Application of Nuclear Physics

    • Nuclear data research activities in Japan – JENDL: Japanese Evaluated Nuclear Data Library

    – Code system development: CCONE

    • Recent work done by our group – Application of CDCC to nuclear data evaluation

    – Application of PHITS code to microelectronics

    • Summary and outlook

    2

  • 原子核物理 原子・放射線物理

    宇宙開発 ・宇宙線誘起ソフトエラー

    エネルギー ・核融合炉 ・革新核分裂炉システム ・ 核変換システム

    医療応用 ・粒子線治療 ・放射線薬剤RI製造

    加速器応用

    基礎研究

    粒子・イオン輸送

    原子核物理に関連した応用分野

    分析・材料開発 ・PIXE, RBE ・加速器質量分析 AMS ・中性子ラジオグラフィー

  • Particle transport in matter – Neutron –

    Boltzmann equation

    st

    ff

    m

    f

    t

    f

    coll

    .v

    F

    rv

    ),,(),(),',()',(' '3

    .

    tfvtfvdt

    f

    coll

    vrvrvrvvrv

    0F

    ),,(),,( tvft vrvr

    - External force:

    ),,( tf vr

    )()(),( vrvr N・ Macroscopic cross section

    - Velocity distribution function Neutron flux

    vvrvrr dttR ii ),,(),(),(

    - Collision term:

    Reaction rate for reaction i at a certain position r and time t

    Atomic density

    Microscopic cross section

    Nuclear data

    Collect evaluate tabulate

    Transport of 14-MeV neutrons

    Fusion reactor

    Source term

  • Overview of nuclear data required in nuclear energy development and advanced radiation applications

    5

    Fission

    Fusion (≦ 20 MeV)

    Medical (≦ 250 MeV p)

    Accelerators

    Space

    109 108 107 106 105 1010 10-2 10-1 100 eV

    Neutron Charged particles ( p, d, alpha, etc.)

    Neutron

    Fission reactors Fusion technology ADS Particle therapy Space development

  • How Do We Produce Nuclear Data for Applications ?

    "Nuclear data evaluation" provides the most reliable data set by using - Experimental data, - Theoretical model calculations, - Statistics, etc.

    Evaluated nuclear data are compiled to a numerical data set followed by a specific format, e.g., ENDF-6

    These data sets are processed according to user's requirements

    Radiation transport codes (e.g., MCNP, PHITS, GEANT4, FLUKA, …) 6

  • 7

    JENDL-4.0

    “一本の線”を引く

  • Contents

    • Introduction: Application of Nuclear Physics

    • Nuclear data research activities in Japan – JENDL: Japanese Evaluated Nuclear Data Library

    – Code system development: CCONE

    • Recent work done by our group – Application of CDCC to nuclear data evaluation

    – Application of PHITS code to microelectronics

    • Summary and outlook

    8

  • Evaluated Nuclear Data Library : JENDL

    Ref.) K. Shibata, O. Iwamoto, T. Nakagawa, et al., "JENDL-4.0: A New Library for Nuclear Science and Engineering,“ J. Nucl. Sci. Technol.. 48(1), 1-30 (2011).

    JENDL: Japanese Evaluated Nuclear Data Library

    The latest version of the general purpose file : JENDL-4.0 (May 2010)

    http://wwwndc.jaea.go.jp/index.html

    9

  • Overview of JENDL-4.0

    Neutron energy range : 10-5 eV to 20 MeV No. of nuclides : 406 Much emphasis was placed on the improvements of fission products and

    minor actinoid data for R & D of innovative reactors, high burn-up, use of MOX fuels, and burn-up credit for backend research.

