53
Vol. 48, No. 202 2009. 1 ◆特集:マイクロ・ナノの計測技術◆

特集:マイクロ・ナノの計測技術 · 2015-09-29 · ù é$è4F ½. (» ý +$ 2 ã Í ¿ â È 9Ú ù Ú9Ø J ` o I é ² %u H ê50Hz $ 2 â ½ 9Ø o ñ" å ÷ 2 . ù æ

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Vol. 48, No. 2022009. 1

◆特集:マイクロ・ナノの計測技術◆

2009 1 J. HTSJ, Vol. 48, No. 202

Anode Microstructure of Solid Oxide Fuel Cell

Naoki SHIKAZONO (The University of Tokyo)[email protected]

SOFC YSZNi / /

SEM-EDX 2 3NiO YSZ

3

SOFC

AGC

http://www.htsj.or.jp/heat-page.html

SEM-EDX SEM-EDX

Ni YSZ Pore Ni YSZ Pore

SEM-EDX SEM-EDX

Ni YSZ Pore Ni YSZ Pore

Vol.48 2009

No.202 January

················································································ ··············1MEMS····································································· ··············8MEMS······························································· ············ 14

························································ ············ 20

····································································· ············ 26

2008························································· ············ 31

heat-pageSOFC

··················································································· ······

······································································································ 37

················································· 3846 ······································································ 40

········································································································ 45····································································································· 50

Vol. 48 No. 202 January 2009

CONTENTS

Special IssueNano-meter, nano-gram, nano-watto in thermal measurement

Osamu NAKABEPPU (Meiji University) ·····················································································1

Boiling on MEMS heat transfer surfaces

Manabu TANGE (AIST) ··············································································································8

Micro Thermophysical Properties Sensor using Optical MEMS

Yoshihiro TAGUCHI, Yuji NAGASAKA (Keio University) ························································14

Measuring Thermal Property of Nano Materials

Koji TAKAHASHI (Kyushu University), Motoo FUJII (AIST) ···················································20

Project QDevelopment of a Pump-less Water Cooling System

Shigetoshi IPPOUSHI (Mitsubishi Electric co. Ltd.) ···································································26

ReportReport on ‘Kids Energy Symposium, 2008’

Kazuyoshi NAKABE (Chair of the Kids Energy Symp. Committee, Kyoto University) ···············31

Opening-page Gravure: heat-pageAnode Microstructure of Solid Oxide Fuel Cell

Naoki SHIKAZONO (The University of Tokyo) ······················································· Opening Page

Calendar ·······················································································································································37

Announcements ··········································································································································38

2009 1 - 1 - J. HTSJ, Vol. 48, No. 202

MEMS (Micro Electro Mechanical Systems)

SThMSThM Scanning Thermal

Microscope 1 AFM, Atomic Force Microscope

Fig. 1 Basic concept of SThM based on AFM

1990

[1,2]

1

(a)active thermometry. (b) thermal conductivity meas.

Fig. 2 SThM cantilever probes

Nano-meter, nano-gram, nano-watto in thermal measurement

Osamu NAKABEPPU (Meiji University)e-mail: [email protected]

2009 1 - 2 - J. HTSJ, Vol. 48, No. 202

2a

0.1Pa

35

4 mPa29

46

30nm

50Hz

1K

Fig. 3 Topography and thermography of heated Crstrips.

SThM

4Ts Tp

QpsHc=Qps/(Tp-Ts)

Tcrc Rs

s

10nm

(s1)(s2)

[3]

2 11 2

1 2

exp 2s sfilm film s s

s s

R R RR

(1)

rc s1

s2

Rs

film film

Fig. 4 Thermal conductivity measurement method

2009 1 - 3 - J. HTSJ, Vol. 48, No. 202

2b

2a

260

[4]

5 DTA DifferentialThermal Analysis,

DSC Differential Scanning Calorimetry

Fig. 5 DTA (Differential Thermal Analysis)

SThM

MEMS

[5] 6 3DTA SiO2

230 m3 m DTA

PC

DSC

DSC

Long DSC 460 m

(a) DTA type (b) DSC type (c) Long DSC typeFig. 6 Cantilever type nanocalorimeters.

Table 1 Specifications of the DTA cantilever.Thermal time constant [msec] 5.5

Heat capacity of cantilever Cp [ J/K] 1.0Thermal conductance to

ambient G [ W/K] 190

Thermoelectric power ST [ V/K] 29Sensitivity SP=ST/G [V/W] 0.15

Noise in T.C. signal Vnoise [ V] 5Allowable temperature limit Tlimit [°C] >400

Max. heating and cooling rate max [K/sec] 14,000Heat capacity resolution Cmin [nJ/K] 0.22

Enthalpy resolution Hmin [nJ] 180Power resolution Pmin [ W] 33

2009 1 - 4 - J. HTSJ, Vol. 48, No. 202

DTATable 1

Cmin Hminmax

6 DSC 6b20ng DTA

43K/ 7700K/s

DTA

Fig. 7 DTA of Indium of 20 ng with different scanrate.

