CDS-II (3)

Embed Size (px)

Citation preview

  • 8/18/2019 CDS-II (3)

    1/48

     

    Control System Design-II

    .

    Department of Electrical EngineeringPakistan Institute of Engineering and Applied Sciences

    P.O. Nilore Islamabad Pakistan

    url: www.pieas.edu.pk/aqayyumEmail: [email protected]

  • 8/18/2019 CDS-II (3)

    2/48

    Solving TimeSolving TimeSolving TimeSolving Time----Invariant state equationInvariant state equationInvariant state equationInvariant state equation---- A reviewA reviewA reviewA review

    ( )

    ( ) 2 k 0 1 2 k  

    Consider

    x Ax Bu, (1) x t ???

    Let us consider a homogenous state equation

    x ax (2)

    Let

    x t b b t b t b t (3)

    = + =

    =

    = + + + + +

    &

    &

    L L

     

    Control System Design-II by Dr. A.Q. Khan2

    1 2 k 

    k 1 2 k  

    1 2 k 0 1 2 k  

    1 0

    2 2

    2 1 0 2 0

    3

    3

    x t t t

    subsitituting (3) and (4) into (2)

    b 2b t kb t a (b b t b t b t ) (5)

    we have

    b ab1

    2b ab a b b a b , Similarly2

    1b a

    6

    = + + +

    + + + = + + + + +

    =

    = =   ⇒   =

    =

    &   L

    L L L

    3 k 

    0 0 k 0

    1 1b a b , b a b

    3 k = =L L

  • 8/18/2019 CDS-II (3)

    3/48

    ( )

    ( )

    ( ) ( ) ( )

    2

    0

    0

    2 2 at

    As

    1

    x t 1 at at b2

    At t 0, equation (3) im plies

    b x 0 , therefore

    1x t 1 at a t x 0 e x 0

    2

    Now consider

    x Ax (6)

     

    = + + +

    =

    =

    = + + + =

    =

    L

    L

    &

    Control System Design-II by Dr. A.Q. Khan3

    ( ) 20 1 2Analogy with scalar, we havex t b b t b t= + + +

    ( )

    ( ) ( ) ( ) ( )

    k 1

    1 2 k 

    2 2 At

    b t (7)

    x t b 2b t kb t (8)

    proceeding in similar fashion, we

    1x t 1 At A t x 0 e x 0 = (t)x 0 (9)

    2

    where (t ) is state transition

    + +

    = + + +

    = + + + = φ

    φ

    L L

    &   L

    L

    matrix.

  • 8/18/2019 CDS-II (3)

    4/48

    Referring to equation (9), the term is of particular

    interest. It is referred to as matrix exponential and analogously, it can be

    represented as

    This matrix exponential for an converges absolutely forall finite time.

    Ate

    k k At

    k 0

    A te

    k!

    =

    = ∑

    n n×

    Control System Design-II by Dr. A.Q. Khan4

     

    ( )

    ( )

    At At

    A B t At Bt

    A B t At Bt

    At At

    d  e Ae

    dx

      e e e if AB BA

      e e e if AB BA

      e e = I

    +

    +

    • =

    • = =

    • ≠ ≠

  • 8/18/2019 CDS-II (3)

    5/48

    ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    1

    11 At

    C onsider equation (6) and taking Laplace T ransform

    sX (s) - x (0) AX s X s sI A x (0)

    x t sI A x 0 x t e x 0

    or

     

    −−

    =   ⇒   = −

    = −   ⇒   =

    L

    Laplace Transform ApproachLaplace Transform ApproachLaplace Transform ApproachLaplace Transform Approach

    Control System Design-II by Dr. A.Q. Khan5

    ( )

     

    where

    t : n n m atrix and is the unique solution

      : State transition m atr

    φ ×

    ( )

    ( ) ( )-1 -At

    ix. It has all the inform ation about

      the free motion o f the sys tem define by x Ax

    0 I

    Also note t =e = t

    =

    φ =

    φ φ −

    &

  • 8/18/2019 CDS-II (3)

    6/48

    Case-I: If be distinct eigenvalues of A, then

    will contain exponentials Case-II: If the matrix A is diagonal with , then

    1 2 n, ,λ λ λL   ( )tφ

    1 2 nt t t

    e ,e , eλ λ λ

    L

    1 2 n, ,λ λ λL

    ( )

    1

    2

    n

    t

    t

    t

    e 0 0

    0 e 0t

    0 0 e

    λ

    λ

    λ

    φ =

    L

    L

    M O O M

    L

    Control System Design-II by Dr. A.Q. Khan6

    Case-III: if there is multiplicity of eigenvalues, then will contain terms like in addition to