    Library ENDF/B-VII.1/0 JEFF-3.1.2/1 JENDL-4.0

    Developed by US EU Japan

    Released Year 2011/2006 2012/2009 2010

    No. of Nuclides 423/393 381/381 406

    No. of Nuclides

    with Gamma-ray Data 286/206 216/136 354

    No. of Nuclides

    With n_DDX 255/171 161/83 319

    No. of Nuclides

    with Covariances 190/26 36/36 95

    Main Evaluation Code(s) GNASH

    EMPIRE TALYS

    CCONE

    POD 10

  • Theoretical model and code development

    A comprehensive code for nuclear data evaluation: CCONE Application of CDCC (Continuum Discretized Coupled-Channels)

    method to the study of nuclear data Validation of reaction models implemented in PHITS code

    11

  • Role of Theoretical Model Calculations

    Theoretical model calculations are important for producing “Complete” Evaluated Nuclear Data Files (完備性):

    0 20 40 60 80 1000

    500

    1000

    1500

    56Fe(p,non)

    Exp Data, EXFOR

    Optical Model: A.J. Koning & J.P. Delaroche

    R

    p (

    mb

    )

    Ep (MeV)

    Proton reaction cross section for 56Fe

    To interpolate / extrapolate to unmeasured regimes

    For predictions where no measured data (e.g., unstable nuclei)

    12

  • A comprehensive code: CCONE

    • Optical model – spherical optical model

    – coupled channel optical model (rotational band)

    – RIPL OMP data base

    • DWBA for inelastic scattering

    • Pre-equilibrium two component exciton model

    • Dynamical cluster emission – pickup and knockout reaction systematics by Kalbach

    – Iwamoto-Harada model

    • Hauser-Feshbach statistical model – channels: g, n, p, d, t, h, a, f

    – width fluctuation correction

    • C++ object oriented programming

    target fe-56

    projectile n

    energy ( 1 2 5 10 20)

    angle ( 10 30 90 )

    nucleus fe-56 {

    decay +( n ripl2-1416 )

    }

    input

    Ref.) Osamu Iwamoto, J. Nucl. Sci. Technol. Vol. 44, 687 (2007). 13

  • Application of CCONE code to evaluation: JENDL-4.0

    By courtesy of O. Iwamoto

    Gd-158

    natSn(n,g) spectra

    14

  • From phenomenological to microscopic

    • Ground state properties

    • Optical potential

    • Nuclear level density

    • g- strength function

    15

    Phenomenological Macroscopic approach

    Microscopic approach

    Physical quantities and models necessary for nuclear reaction calculations

    ACCURACY (prediction of exp.data)

    RELIABILITY (Sound physics)

    • Direct reaction model • Preequilibrium model • Fission model • etc.

    Concern of applied physics

    Concern of fundermental physics Requirement of adjustable parameters

    Present status

  • Contents

    • Introduction : Application of Nuclear Physics

    • Nuclear data research activities in Japan – JENDL: Japanese Evaluated Nuclear Data Library

    – Code system development: CCONE

    • Recent work done by our group – Application of CDCC to nuclear data evaluation

    – Application of PHITS code to microelectronics

    • Summary and outlook

    16

  • Application of CDCC to nuclear data evaluation

    R

    Rk0 s 7Li

    n(p)

    t

    α

    CDCC (Continuum Discretized Coupled Channels) method is an extension of the coupled channel (CC) method. Since the breakup channel includes infinite number of continuum states, and the CC equation with this kind of channel cannot be solved, so the continuum states are truncated and discretized to finite states, this is the basic assumption of CDCC method.

    Breakup Continuum

    state

    Bound

    Discretized states

    Bound

    Truncation value

    Breakup threshold

    Truncation & discretization

    M. Yahiro, K. Ogata, T. Matsumoto, and K. Minomo, “The continuum discretized coupled-channels method and its applications”, Progress of Theoretical and Experimental Physics 1, 01A209-1-01A209-44 (2012).

    17

    In cooperation with Drs. Matsumoto, Ogata, and Yahiro

    • Nucleon-induced reactions on Li • Deuteron-induced reactions

  • CDCC: Nucleon-induced reactions on Li

    18

    Lithium is an important element relevant to not only a tritium breeding material in DT fusion reactors but also a candidate for target material in the intense neutron source of IFMIF. The accurate nuclear data of nucleon induced reactions on 6,7Li are currently required for incident energies up to 150 MeV.