>2000K/s

2K=43K/s

<2000K/s

>2000K/s

8

FFTM* k

f

12 *

kfM m

(2)

Long DSC 100ng9

2009 1 - 5 - J. HTSJ, Vol. 48, No. 202

-0.5

FFT f/f1/1000

1/1000

6.78kHz 2 1.2 ~1.5 g

DTA0.7 g

1.0 g

[6]

TGThermogravimetry

10

40ng90

3FFT1ng [7]

Fig. 8 Auto resonance detection system of acantilever type calorimeter.

Effective mass (m+M*) , ng

Resonancefrequency,Hz

m=1.2~1.5 g

Indium:f=6.78kHz

two particlesone particle

empty

Fig. 9 Calibration curve of mass to resonancefrequency for a long DSC type nanocalorimeter. Massof tiny indium sample was measured to 1.2~1.5 g.

Fig. 10 Mass monitoring in deposition and sub-limation process of l-Menthol under atmosphere withresonance of the long DSC type calorimeter .

100W

155pW/Cell 131

4pW/Cell 10pW/Cell

2009 1 - 6 - J. HTSJ, Vol. 48, No. 202

40~49pW/Cell 20 3pW/Cell0.067 0.01pW/cell

[8]

100nW 100

[9]MEMS

MEMS

[10]11

350

2.2 V/ W

3

Fig. 11 Thermopile sensor and measurement principle

1Hz40dB

400nW

123wt%

0.1mlM-Green Yeast and Mold Broth 0.05ml

301

8

1 280

80~12010

10,000300

400nW 10,0001,000,000

Yeast Grow th w ith MEMS TP Sensor

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40Time , h

HeatGeneration

,W

Fig. 12 Growth thermogram of Yeast.

2009 1 - 7 - J. HTSJ, Vol. 48, No. 202

136

10mg 30mg20

33mg11mg

4 20h 34 12h

1

24 70 W

5

70~100 W[11]

Fig. 13 Germination thermogram of Radish

MEMS

21

MEMS

[1] Vol.28 No.1 (2001) p.18-28[2]

(2005),pp.344-351

[3] SThM

72 722 pp.2524-2531[4] 5

(2005) pp.41-88[5]

, Vol.20, No.3 (2006)pp.138-144

[6] Osamu NAKABEPPU, Nanocalorimetry withmicro-cantilever probe, IFHT2008 (2008), CD

[7] MEMSVol.8

pp.79-80 (2008)[8] 5

p.322 (2005)[9]

43(2007) pp.204-205

[10] MEMSThermal Science

& Engineering, Vol.14, No.4, (2006) pp.115-120[11] MEMS

44(2008) p.130

2009 1 - 8 - J. HTSJ, Vol. 48, No. 202

MEMS

[1][2] [3]

MEMS

Fig. 1: A conceptual sketch of an actual boiling heattransfer surface.

1

[4]

[5] Dhir[6]

MEMS

MEMSMEMS

MEMS

2

1Shoji and Takagi[7]

50 m 100 m

2Li and Peterson[8]

MEMSBoiling on MEMS heat transfer surfaces

Manabu TANGE (AIST)e-mail: [email protected]

Flow with

external means

Preceding bubbles

Adjacent bubbles

Cavities

2009 1 - 9 - J. HTSJ, Vol. 48, No. 202

Iida [9]

12

Nakabeppu and Wakasugi[10]

Pt [11][12]

[13] [14]Nakabeppu and

Wakasugi[10] MEMSMEMS

[15]3.1 MEMS

Fig. 2: MEMS heat transfer surface.

2 MEMS MEMS0.5 mm 20 mm

3

1 28 mm

2 2

2 Ni

SiO2

3 2

50 m 7Ni Cr

10 m

Fig. 3: Test section with MEMS heat transfer surface.

2009 1 - 10 - J. HTSJ, Vol. 48, No. 202

MEMS 3PEEK

3.2

Fig. 4: Temperature signal of a single bubblegeneration test; Tsub = 30 K.

Fig. 5: Bubble growth and temperature signal.

4 t=0

5

5 a-b

[16]

12 K2.7 m

4.1

[17]

Microbubble Emission Boiling, MEB

Zvirin [18]

Inada [19] MEB

Kumagai [20]MEB

Suzuki [21]MEB

MEB

[22]

MEB

2009 1 - 11 - J. HTSJ, Vol. 48, No. 202

4.2

Fig. 6: Bubbling pattern map; Tsub = 50 K.