    1 1 1 2 n, , , ,λ λ λ λ λL

    ( )tφ 1 1t t2te , t eλ λ

    1 2 nt t te ,e , eλ λ λ

    L

  • 8/18/2019 CDS-II (3)

    7/48

    Properties of ( )tφ

    ( )( )

    ( )   ( )   ( ) ( ) ( )

    ( )   ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    1 2 1 2

    At

    A(0)

    1 1At At 1

    A t t A t A t

    1 2 1 2

    n

    As t e

      0 e I

      t e e t or t t

      t t e e e t t

      t nt

    −   −− −

    +

    φ =

    • φ = =

    • φ = = = φ − φ = φ −

    • φ + = = = φ φ

    • φ = φ

    Control System Design-II by Dr. A.Q. Khan7

    An Example

    ( ) ( ) ( )2 1 1 0 2 0  t t t t t t• φ − φ − = φ −

  • 8/18/2019 CDS-II (3)

    8/48

    ( ) ( )

    ( ) ( ){ }

    ( )

    -1

    1At

    1

    0 1For x Ax, where A=

    2 3

    Obtain t and t

    Solution : As e t sI A

    s 1Note that sI A2 s 3

    s 3 11sI A

    = − −

    φ φ

    = φ = −

    − = +

    + − = −

    &

    -1L

    Control System Design-II by Dr. A.Q. Khan8

    ( )

    ( )( )

    Using partial fraction expansion

    1t

    s 1 s 2

    φ =

    + +

    -1L

    ( )-t 2 t -t 2 t t 2 t t 2 t

    -t 2 t -2t t t 2 t 2t t

    2 1 1 1

    s 3 1 s 1 s 2 s 1 s 2

    2 s 2 2 2 1s 1 s 2 s 2 s 1

    2e e e e 2e e e e, t

    2e 2e 2e e 2e 2e 2e e

    − −

    − −

    − − + + + + +

    =   −       − − + + + +

    − − − −=   ⇒  φ − =

    − − − −

    -1L

  • 8/18/2019 CDS-II (3)

    9/48

    Solution to Homogenous State equations

    n 1

    n 1

    n n

    n p

    Consider

    x

    ux Ax Bu (1)

    A

    B

    Now

    x Ax Bu

    ×

    ×

    ×

    ×

      ∈ ℜ

    ∈ ℜ= + − − − − − − − − −  

    ∈ ℜ

    ∈ ℜ

    − =

    &

    &

    Convolution integral

    Control System Design-II by Dr. A.Q. Khan9

    ( )

    ( ) ( ) ( )

    At At At

    t t

    A At A

    0 0

    e x Ax e Bu multiply by e both sideIntegrating both sides

    de x Ax d e Bu d e x

    d

    − − −

    − τ − − τ

    − =

    − τ = τ τ ⇒   ττ∫ ∫

    &

    &   ( )

    ( ) ( ) ( ) ( ) ( )   ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    t t

    A

    0 0

    t tA tAt A At

    0 0

    t

    0

    d e Bu d

    e x t x 0 e Bu d x t e x 0 e Bu d

    x t t x 0 t Bu d (2)

    − τ

    − τ− − τ

      τ = τ τ

    ⇒   − = τ τ ⇒   = + τ τ

    ⇒   = φ + φ − τ τ τ − − − − − − − −

    ∫ ∫

    ∫ ∫

  • 8/18/2019 CDS-II (3)

    10/48

    Laplace Transform ApproachLaplace Transform ApproachLaplace Transform ApproachLaplace Transform Approach

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

    Consider

    x Ax Bu

    The Laplace transform of the above system is

    sX s x 0 AX s BU s sI A X s x 0 BU s

    X s sI A x 0 BU s−

    = +

    − = +   ⇒   − = +   ⇒

    = − +

    &

    Control System Design-II by Dr. A.Q. Khan10

    ( ) ( )   ( ) ( )

    ( )   ( ) ( )   ( ) ( )i

    i

    tA tAt

    0

    0 i

    tA t t A t

    t

    x t e x 0 e Bu d

    For initial time t t 0, then

    x t e x 0 e Bu d

    − τ

    − −τ

    ⇒   = + τ τ

    = ≠

    = + τ τ

  • 8/18/2019 CDS-II (3)

    11/48

    An ExampleAn ExampleAn ExampleAn Example

    ( ) ( )( )

    Consider

    x Ax Bu,

    where

    0 1 0 0 0 for t

  • 8/18/2019 CDS-II (3)

    12/48

    Laplace Transform method:

    Method of Diagonalization of A:

    Computation of=?:

    Some Further resultsAt

    e

    ( ) ( ){ }1At

    t e sI A  −

    φ = = −-1LDiscussed in

    Previous slides

    1if D P A P then−=

    Control System Design-II by Dr. A.Q. Khan12

    Caley-Hamilton Theorem and minimal polynomial theorem

    Minimal polynomials of A involves distinct roots

    Minimal polynomials of A involves repeated roots

    A t D t 1

     

    e P e P −=

  • 8/18/2019 CDS-II (3)

    13/48

    Cayley-Hamilton Theorem Very useful theorem in linear algebra

    after the names of two mathematicians: Arthur Cayley andWilliam Hamilton

    It states, “Every square matrix over commutative ring (Real or”

    Control System Design-II by Dr. A.Q. Khan13

     

    For example if A is an square matrix withcharacteristics polynomial

    ---------- (1)

    Then

    -------- (2)

    n n×

    ( )

    n n 1

    1 n 1 n

    a a a 0−

    φ λ = λ + λ + + λ + =L

    ( ) n n 11 n 1 nA A a A a A a I 0−

    −φ = + + + + =L

  • 8/18/2019 CDS-II (3)

    14/48

    While the CH-Theorem shows that , there may be a

    polynomial having lower degree than , for which. The monic polynomial of lowest degree for which

    is referred to as minimal ol nomial of A.

    ( ) 0φ λ =

    ( )ϕ λ   ( )φ λ

    ( )A 0ϕ =

    A 0=

    Control System Design-II by Dr. A.Q. Khan14

     

    The minimal polynomial plays important role in thecomputation of polynomials of n×n matrix.

    CH-Theorem together with minimal polynomials helps in the

    computation of function of matrix, e.g. exp(At), Cos(At) etc.

  • 8/18/2019 CDS-II (3)

    15/48

    Computation of

    Case-1: Minimal polynomials of A involves only

    distinct roots

    Let us assume that the minimal polynomial of A is m. Then

    can be obtained by solving the following determinant equation

    ( ) AtA eφ =

    ( )Aφ

    1

    2

    t2 m 1

    1 1 1

    t2 m 1

    1 eλ−

    λ−

    λ λ λL

    L

    Control System Design-II by Dr. A.Q. Khan15

    ------------ (3)

    Expanding this determinant equation about the last column, weobtain

    ----- (4)

    m

    2 2 2

    tm 1 m 1 m 1

    m m m

    2 m 1 At

    0

    1 e

    1 A A A e

    λ− − −

    =

    λ λ λ

    M M M M M M

    M

    L

    ( ) ( ) ( ) ( )At 2 m 10 1 2 m 1e t I t A t A t A  −

    −= α + α + α + + αL

    Sylvester’s interpolation

    formula

  • 8/18/2019 CDS-II (3)

    16/48

    and

    ------ (5)

    can be solved using the equations (5). Then can beobtained by substituting the computed

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    1

    2

    m

    t 2 m 10 1 1 2 1 m 1 1

    t 2 m 1

    0 1 2 2 2 m 1 2

    t 2 m 1

    0 1 m 2 m m 1 m

    e t t t t

    e t t t t

    e t t t t

    λ   −−

    λ   −

    λ   −

    = α + α λ + α λ + + α λ

    = α + α λ + α λ + + α λ

    = α + α λ + α λ + + α λ

    L

    L

    M

    L

    'sα A te'sα

    Control System Design-II by Dr. A.Q. Khan16

    • If A is an n×n matrix and has distinct eigenvalues, then thenumber of the numbers of to be determined is m=n

    • If A has multiple eigenvalues, but its minimal has only simpleroots then m < n.

    ( )k  tα

  • 8/18/2019 CDS-II (3)

    17/48

    An Example

    1

    1

    Find

    The eigenvalues are , .From the theory just discussed, we have 

    1 e 

    I A e 

     

    At 

    At 

    A

    Solution 

    λ

    λ

    λ λ

    λ

    λ

    = −

    = = −

    =

    1 2

    0 1

    0 2

    0 2

    1 0

    Control System Design-II by Dr. A.Q. Khan17

      ,

    1

    I A e 

    Expanding 

    At 

    − =

    1 2

    2

    0 1

    1 2 0

    ( )

    ( )

     the determinant, we obtain 

    At t At t  

    At 

    e A I Ae e A I Ae  

    e e 

    − −

    − + + − = ⇒ = + − −

    2 2

    2

    2

    12 2 0 22

    11 1

    2

    0

  • 8/18/2019 CDS-II (3)

    18/48

    ( ) ( )

    ( ) ( )( ) ( )