    Li

    Target

    Li

    Blanket

    ITER IFMIF

    Li(d,xn) reaction

    + t

    α

    7Li p(n) p(n)

    +

    + + d

    α

    6Li p(n) p(n)

    +

    +

    6Li and 7Li can easily break up, which is an important process and can influence all the other reaction channels significantly.

    En < 14 MeV En,p < 50 MeV

  • 19

    N

    7Li

    t

    α +

    7Li*

    N t α + + N

    t

    α +

    5Li*(5He*)

    N t

    α +

    CDCC SD

    FSI

    1. CDCC Method (3-body) 2. Final State Interaction Model (FSI) 3. Sequential Decay Model (SD)

    7Li

    N t

    α + CDCC

    N

    6Li

    α +

    6Li(6Li* )

    N d

    α + CDCC d

    Calculation models used in our analysis

    SD

  • Total, reaction, elastic scattering for 7Li

    Ref.) H. Guo, Y. Watanabe, T. Matsumoto, K. Ogata, and M. Yahiro, Phys. Rev. C 87. 024610 (2013)

    JLM nucleon-nucleon interaction with adjusting normalization of real and imaginary depths

    20

  • 60.015 , E 30

    ( ) , for Li0.45 0.0075( 30), E 30

    w

    EE

    E

    6 7( ) 1 0.0035 , for both Li and Liv E E

    21

    70.012 , E 30

    ( ) , for Li0.36 0.0075( 30), E 30

    w

    EE

    E

    ),()(),()(),( ErWEErVEErU JLMWJLMVJLM

  • Double-differential cross sections (DDXs)

    22

    p + 7Li p + 7Li* α + t

    p + 7Li t + 5Li* α + p

    CDCC FSI

    SD SD

    Proton production DDX for p+7Li Triton production DDX for p+7Li

    Ref.) Hairui Guo, Yukinobu Watanabe, et al., presented at ND2013, March 4-9, 2013, NY, USA

  • CDCC: Deuteron-induced reactions

    Complete Fusion

    Incomplete Fusion

    Glauber model (eikonal approx. + adiabatic approx.)

    CDCC (S-matrices for d-breakup transition)

    Exciton model + Hauser-Feshbach model

    ①Elastic Breakup (diffractive breakup)

    neutron proton

    deuteron

    +

    Target

    ②Stripping (inelastic breakup)

    ③ Statistical process Absorption

    SD

    LL

    EP

    2

    Glauber

    LL

    STR

    2

    CDCC

    LL

    EB

    2

    LL

    ),(2

    nnnn

    p

    nnnn

    xnd

    ddE

    d

    ddE

    d

    ddE

    d

    ddE

    d

    DDX of inclusive (d,xn) reaction:

    Ref.) T. Ye, Y. Watanabe, et al., Phys. Rev. C 84, 054606 (2011).

    IFMIF

    23

    Neutron sources

  • Deuteron elastic scattering

    We demonstrate the applicability of CDCC calculations to 27Al and 58Ni target.

    The CDCC calculation reproduces the experimental data as well as the optical model calculation.

    • In the CDCC, the nucleon optical model potentials (OMPs) are necessary as input data.

    →We use Koning and Delaroche OMPs for proton and neutron.

    Ref.) A.J. Koning and J.P. Delaroche, Nucl. Phys. A 713, 231(2003).

    24 Ref.) Shinsuke. Nakayama, Yukinobu Watanabe, et al., presented at ND2013, March 4-9, 2013, NY, USA

  • DDXs for 58Ni (d,xp) at 100 MeV

    58Ni(d,xp)@100 MeV

    The summation of three components reproduces both the shape and magnitude of the experimental (d, xp) spectra

    better than TALYS calculation.