3.1 MEMS

650 K

4

Oscillation

Kuzma-Kichta [23]

No Oscillation

Single Bubble

Oscillation

730 K

Fission 2 MW/m2

135 m SingleBubble 8

9[24]

Fission

MEB

Fig. 7: Successive snapshots of single bubble pattern; q = 1.0 MW/m2, and Tsub = 30 K, tb = 75 ms.

Fig. 8: Successive snapshots of bubble fission on a MEMS heat transfer surface; t' denotes interval from thenucleation; q = MW/m2, Tsub = 50 K, tb = 47.2 ms.

2009 1 - 12 - J. HTSJ, Vol. 48, No. 202

MEMS

MEMS

MEMS

MEMSMEMS

MEMS

16

11038

MEMS

[1] Webb, R. L., Principles of enhanced heat transfer,John Wiley & Sons, Inc., (1994).

[2] A. Ko ar and Yoav Peles, Boiling heat transfer inrectangular microchannels with reentrant cavities,Int. J. Heat Mass Transfer, 48, (2005), pp.4867-4886.

[3] Honda, H., Takamatsu, H., and Wei, J.J.,Enhanced boiling of FC-72 on silicon chips withmicro-pin-fins and submicron-scale roughness,ASME Journal of Heat Transfer, 124, (2002), pp.383–390.

[4] Han, C., and Gri th, P., “The mechanism of heattransfer in nucleate boiling — Part I”, Int. J. ofHeat Mass Transfer, 8, (1965), pp. 887–904.

[5] Son, G., Dhir, V. K., and Ramanujapu, N.,Dynamics and heat transfer associated with asingle bubble during nucleate boiling on ahorizontal surface, ASME Journal of HeatTransfer, 121, (1999), pp. 623-631.

[6] Dhir, V. K., Mechanistic prediction of nucleate

Fig. 9: Successive snapshots of bubble fission on a heated wire at 50 s intervals; q = 2 MW/m2, and Tsub = 40 K.

2009 1 - 13 - J. HTSJ, Vol. 48, No. 202

boiling heat transfer - achievable or hopeless task?,ASME Journal of Heat Transfer, 128, (2006), pp.1-12.

[7] Shoji, M. and Takagi, Y, “Bubbling features froma single artificial cavity”, Int. J. Heat MassTransfer, 44, (2001), pp. 2763–2776.

[8] Li, J., and Peterson, G. P., “Microscaleheterogeneous boiling on smooth surfaces — frombubble nucleation to bubble dynamics”, Int. J.Heat Mass Transfer, 48, (2005), pp. 4316–4332.

[9] Iida, Y., Okuyama, K., and Sakurai, K., Boilingnucleation on a very small film heater subjected toextremely rapid heating, Int. J. Heat MassTransfer, 37, (1994), pp. 2771-2780.

[10]Nakabeppu, O., and Wakasugi, H., “Approach toheat transfer mechanism beneath single boilingbubble with MEMS sensor”, In Proc. of 13thInternational Heat Transfer Conference, (2006),BOI-43 (CD-ROM).

[11]Moghaddam, S., Kiger, K. T., Henriette, J. M.,and Ohadi, M., “Fabrication and testing of a novelmicroelectromechanical device for the study ofboiling bubble dynamics”, In Proc. of ASMEInternational Mechanical Engineering Congress,(2003), pp. 107–114.

[12]Cooper, M. G. and Lloyd, A. J. P. “Miniature thinfilm thermometers with rapid response”, J. ofScientific Instruments, 42, (1965), pp. 791–793.

[13]Zhang, L., and Shoji, M., Nucleation siteinteraction in pool boiling on the artificial surface,Int. J. of Heat Mass Transfer, 46, (2003), pp.513-522.

[14]Kenning, D. B. R., and Yan, Y., “Pool boiling heattransfer on a thin plate: features revealed by liquidcrystal thermography”, Int. J. Heat Mass Transfer,15, (1996), pp. 3117–3137.

[15]Tange, M., Takagi, S., Takemura, F., and Shoji,M., Bubble growth and fission on MEMS heattransfer surfaces under subcooled boilingconditions, Trans. of JSME B, (submitted).

[16]Carey, V. P., Liquid-vapor phase-changephenomena, Taylor & Francis, (1992).

[17]Tange, M., Yuasa, M., Takagi, S., and Shoji, M.,“Microbubble Emission Boiling in aMicrochannel and Minichannel”, Thermal Scienceand Engineering, 12-6, (2004), pp. 23–29.

[18]Zvirin, Y., Hewitt, G. F., and Kenning, D. B. R.,Experimental study of drag and heat transferduring boiling on free falling spheres, Heat andTechnology, 7-3-4, (1989), pp. 13-23.

[19] Inada, S., Miyasaka, Y., Sakumoto, S., andChandratilleke, G. R., “Liquid-solid contact statein subcooled pool transition boiling system”,ASME Journal of Heat Transfer, 108, (1986), pp.219–221.