    1 2 

    ,

    where 

    Since , ; Then  

    At 

    Alternative 

    As 

    e t I t A

    t t e t t e 

    λ

    λ

    α α

    α α λα α λ

    λ λ

    = +

    + =+ =

    = = −

    1

    2

    0 1

    0 1 1

    0 1 2

    0 2

    Control System Design-II by Dr. A.Q. Khan18

    ( )

    ( ) ( ) ( )   ( )

    ( )   ( )

    t t 

    t At t 

    t t e t e  

    Therefore 

    e e I e A

    α

    α α α− −

    −−

    =− = ⇒ = −

    = + − = 

    0

    2 2

    0 1 1

    22

    2

    11

    2 12

    11 11

    1 22

    0

  • 8/18/2019 CDS-II (3)

    19/48

    Computation of

    Case-2: Minimal polynomials of A involves multiple

    roots

    Let us assume that the minimal polynomial of A involves three

    equal roots and the remaining aredistinct. Then using Sylvester's criterion, can be obtainedas

    ( ) AtA eφ =

    ( )1 2 3λ = λ = λ   ( )4 5 m, ,λ λ λL

    ( )Aφ

    Control System Design-II by Dr. A.Q. Khan19

    (6)

    ( )( )

    ( )

    1

    1

    1

    m

    2 tm 3

    1 1

    t2 m 2

    1 1 1

    t2 3 m 1

    1 1 1 1

    t2 3 m 1

    m m m m

    2 3 m 1 At

    m 1 m 2 t0 0 1 3 e2 2

    0 1 2 3 m 1 te

    1 e 0

    1 e

    1 A A A A e

    λ−

    λ−

    λ−

    λ−

    − −λ λ

    λ λ − λ

    λ λ λ λ   =

    λ λ λ λ

    L

    L

    L

    M M M M L M M

    L

    L

  • 8/18/2019 CDS-II (3)

    20/48

    Equation (6) can be expanded in similar fashion as before

    (7)and

    ( ) ( )  ( ) ( )

    ( )

    ( ) ( ) ( ) ( )

    1

    1

    1

    2t m 3

    2 3 1 m 1 1

    t 2 m 1

    1 2 1 3 1 m 1 1

    t 2 m 1

    m 1 m 2te t t t2 2

    te t 2 t 3 t t

    λ   −

    λ   −

    λ   −

    − −= α + α λ + + α λ

    = α + α λ + α λ + + α λ

    L

    L

    ( ) ( ) ( ) ( )

    At 2 m 1

    0 1 2 m 1e t I t A t A t A

      −

    −= α + α + α + + αL

    Control System Design-II by Dr. A.Q. Khan20

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    2

    m

    1 2 1 3 1 m 1 1

    t 2 m 1

    1 2 2 3 2 m 1 2

    t 2 m 1

    0 1 m 2 m m 1 m

    e t t t t

    e t t t t

    λ   −

    λ   −

    = α + α λ + α λ + + α λ

    = α + α λ + α λ + + α λ

    L

    M

    L

     Extend the above formulation to other cases; e.g; two or

    more sets of multiple roots. Try at least two examples 

  • 8/18/2019 CDS-II (3)

    21/48

    ( ) ( ) ( )( ) ( ) ( ) ( )

    ( ) ( ) ( )

    Example: Find

    The eigenvalues are , .From the theory just discussed, we have 

     and

    At 

    At 

    t  t 

    A

    Solution 

    e t I t A t Ate t t te t t  

    e t t t e  

    λ

    λ

    λ λ λ

    α α αα α λ α α

    α α λ α λ

    =

    = = =

    = + += + ⇒ = +

    = + + ⇒

    1

    2

    1 2 3

    2

    0 1 2

    2

    1 2 1 1 2

    2

    0 1 2 2 2

    2 1 4

    0 2 00 3 1

    2 1

    2 4

    ( ) ( ) ( )t 

    t  t 

    t t t 

    λ

    α α α= + +3

    2

    0 1 2

    2

    2 4

    Control System Design-II by Dr. A.Q. Khan21

    ( ) ( )

    ( )

    ( ) ( ) ( )

    Solving the above set of equations, we have 

    ,

    Finally 

    t t t t t t  

    t t t 

    t t t t  

    At 

    t e e te t e e te  

    t e e te  

    e e e te  

    e t I t A t A

    α α

    α

    α α α

    = − + = − + −

    = − +

    − + −= + + =

    0 1 3 2 3 0 1 2

    2 2 2 2

    0 1

    2 2

    2

    2 2 2

    2

    0 1 2

    4 3 2 4 4 3

    3

    12 12 13 t t 

    t t t 

    e e 

    e e e 

    + − +

    2

    2

    2

    4 4

    0 0

    0 3 3

  • 8/18/2019 CDS-II (3)