    TALYS

    Statistical Decay

    (CCONE)

    Neutron Stripping (Glauber)

    Elastic Breakup (CDCC)

    Total

    25

  • Nuclear reaction models used in radiation transport codes

    Radiation transport code : PHITS

    Particle and Heavy Ions Transport System

    Spallation target

    Cancer therapy

    Dose estimation of Cosmic rays

    Ref.) K. Niita et al., PHITS: Particle and Heavy Ion Transport code System, Version 2.23, JAEA-Data/code 2010-022 2010.; http://phits.jaea.go.jp/index.html

    - INC: Intra-Nuclear Cascade model - QMD: Quantum Molecular Dynamics - JAM: Hadron cascade model -GEM : Generalized Evaporation Model - etc.

    Various studies of nuclear data necessary for validation of reaction models and modification of the models are now ongoing .

    Nuclear reaction models implemented in PHITS

    26

  • Application of nuclear data to microelectronics

    27

    Single-Event Upset (SEU)

    The SEUs (Soft errors) have recently been recognized as a key reliability concern for many current and future silicon-based integrated circuit technologies.

    - One of the radiation effects caused in microelectronic devices (e.g., semiconductor memory devices) used in various cosmic-ray environments

    Soft Error or Soft Failure

    - When a memory device is exposed to radiations, the memory state of a cell can be flipped from a 1 to a 0 or vice versa, resulting in malfunction caused by an error in a bit.

    - “Transient" effect caused by a single ionizing particle

    MRS Bulletin, Vol.28, No.2 (2003)

    The K computer

    http://www.aics.riken.jp/en/kcomputer/what.html

  • Physics involved in SEU phenomena

    28

    Size

    e-h pair generation

    Charge collection (drift- diffusion)

    Soft-error

    Device physics

    Silicon

    Nucleus

    Elementary particle

    Memory devices

    Silicon Chip

    Cosmic-rays

    + - + +

    - - + + + +

    - - -

    - -

    000000 000100 000000

    fm

    nm

    mm

    Nuclear Physics

    Radiation physics

    Cosmic-ray physics

    Nuclear Reaction

    Multi-physics & Multi-scale simulation

    Reliability engineering JEDEC standard

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10 100 1000 104

    Latitude: 42.35deg. NLongitude: 288.95 deg.Altitude: 0 ft.

    Press. = 1033 g/cm2

    Neutrons

    Total flux/cm2-yr :

    Flu

    x (

    n/c

    m2 M

    eV

    se

    c)

    Particle energy (MeV)

    Neutrons = 178210

  • Validation of nuclear reaction models used in PHITS

    Ref. of MQMD) Y. Watanabe and D. N. Kadrev, Proc.of ND2007, EDP Science, pp. 1121-1124 (2008).

    Ref.) S. Abe et.al., Journal of Physics: Conference Series 312, 062004 (2011).

    Recommended reaction models in PHITS code

    Neutron energy range Model option

    < 20 MeV “e-mode” option with JENDL-4.0

    ≥ 20 MeV Modified QMD(MQMD) + GEM

    Production cross sections of proton and alpha from Si

    Note: MQMD = QMD + surface coalescence model GEM = Generalized Evaporation Model

    29

    10-2

    10-1

    100

    101

    102

    103

    0 20 40 60 80 100

    Cro

    ss S

    ectio

    n [m

    b]

    Incident Energy [MeV]

    natSi(n,x)

    D.W.Kneff+ (1986)

    e-mode (JENDL-4.0)

    U.Tippawan+ (2004)S.Benck+ (2002)

    F.B.Bateman+ (1999)

    MQMD+GEM

    INC+GEMINCL+GEM

    10-2

    10-1

    100

    101

    102

    103

    0 20 40 60 80 100

    Cro

    ss S

    ectio

    n [m

    b]

    Incident Energy [MeV]

    natSi(n,xp)

    e-mode (JENDL-4.0)

    F.L.Hassler+ (1962)

    U.Tippawan+ (2004)S.Benck+ (2002)

    F.B.Bateman+ (1999)

    MQMD+GEM

    INC+GEMINCL+GEM

  • Validation of nuclear reaction models used in PHITS

    10-4

    10-3

    10-2

    10-1

    100

    101

    0 20 40 60 80 100 120 140 160 180 20010

    -4

    10-3

    10-2

    10-1

    100

    101

    0 20 40 60 80 100 120 140 160 180 200

    Exp.