[20]Kumagai, S., Uhara, T., Nakata, T., and Izumi, M.,Liquid-solid contact in microbubble emissionboiling through void signals, Trans. of JSME B,67, (2001), pp. 2304-2310.

[21]Suzuki K., Torikai, K., Satoh, H., Ishimaru, J.,and Tanaka, Y., “Boiling heat transfer ofsubcooled water in a horizontal rectangularchannel (observation of MEB and MEBgeneration)”, Trans. of JSME B, 65, (1999), pp.3097–3104.

[22]Shoji, M. and Yoshihara, M., Observation ofmicrobubble emission boiling, J. visualizationsociety of Japan, 11, (1991), pp. 143-148.

[23]Kuzma-Kichta, Y., Ustinov, A. K., Ustinov, A. A.,and Kholpanov, L., Investigation of interfaceoscillations during boiling, In proc. of the thirdinternational conference on transport phenomenain multiphase systems, (2002), pp. 45-52.

[24]Shoji, M., Tange, M., Watanabe, M., Kamoshida,J., Sasaki, K., “Subcooled pool boiling on aheated wire with microbubble emission”, In Proc.of EECI International Conference on Boiling HeatTransfer, (2006), paper no. 30 (CD-ROM).

2009 1 - 14 - J. HTSJ, Vol. 48, No. 202

[1]

100 nm[2]

MEMS Microelectromechanical Systems

1

MEMS [3, 4][5]

[6-8]McCormick

3 in vivo[7] Ra

2

[8] MEMS

MEMS

[2]MEMS

MOVSMicro Optical Viscosity Sensor

MODS Micro Optical DiffusionSensor

MEMSMicro Thermophysical Properties Sensor using Optical MEMS

Yoshihiro TAGUCHI (Keio University), Yuji NAGASAKA (Keio University)e-mail: [email protected]

1

2009 1 - 15 - J. HTSJ, Vol. 48, No. 202

[9]

2

Micro Optical ViscositySensor: MOVS [10, 11]

2 MOVS MOVS12.6 mm 6 mm 0.8 mm

1/1000 3

PCF 2

CLF

0.5 mSOI Silicon-on-Insulator

SiMOVS

4 PCFCLF

2PCF 4 m

3.96 m

2

3

42 PCF CLF

0.5 m

2009 1 - 16 - J. HTSJ, Vol. 48, No. 202

MOVS 10 m FWHM

MOVS

CLF1CLF3

5CLF3

PD 200 kHzPID PID

MOVS

500 Hz

6

60

PSF0.7 m

MOVS

MOVS7 Hz 13 m

0.01 wt%7 2

256

S/N 4

MOVS

5

0 10 20 30 40100

150

200

250

0

5

10

15Under controlWithout control

Time , sec

zdisplacem

ent,μm

Ref

lect

edlig

htin

tens

ity,m

V

6

0 1 2 3

0

0.02

0.04

0

0.1

Time, sS

igna

lInt

ensi

ty,m

V

Under Control

Without Control

7

2009 1 - 17 - J. HTSJ, Vol. 48, No. 202

TAS Total Analytical Systems

[12]TAS

MicroOptical Diffusion Sensor: MODS

8

9 MODSITO

a-Si:H

1 1

8

9

10

11

2009 1 - 18 - J. HTSJ, Vol. 48, No. 202

MODS ITOMODS

MEMSMODS 10

11MODS

12

13

1 m

2

14

ITO 10 Vp-p 50kHz

15

10–410–310–210–1 100 101 10210–4

10–3

10–2

Light Intensity, W/cm 2

Con

duct

ivity

,S/m

13

14

1512

2009 1 - 19 - J. HTSJ, Vol. 48, No. 202

MEMS

MEMS

24

S No. 19106004

[1] Taguchi, Y. and Nagasaka, Y., Thermal DiffusivityMeasurement of High-Conductivity Materials byDynamic Grating Radiometry, Int. J. Thermophys.,22 (2001) 289.

[2] Jigami, T., Kobayashi, M., Taguchi, Y. andNagasaka, Y., Development of nanoscaletemperature measurement technique usingnear-field fluorescence, Int. J. Thermophys., 28(2007) 968.

[3] Solgaard, O., Sandejas, F.S.A. and Bloom, D.M.,Deformable grating optical modulator, Opt. Lett.,17 (1992) 688.

[4] Hornbeck, L.J., Current Status of the DigitalMicromirror Device (DMD) for ProjectionTelevision Applications, Tech. Dig. Int. ElectronDevices Meet., (1993) 381.

[5] Bishop, D.J. et al, The Lucent LambdaRouter:MEMS Technology of the Future Here Today,IEEE Communications Magazine, 40 (2002) 75.