    22/48

    Controllability and ObservabilityControllability and ObservabilityControllability and ObservabilityControllability and Observability

    ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )( ) ( )

    0 0

    n n p

    0 0

    m

    Consider a dynamical system described byx t A t x t B t u t , x t x

    y t C t x t

    where

     x t : State, x t : State at initial time t , u t : Control input,

    y t : output/measurement vector. The solution x t is g

    = + =

    =

    ∈ ℜ ∈ ℜ ∈ ℜ∈ ℜ

    ɺ

    ( ) ( ) ( ) ( ) ( ) ( )t

    0 0

    iven as

    x t = t,t x t + t, B u dφ φ τ τ τ τ

    Control System Design-II by Dr. A.Q. Khan22

    ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    0t

    0

    0 0 0 0 n

    where t,t is the transition matrix and it is the solution of

    t,t =A t t,t , t ,t =I

    In this course, we shall study LTI systems of the following form

    x t Ax t Bu t ,

    φ

    φ φ φ

    = +

    ɺ

    ɺ

      ( )( ) ( )

    ( )   ( )0

    0 0

    A t-t

    0

      x t xy t Cx t

    The transition m atrix is

    t, t =e

    ==

    φ

  • 8/18/2019 CDS-II (3)

    23/48

    A continuous time LTI system is said to be

    reachable at time if it is possible by means ofany unconstrained control input vector to transferthe system from initial state to any other state in afinite interval of time.

    A continuous time LTI system is said to becontrollable (to the zero state) at time if it is

    0

    t

    0t

    Control System Design-II by Dr. A.Q. Khan23

     

    input vector to transfer the system from initialstate to origin.

    State Controllability

    Output Controllability

    ( )0x t

    A system is said to controllable at time if it is possible by means ofan unconstrained control vector to transfer from any initial state

    to any other state in a finite interval of time

    0t

    ( )0x t

  • 8/18/2019 CDS-II (3)

    24/48

    ( )( )

    ( )

    T h e o r e m : A n e c e s s a ry a n d s u ff ic ie n t c o n d i t io n s  

    fo r s y s t e m re a c h a b ility [c o n tro lla b ility ] a t t im e is

    th a t W ,t is p o s it iv e d e f in ite fo r s o m e t

    w h e re W .,. is a n n × n G ra m m ia n m a tr ix d e fin e d b y  

    W , t 

    τ 

    τ τ 

    τ φ τ 

    =   ( ) ( ) ( ) ( )

    T T , B B t, d  τ 

    λ λ λ φ λ λ∫ 

    Control System Design-II by Dr. A.Q. Khan24

    Uniform Reachability/Uniform ControllabilityStrong notion

    It refers to the fact that the property is independent of initial

    time.

  • 8/18/2019 CDS-II (3)

    25/48

    Theorem: For LTI systems given in before, the pair (A,B) issaid to be completely state controllable if and only if 

    n 1rank B AB A B n−  = ⋯

    ( ) ( ) ( ) ( ) ( ) ( )t

    0

    0

    Proof : The solution is

    x t = t x 0 + t, B u d , t 0

    Apply the definition of state controllability,

    φ φ τ τ τ τ =∫ 

    Control System Design-II by Dr. A.Q. Khan25

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    1

    1

    1

    t

    1 1

    0

    t

    0

    At 2

    0 1 2 n 1

    .e., x t 0, t ere ore

    0= t x 0 + t B u d

    x 0 B u d

    using e a I a A a A a− −

    =

    φ φ − τ τ τ τ ⇒

    = − φ −τ τ τ τ

    φ −τ = = τ + τ + τ + + + τ

    ∫ 

    ∫ ⋯

    ( )

    n 1

    n 1k

    kk 0

    A

      a A

    =

    = τ

  • 8/18/2019 CDS-II (3)

    26/48

    ----- (1)

    ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    ( )

    1 1

    1

    t tn 1 n 1k k

    k kk 0 k 00 0

    t

    k k

    0

    1

    n 12k n 1

    k

    Now

    x 0 a A B u d A B a u d

    Let a u d

    x 0 A B B AB A B

    − −

    = =

    −−

    = − τ τ τ τ = − τ τ τ

    β = τ τ τ

    β β = − β = − = Μβ

    ∑ ∑∫ ∫ 

    ∫ 

    ∑   ⋯

    Controllability matrix

    Control System Design-II by Dr. A.Q. Khan26

    For system to be completely state controllable, equationmust holds. This requires that matrix M must have n linearly

    independent row/column vectors. Rank (M)= n For , the dim of M is n×np. The Rank (M) should be n

    for CSS.