    INC

    QMD

    MQMD

    Ein=175MeV, 28

    Si(n,x), 20deg.

    Ein=175MeV, 28

    Si(n,x), 60deg.

    Ein=175MeV, 28

    Si(n,x), 100deg.

    DD

    X [

    mb/

    MeV

    /sr

    ]

    4He Energy [MeV]

    Ein=175MeV, 28

    Si(n,x), 140deg.

    4He Energy [MeV]

    Double-differential cross sections of alpha production

    En=175 MeV En=96 MeV

    30

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    102

    104

    106

    0 20 40 60 80 100Alpha Particle Energy [MeV]

    DD

    X [m

    b/s

    r/M

    eV

    ]

    20deg.

    40deg. (x10-2)

    80deg. (x10-6)

    60deg. (x10-4)

    100deg. (x10 -8)

    MQMD+GEM

    INC+GEMINCL+GEM

    U.Tippawan+ (2004)

    natSi(n,x) @ 96 MeV

  • 102

    103

    104

    0 0.5 1 1.5 2

    INC+GEMINCL+GEMMQMD+GEM

    SE

    R [F

    IT/M

    bit]

    Collected Charge [fC]

    Design Rule: 25 nm

    Comparison of SERs between INC and MQMD

    Monte Carlo calculations of terrestrial neutron-induced SERs for 25 nm design rule NMOSFET using Bertini-INC and MQMD

    The difference between calculations reaches to about 50 % at Qc=0.6 fC.

    Qc=0.6 fC

    31

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    25 32 45 65

    Fra

    ction

    Design Rule [nm]

    H He others

  • まとめ と 展望

    国内での核データ評価活動の現状(JENDL-4)と当研究Grの 最近の研究成果(一部、微視的核反応理論の応用)を紹介した。 Liに対する核子入射反応のCDCC解析 重陽子分解入射反応のCDCC解析 半導体ソフトエラー解析のための核反応モデル(QMDやINC)

    従来の核データ評価に適用された現象論的な手法に代わり、 物理に基づく信頼性と高い予測精度の両方を兼ね備えた 核反応理論の確立が望まれている。

    特に、核の個性が強い軽核に対する核データは今後さらなる改善の余地があり、核構造計算も含めて微視的核反応理論の適用が期待できる分野の1つだと考えている。

    32

  • 原子核物理 原子・放射線物理

    宇宙開発 ・宇宙線誘起ソフトエラー

    エネルギー ・核融合炉 ・革新核分裂炉システム ・ 核変換システム

    医療応用 ・粒子線治療 ・放射線薬剤RI製造

    加速器応用

    基礎研究

    粒子・イオン輸送

    原子核物理に関連した応用分野

    分析・材料開発 ・PIXE, RBE ・加速器質量分析 AMS ・中性子ラジオグラフィー

  • Nuclear Theories and Calculation Codes in Nuclear Data Evaluation

    34

    NJOY PHITS MCNP GEANT

    CCONE, Talys, EMPIRE, etc

    N-N interaction

    Microscopic OMP

    (G-matrix, RIA)

    QMD, INC, etc

    Phenomenological OMP

    Level density

    Shell model Collective model

    Standard (p-p, n-p)

    Nuclear structure (HFB, QRPA)

    Collective levels, Enhancement factors

    Transport code

    Reaction model codes

    Processing code

    neutron ≤ 20MeV

  • 謝 辞

    35

    松本 琢磨 氏 (九大院・理) 緒方 一介 氏 (阪大 RCNP) 八尋 正信 氏 (九大院・理) 安部 晋一郎 氏 (九大院・総理工) 郭 海瑞 氏 (九大院・総理工) 中山 梓介 氏 (九大院・総理工) 長岡恒平 氏 (九大院・総理工)

    CDCCおよび半導体ソフトエラー研究は、以下の共同研究者

    の方々の協力を得て実施されました。この場を借りて、感謝申し上げます。