[6] Chong, C., Isamoto, K. and Toshiyoshi, H.,Optically Modulated MEMS Scanning Endoscope,IEEE Photo. Tech. Lett., 18 (2006) 133.

[7] McCormick, D.T. et al, A Three DimensionalReal-time MEMS based Optical Biopsy Systemfor In-vivo Clinical Imaging, Proc. 14th Int. Conf.Solid-State Sensors, Actuators and Microsystems,Lyon, (2007) 203.

[8] Ra, H., Piyawattanametha, W., Taguchi, Y., Lee,D., Mandella, M.J., Solgaard, O.,Two-dimensional MEMS scanner for dual-axesconfocal microscopy, J. Microelectromech. Syst.,16 (2007) 969.

[9] Tjong, S.C., Structure, morphology, mechanicaland thermal characteristics of the in situcomposites based on liquid crystalline plymersand thermoplastics, Mater. Sci. Eng. R Rep., 41(2003) 60.

[10]Taguchi, Y., Ebisui, A. and Nagasaka, Y.,Miniaturized optical viscosity sensor based on alaser-induced capillary wave, J. Opt. A Pure Appl.Opt, 10 (2008) 044008.

[11]Nagamachi, R., Taguchi, Y. and Nagasaka, Y.,Development of Miniaturized Optical Viscometerwith Focus Control System for in-situMeasurement, Proc. 18th Europ. Conf.Thermophys. Prop., Pau (2008).

[12]Ebisui, A., Taguchi, Y. and Nagasaka, Y.,Feasibility Study of Micro Optical DiffusionSensor based on Opto-dielectrophoreticManipulation, Proc. 18th Europ. Conf.Thermophys. Prop., Pau (2008).

2009 1 - 20 - J. HTSJ, Vol. 48, No. 202

1

IC

3 [1] [2]

[3]

10,106600W/mK

[4,5]

[6,7]

200W/mK

-

Majumdar[8] [9]

3[10]

3000W/mK[11,12]

Measuring Thermal Property of Nano Materials

Koji TAKAHASHI (Kyushu University), Motoo FUJII (AIST)e-mail: [email protected]

2009 1 - 21 - J. HTSJ, Vol. 48, No. 202

2000W/mK

[13]1

1(b)

TL

1 21

qv

021

112

vqdxxTd (1)

I Vl w

d qv =IV/(lwd) 2

ff

02

2

f

fff dx

xTd (2)

T0Tj

011

02

12111 2

22

Txl

TTlqx

qxT jvv (3)

l

L dxTxTl

T0 0

1(4)

2120

32

31

TTlqll

T jvL (5)

, RR0 (0 )

TL= R/( R0)

qf AhAf

hhff AxTA

xTAq

2

2

1

1 (6)

(3)T1 T2

21

0

2 lllTTlq

AAq jv

f

hf (7)

Sample

Hot Wire

T0

TL

Tj

T0T0

Heat Sink

Hot Wire

TL

T0T0

Heat Sink & Terminal

1 2

(a) (b)1

2009 1 - 22 - J. HTSJ, Vol. 48, No. 202

f

jff l

TTq 0 (8)

(7) (8)

0

21

0

2TTlllTTlq

AlA

j

jv

f

fhf (9)

(5)

ffvLf

vLhfhff AllAllqTlAll

qTAllAll4212

4121

224

/12/12

(10)

TL/qv

2 SiO2

Si

Ti PtTi

5nm Pt SiO2

PtBHF

SiO2

Ti PtKOH

CF4 Si

Pt

Pt

1[14]

SEM

WEBID

TEMSEM

EBID SEM

(2) Electrical beamlithography

Suspended Pt hotfilm

(5) SiO2 etching (6) Si etching

EB resist

Si(100) SiO2

(3) Physical deposition (4) Lift off

(1)EB resist coating

Pt/Ti

(2) Electrical beamlithography

Suspended Pt hotfilm

(5) SiO2 etching (6) Si etching

EB resist

Si(100) SiO2

(3) Physical deposition (4) Lift off

(1)EB resist coating

Pt/Ti

23 SiC

T SEM

2009 1 - 23 - J. HTSJ, Vol. 48, No. 202

W

3

FIB( )W Pt

10-3Pa

Pt

4 [9]4(a)

300K4(b)

SiC [15]SiC

50K340K

[16]

AFM

1Majumdar

UC

100nm

MEMS[8]MEMS

Majumdar

0.5 m

(a)

(b)4

do di

2009 1 - 24 - J. HTSJ, Vol. 48, No. 202

14 m 25 m 22 m 420 m

2

52

3

5(b)

shssb TTGTTGQ 0 (11)

Gs

Gb

[17]

[18]

[19]

[20]

MEMSUC

MembraneSample

Beam

Heat sink

Gs

Gb

Q

Q

V

A

V

A

Th Ts

T0

MembraneSample

Beam

Heat sink

Gs

Gb

Q

Q

VV

AA

VV

AA

Th Ts

T0

(a)

Th Ts T0Gs Gb

Q

Th Ts T0Gs Gb

Q

(b)5 UC MEMS

2009 1 - 25 - J. HTSJ, Vol. 48, No. 202

T

[1] Cahill, D.G., Thermal Conductivity measurementfrom 30-750K: The 3w method, Rev. Sci. Inst.,61-2 (1999) 802.