    k 0

    n

    =

    β

    pu ∈ ℜ

  • 8/18/2019 CDS-II (3)

    27/48

    [ ] ( )

    1 1

    2 2

    x x1 1 1u

    x 0 1 x 0

    1 1B AB Rank 1 2

    0 0

    Hence the system is not completely state cont

    M

    rollable

    M

    = + −

    = = ⇒ = ≠

    ɺ

    ɺ

    Example-I 

    Example-II 

    Control System Design-II by Dr. A.Q. Khan27

    [ ] ( )

    1 1

    2 2

    x x1 1 0u

    x 0 1 x 1

    0 1B AB Rank 21 1

    The system is completely state controlla

    M

    ble

    M

    = + −

    = = ⇒ = −

    ɺ

    ɺ

  • 8/18/2019 CDS-II (3)

    28/48

    Controllability conditions in s-plane

    Necessary and sufficient conditions: No cancellationof poles and zeros 

    The system losses its controllability duringcancellation of poles and zeros

    An Example

    Control System Design-II by Dr. A.Q. Khan28

    This system is not CSC.

    Check it in state space??

    ( )( )

    ( )( )( )

    X s s 2.5U s s 2.5 s 1

    += + −

  • 8/18/2019 CDS-II (3)

    29/48

    1 1 2

    2 1 2

    Controllab

    3

    2 1.5ility ?

    4

    An Example

    ???

     x x x u

     x x x u

    = − + +

    = − + +

    &

    &

    Control System Design-II by Dr. A.Q. Khan29

  • 8/18/2019 CDS-II (3)

    30/48

    1 1 2

    2 1 2

    1

    A n E x a m p le

    Appa ran t lyC o n tro llab ili ty ???? Y E S

    S o lu t ion

    32 4

    :

    1 .5 x x x u x x x u

     y x

    = − + += − + +

    =

    &

    &

    Control System Design-II by Dr. A.Q. Khan30

    [ ]

     

    C h eck the con tro llab i liy m a trix . H e re

    3 1 1,

    2 1 .5 41 1

    4 4

     A B

     B A M    B

    − = =

    = =

    ( ), R a n k 1 M    =

  • 8/18/2019 CDS-II (3)

    31/48

    1 1 2

    2 1 2

    An Example

    Apparantly

    Let us proceed as follows

    32 1.5 4

    Controllability ???? YES

    Solution:

     x x x u x x x u

    = − + += − +

    +

    &

    &

    Control System Design-II by Dr. A.Q. Khan31

    [ ]

    Check the controllabiliy matrix. Here3 1 1

    ,2 1.5 4

    1 1,

    44

     A B

     B A B M 

    − = = −

    = =

     

    ( )Rank 1 M    =

    Interesting

  • 8/18/2019 CDS-II (3)

    32/48

    ( )   ( ) ( ) ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    1 1 1

    2

    2

    F r o m t h e s t a t e - s p a c e m o d e l , w e h a v e

    1 . 5 2 . 5 2 . 5

    1 . 5 2 . 5 2 . 5

    2 . 5 2 . 5

    2 . 5 11 . 5 2 . 5

     x x x u u

    s s Y s s U s

    Y s s s

    U s s ss s

    + − = + →+ − = +

    + +

    = = + −+ −

    && & &

      L

    Remarks

    Control System Design-II by Dr. A.Q. Khan32

    The system can not be controllable if it is not reducible to controllablecanonical form B should not be in the eigen-space of A.Alternatively B should not be in the null space of A

    ConclusionActuator position is very important

  • 8/18/2019 CDS-II (3)

    33/48

    1 1 2 1 2

    2 2

    3 3 1

    1

    A n o th e r E x a m p

    4 2

     

    2

    l

     

    3

    e

     x x x u u

     x x

     x x u

     y x

    = − + + +

    = −

    = − +

    =

    &

    &

    &

    Control System Design-II by Dr. A.Q. Khan33

    C o n tro lla b ility ????

  • 8/18/2019 CDS-II (3)

    34/48

    Output Controllability

    This can also be defined in the manner similar to statecontrollability.

    The system is said to be completely output controllable if it ispossible to construct an unconstrained control vector u(t)that will transfer the output y(t) to origin from any initialcondition.

    Let us consider

     

    Control System Design-II by Dr. A.Q. Khan34

     

    The output controllability matrix

    should have a rank m

    ( ) ( ) ( ) ( )( ) ( )

    0 0x t Ax t Bu t , x t xy t Cx t

    = + ==

    ɺ

    n 1

    OM CB CAB CA B−

    =  ⋯

  • 8/18/2019 CDS-II (3)

    35/48

    Stabilizability For partially controllable systems, if the controllable modes

    are stable and the unstable modes are controllable, thesystem is said to be stabilizable.

    Remember: Controllability for continuous-time LTI system

    implies Reachability. However for discrete-time LTI system this

    Control System Design-II by Dr. A.Q. Khan35

    does not hold.

  • 8/18/2019 CDS-II (3)

    36/48

    Observability and Reconstructability Definition: The system is said to be observable, if every state x(t0 ) can

    be determined from the observation  y(t) over finite interval of timet0≤t ≤t1.

    In completely observable system, every transition in stateaffects output (or every element of the output vector in caseof multiple output systems)

    Control System Design-II by Dr. A.Q. Khan36

    e cu ty, n pract ce, ar se w t t e use o state ee accontrol when all the system states are not available forfeedback.

    The observability concept is useful in solving the problem of 

    reconstructing the un-measurable states of the system fromthe measurable states in shortest possible length of time.

  • 8/18/2019 CDS-II (3)

    37/48

    Consider

    Definition: Let y(t;t0,x,u) be the output of the above system to the

    initial state x0. The present state x0 is unobservable if the (future)output  y(t;t0,x,0)=0 for all t ≥ t0

    Definition: The present state x0 is unconstructible if the (past) output

    ( ) ( ) ( )

    ( ) ( )0 0x t Ax t , x t x

    y t Cx t

    = =

    =

    ɺ

    Control System Design-II by Dr. A.Q. Khan37

    ( )y ; ,x,σ τ σ τ  = ∀ ≤0 0

    The LTI system shown above or the pair (A,C) is

    completely observable if and only if it is completely state

    reconstructable

  • 8/18/2019 CDS-II (3)

    38/48

    Complete Observability and ReconstructabilityConsider

     

    ( ) ( ) ( )

    ( ) ( )0 0x t Ax t , x t x

    y t Cx t

    = =

    =

    ɺ

    Control System Design-II by Dr. A.Q. Khan38

    The above system (the pair (C,A)) is said to be observable ifand only if the following observability matrix is full rank

    ( )n 

    OM C A C A C  −∗ ∗ ∗ ∗ ∗ = 

    1

    ⋮ ⋮ ⋯ ⋮

    Consider the system describe before, the output is 

  • 8/18/2019 CDS-II (3)

    39/48

    ( ) ( )

    ( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ( )

    At 

    At k k 

    n k n 

    k n 

    y , p

    Recall that , therefore

    y t Ce x  

    e t A

    y t C t A x t Cx t CAx t CA x  

    CA

    t t   t 

    α

    α α α α

    α α α

    =

    −−

    −=

    =

    =

    = = + + +

    =

    1

    0

    11

    0 1 1

    0

    0

    0

    0 0 0   ⋯

    ⋯   ⋯ OM α

     =

    Control System Design-II by Dr. A.Q. Khan39

    n CA   −

    1

    ( )

    nm n 

    For Complete observability, the observability matrix s 

    Observability matrix 

    Sometimes in literature 

    OM 

    OM C A

    is used as obser 

    hould be Full Rank 

    vability matri 

    C A C 

    .

    ×

    −∗ ∗ ∗ ∗ ∗

    ∈ ℜ

    =

    1

    ⋮ ⋮ ⋯ ⋮

    An Example:

  • 8/18/2019 CDS-II (3)

    40/48

    [ ]

    ( )

    Here

    OM C A C  

     

    x Ax Bu,

    An

    Example: 

     where 

     

    A ,

      y Cx 

    an 

    B ,C 

    k OM ∗ ∗ ∗

    = = = − −

      = = ⇒ =  

    = + =

    1 1 01 0

    2

    1

    1

    1 1

    1

    20

    ɺ

    Control System Design-II by Dr. A.Q. Khan40

    Hence the system is completely state observable 

    [ ]

    Now Find the obserbabiliy for the following ??? 

    x x u, y x   

          = + =     − − −

    0 1 0 0

    0 0 1 4 5 10

    6 11 6 1

    ɺ

  • 8/18/2019 CDS-II (3)

    41/48

    Analogous to Controllability, the necessary and sufficient

    condition for complete observability is that no cancellationoccur in the transfer function or transfer matrix.

    If there is some cancellation of Poles/Zeros, the

    observability will be lost.

    0 1 0 0

    An Example 

    Control System Design-II by Dr. A.Q. Khan41

    [ ]

    ( )   ( )

    x x u 

    y x 

    Rank OM C A C A C  ∗ ∗ ∗ ∗

    = + − − − =

    = = = 2

    0 0 1 06 11 6 1

    4 5 1

    2

    ɺ

    Rank of the observability matrix

  • 8/18/2019 CDS-II (3)

    42/48

    Let us see what happens to Poles and zeros cancellation.