[2] Kading, O.W. et al, Thermal conduction inmetallized silicon-dioxide layers on silicon, Appl.Phys. Lett., 65 (1994) 1629.

[3] Berber, S. et al., Unusually High ThermalConductivity of Carbon Nanotubes, Phys. Rev.Lett., 84-20 (2000) 4613.

[4] ,, , 19-3 (2005) 185

[5] Lukes, J.R. and Zhong, H., Thermal conductivityof individual single-wall carbon nanotubes,ASME J. Heat Transfer, 129 (2007) 705.

[6] Hone, J. et al., Thermal conductivity ofsingle-walled carbon nanotubes, Phys. Rev. B, 59(1999) 2514.

[7] Hone, J. et al., Electrical and thermal transportproperties of magnetically aligned single wallcarbon nanotube films, App. Phys. Lett., 77-5(2000) 666.

[8] Kim, P. et al., Thermal Transport Measurementsof Individual Multiwalled Nanotubes, Phys. Rev.Lett., 87-21 (2001) 215502.

[9] Fujii, M. et al., Measuring the ThermalConductivity of a Single Carbon Nanotubes, Phys.Rev. Lett., 95 (2005) 065502.

[10]Choi, T.Y. et al., Measurement of the ThermalConductivity of Individual Carbon Nanotubes by

the Four-Point Three- Method, Nano Lett., 6-8(2006) 1589.

[11]Yu, C. et al., Thermal Conductance andThermopower of an Individual Single-WallCarbon Nanotube, Nano Lett., 5-9 (2005) 1842.

[12]Pop, E. et al., Thermal Conductance of anIndividual Single-Wall Carbon Nanotube aboveRoom Temperature, Nano Lett., 6-1 (2006) 96.

[13]Zhang, X., et al., Measurements of thermalconductivity and electrical conductivity of a singlecarbon fiber, Int. J. Thermophysics, 21-4 (2000)965.

[14]Nishijima, H. et al., Carbon nanotube tips forscanning probe microscopy: Preparation by acontrolled process and observation ofdeoxyribonucleic acid, App. Phys. Lett., 74-26(1999) 4061.

[15]Takahashi, K., et al, Thermal conductivity of SiCnanowire formed by combustion synthesis, HighTemperatures-High Pressures, 37-2 (2008) 119.

[16]Dames, C., et al., A hot-wire probe for thermalmeasurements of nanowires and nanotubes insidea transmission electron microscope, Rev. Sci. Inst.,78 (2007) 104903.

[17]Shi, L., et al., Measuring Thermal andThermoelectric Properties of One-DimensionalNanostructures Using a Microfabricated Devices,ASME J. Heat Transfer, 125 (2003) 881.

[18]Chang, C.W., et al., Nanotube Phonon WaveguidePhys. Rev. Lett., 99 (2007) 045901.

[19]Chang, C.W., et al., Solid-State Thermal Rectifier,Science 314 (2006) 1121.

[20]Hochbaum, A.I., et al., Enhanced thermoelectricperformance of rough silicon nanowires, Nature,451 (2008) 163.

Q

2009 1 - 26 - J. HTSJ, Vol. 48, No. 202

1IT IT

IT

2

240

CO2

/

2a

Development of a Pump-less Water Cooling System

Shigetoshi IPPOUSHI (Mitsubishi Electric co. Ltd.)e-mail: [email protected]

Q

2009 1 - 27 - J. HTSJ, Vol. 48, No. 202

1

2

100 110 140

100 100

Q

2009 1 - 28 - J. HTSJ, Vol. 48, No. 202

a b2

2 a

2 b

cm

Q

2009 1 - 29 - J. HTSJ, Vol. 48, No. 202

a

[1] [2]b

[3]c

[4]d

[5-6]/

1

2 b

[7]3

[8]

3

Q

2009 1 - 30 - J. HTSJ, Vol. 48, No. 202

/

/

/ /

10040

0

CO2

[1] Stenger, F. J., “Experimental Feasibility Study ofWater-Filled Capillary-Pumped Heat-TransferLoops”, NASA TM X-1310, (1966), 1.