    ( )   ( )   ( )  ( )

    ( )  ( )( )

    ( )

    x x x 

    Y s Y s s s X s s s  

    X s X s 

    U s 

    = + + ⇒

    = + + = = + +

    1

    1 1 1

    2

    1

    1

    4 5

    4 5 1 4

    ɺ ɺɺConsider the output equation

    Also Computing from stat 

    e equations, we have 

    Control System Design-II by Dr. A.Q. Khan42

    ( )( ) ( )( )( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )( )

    ( )( )( )( )

    ( )( )

    X s 

    U s s s s s s s  

    Y s Y s X s s s  

    U s X s U s s s s  

    s s 

    = =+ + + + + +

    + +

    = = + + ++

    =+ +

    1

    3 2

    1

    1

    1 1

    6 11 6 1 2 3

    1 4

    1 2 3

    4

    2 3  Poles and Zero Cancellation

    occurs

    h h l d ll

  • 8/18/2019 CDS-II (3)

    43/48

    Let us see what happens to Poles and zeros cancellation.

    ( )   ( )   ( )  ( )

    ( )  ( )( )

    ( )

    x x x 

    Y s Y s s s X s s s  

    X s X s 

    U s 

    = + + ⇒

    = + + = = + +

    1

    1 1 1

    2

    1

    1

    4 5

    4 5 1 4

    ɺ ɺɺConsider the output equation

    Also Computing from stat 

    e equations, we have 

    Control System Design-II by Dr. A.Q. Khan43

    ( )( ) ( )( )( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )( )

    ( )( )( )( )

    ( )( )

    X s 

    U s s s s s s s  

    Y s Y s X s s s  

    U s X s U s s s s  

    s s 

    = =+ + + + + +

    + +

    = = + + ++

    =+ +

    1

    3 2

    1

    1

    1 1

    6 11 6 1 2 3

    1 4

    1 2 3

    4

    2 3  Poles and Zero Cancellation

    occurs

    A CSC l b CSO d

  • 8/18/2019 CDS-II (3)

    44/48

     A CSC system may not necessarily be CSO and vice versa

    [ ]

    Illusrativde Example0 1 0

    0.4 1.3 1

    0.8 1

    0 1 

     x x u

     y x

    = + − −

    =

    &

    Control System Design-II by Dr. A.Q. Khan44

    ( )

     

    1 1.30.8

    Show if there is Poles Zero Cancellation or not??????

    0.4; Rank 1

    1 0.5OM OM NOT CSO

    − −

    = =   ⇒ −

  • 8/18/2019 CDS-II (3)

    45/48

    T r y th i s o n e

    2 0 0

    0 2 00 3 1

     x x

    =

    &

    Control System Design-II by Dr. A.Q. Khan45

  • 8/18/2019 CDS-II (3)

    46/48

    Duality properties

    The Linear time-invariant system 

     

    x Ax Bu  

    y Cx 

     

    = +=

    ɺ

    Symmetry properties existsObservability (Reconstructability) Controllability (Reachability)

    Control System Design-II by Dr. A.Q. Khan46

    * * 

    T T T 

    1

    s t e ua o t e sy  

    z A z Bv  

    y C x 

    stem an v ce versa 

    where A A ,B C ,C B  =

    = +

    =

    = =1

    1

    1

    1

    The principle of duality is useful in that it allows the statereconstruction problem can be casted as dual control problem and

    vice versa.

  • 8/18/2019 CDS-II (3)

    47/48

    Controllability and Observability indicesControllability and Observability indicesControllability and Observability indicesControllability and Observability indices

    − =  n 1

    1

    Consi

     

    der the controlability matrix

    If there exists a least integer q such that

    M B AB A B⋯

    Controllability index

    Control System Design-II by Dr. A.Q. Khan47

    = µ

     

    Then this least integer refferred to as is calle controlability indexd

  • 8/18/2019 CDS-II (3)

    48/48

    ( )  − =  *

    n 1* * * * *

    Consider the observability matrix

    If there exists a least integer v, such that

    OM C C A C A⋯

    Observability index

    Controllability and Observability indicesControllability and Observability indicesControllability and Observability indicesControllability and Observability indices

    Control System Design-II by Dr. A.Q. Khan48

    ( ) −

    = ≤ ≤µ

    n 1* * * * *

    Then this least integer refferred to

    C C

     as

    Rank( ) n

    is call

     

    ed

    1 v n

    obs

    A C A

    erva

    bility index

    •Very powerful concept• Quite often used in minimum order observer design