[2] Maidanik, Yu. F., Pastukhov, V. G., Fershtater, Yu.G., Smirnov-Vasiliev, K. G., Chernishev, V. F. andDvirniy, V. V., “Development, Analytical andExperimental Investigation of Loop Heat Pipes”,Proc. 7th Int. Heat Pipe Conf., 2 (1988), 539.

[3] Kawabata, K., Hashimoto, N. and Kamiya, Y.,“Anti-Gravity Heat Pipe”, Proc. 5th Int. Heat PipeSymp., Melbourne, (1997), 168

[4] Chisholm, D., “The Anti-Gravity Thermosyphon”,Proc. I. Chem. E. Symp, Glasgow, Ser. No. 38(1974), F3.

[5] Baer, S. C., “Heat Pipe Condensate Return”, U. S.Patent No. 3561525, (1971).

[6] , “,

”, ,64-617, B (1998), 254.

[7] ” ”,, Vol.50, No.9(2008), P70.

[8]” ”

45514(2008)

2009 1 - 31 - J. HTSJ, Vol. 48, No. 202

2008 9 13

1

53 110 149 100

47 3

10B

1

1

Report on ‘Kids Energy Symposium, 2008’

Kazuyoshi NAKABE(Chair of the Kids Energy Symp. Committee, Kyoto University)

e-mail: [email protected]

1

2009 1 - 32 - J. HTSJ, Vol. 48, No. 202

3

3

2 10

1,000

(http://www.museum.kyoto-u.ac.jp/indexj.html)

1,000

KYO-NANO

59% 13% 10%10% 6% 2%

43% 39%18%

2 3

1

12:30~13:00

13:00~13:05

13:05~13:5513:55~14:1014:10~14:20

14:20~14:40

14:40~14:45

LNG

14:45~16:55

16:55~17:15

2009 1 - 33 - J. HTSJ, Vol. 48, No. 202

2 2

5

200

6

2 1

4 5 6

1

4 (48%) 5 (24%) 6 (15%)(13%) (72%) (28%)

20082

(59%) (13%)(10%) (10%) (6%)(2%)

3

196

LNG

4

6

1mm

2009 1 - 34 - J. HTSJ, Vol. 48, No. 202

2

30

2

3 1

2 3

7

(100%) (0%)

2009 1 - 35 - J. HTSJ, Vol. 48, No. 202

4 52

6

7

8

9-1

9-2 2

10

2009 1 - 37 - J. HTSJ, Vol. 48, No. 202

20096 2 ( )

4 ( )

46

2009.1.26 2009.3.16

Email: [email protected]://nhts2009.me.kyoto-u.ac.jp/index.html 10

1

2009

1 23( ) 2009.1.13

( )160-0016 35

5Web: http://www.jsme.or.jp/kousyu2.htm

1 29 ( )30 ( )

15th Symposium on "Microjoining and AssemblyTechnology in Electronics" 2008.9.4 2008.10.20

( ) Mate 2009101-0025

1-11TEL 03-3253-0488 FAX 03-3253-3059Email: [email protected]: http://wwwsoc.nii.ac.jp/jws/research/

micro/mate/Mate2009.html

3 4( )5( )

20092009

221-0052 5-1 YCS5F( )TEL 045-450-1831 FAX 045-441-8444Email: [email protected]

3 12( ) 2009.2.28TEL & FAX: 03-3259-0749Email: [email protected]

5 12(14( )

14 2009.1.30 2009.4.3

101-8449 3-24( )ICS

TEL 03-3219-3541 FAX 03-3292-1811Email: [email protected]

8 2(5( )

7th Annual International Energy Conversion EngineeringConference (IECEC2009)

Denver, CO, USA2008.12.7 2009.5.19

514-8507 1577

TEL & FAX: 059-231-9386Email: [email protected]: http://www.aiaa.org/content.cfm?pageid=230&lumeetingid=1894&viewcon=overview

8 7( )9( )

200928 2009.3.30 2009.6.5

2009860-8555 2-39-1

TEL/FAX 096-342-3753Email : [email protected]: http://www.mech.kumamoto-u.ac.jp

/jsmf2009/index.php

9

10

27 ( )

2 ( )

13 NURETH13 2008.10.31 2009.1.31

NURETH-13( )

TEL: 0770-37-9110Email: [email protected]: http://www.nureth13.org/

11 16 ( )

19 ( )

The 7th Pacific Symposium on Flow Visualization andImage Processing (PSFVIP-7)

Kaohsiung, Taiwan, ROC2008.10.31 2009.4.15

Dr. Tai, C.H., National Pingtung Univ. ofScience and Technology (Taiwan, ROC)Email: [email protected]: http://www.tuat.ac.jp/%7Epctfe/

1116( )

20( )

International Conference on Power Engineering-09,Kobe (ICOPE-09) 2008.12.31 2009.3.31

Ryosuke MatsumotoKansai UniversityEmail: [email protected]

2009 1 - 38 - J. HTSJ, Vol. 48, No. 202

3 2009FAX

6

1.

1 (1) (2)2

3 (a) (b) (c) (d)

10

2.4 6 FAX

6 7 CD-ROM10 4

3.

1

4FAX

64 [email protected]

2009 1 - 39 - J. HTSJ, Vol. 48, No. 202

1

2009 1 - 40 - J. HTSJ, Vol. 48, No. 202

46

46

21 6 2 6 4

http://www.icckyoto.or.jp/JR 20 5http://www.icckyoto.or.jp/jp/access/access.html

606-0001 Phone: 075-705-1234 / Fax: 075-705-1100

21 1 7 1 1921 2 24 3 1621 2 24 4 13

URL http://nhts2009.me.kyoto-u.ac.jp/

a)b)c)

1 15 10 55

12,000 14,0005,000 6,000

J-STAGECD-ROM CD-ROM

8,000

21 6 3

2009 1 - 41 - J. HTSJ, Vol. 48, No. 202

8,000 10,0004,000 5,000

250

200 250JST

1 1J-STAGE

J-STAGE 2009 4J-STAGE

CD-ROM

1 A4 22 26 60

82 MB

J-STAGE

“Thermal Science and Engineering TSE ”

TSEON TSE

2009 1 - 42 - J. HTSJ, Vol. 48, No. 202

TSE2 TSE 8

TSETSE

PDFPDF 1 3,000

PDFCD-ROM J-STAGE

J-STAGE

150mm

9 2 1 26 22 60

(1)

Guide for the manuscripts : Times New Roman 12ptThe case of MS-Word : Times New Roman 12pt

112pt

1Taro DENNETSU ( Times New Roman 10pt)

Dept. of Mech. Eng., Kyoto Univ. of Science, Kyotanabe, Kyoto 610-03211

5 English abstract ..... Times New Roman10pt, 100

1Key Words : Heat Transfer Times New Roman 9pt, 3 5

1

150mm

2009 1 - 43 - J. HTSJ, Vol. 48, No. 202

, , - , .1 2 , (B), 12-345(2006), 1234.

PDFPDF

1 J-STAGE

1ID 4 1234

2ID

0001587

111282946

ATMATM

14 14

21 ID3

E-mail Fax

46

E-mail: [email protected]: 075-753-5209

2009 1 - 44 - J. HTSJ, Vol. 48, No. 202

46

46

21 6 2 11 3 SP 80

PP

21 3 31 28

1 146

2

(HP ML )

( )

( )HP ML

1 4 1 ( )

HP ( )

HP

(

)

HP ( )ML ( ) HP ML

()

HP ()

HP

http://www.htsj.or.jp/banner.pdf

Word textHP

[email protected] [email protected]

[email protected] [email protected]

[email protected]

ML pdf

2009 1 - 45 - J. HTSJ, Vol. 48, No. 202

2009 1 - 46 - J. HTSJ, Vol. 48, No. 202

熱流束センサーは、熱エネルギーの移動密度(W/cm2)に比例した直流電圧を出力

します。弊社の製品は米国バージニア工科大学が開発した新しい技術をVatell社で

商品化したもので、大変手軽に高速・高精度で熱流量の測定をすることができます。

特に応答速度の早いこと、センサーからの出力レベルが高いことが特徴で、熱流束

マイクロセンサー(HFM)では、応答速度最高6マイクロ秒を達成しています。

URL E-mail [email protected]

〒106-0031 東京都港区西麻布3-24-17 霞ビル4FTEL: 03-5785-2424 FAX: 03-5785-2323

特 徴

●最高速の応答(約 6μ秒)●850℃まで外部冷却不要●低雑音 / 高感度●熱流束と温度を測定●伝導、対流、輻射に等感度

使用例

●エンジン内壁の熱伝達状態観察●ロケットエンジンのトラバース実験●タービンブレード熱風洞試験●自動車用エアーバッグ安全性試験●ジェットエンジンバックファイヤー試験

センサー本体の構造は、薄膜フォイル・ディスクの中心と周囲の温度差を

測定する、差動型熱電対をとなっています。フォイル・ディスクはコンスタンタン

で作られており、銅製の円柱形ヒートシンクに取り付けられています。水冷式

は取付け場所の自由度が高く長時間の測定が可能です。

使用例●焼却炉・溶鉱炉の熱量測定●火災実験の際の輻射熱ゲージ●バーナーなど熱源の校正用基準器●着火性・燃焼性試験(ISO5657,5658,5660)●米国連邦航空局のファイヤー・スモークテスト

熱流束マイクロセンサー

ガードン型円形フォイルセンサー

センサーは銅とニッケルのサーモパイルから構成されており、測定対象物

に貼付けて使います。センサーは厚さが0.2mmと薄いので、柔軟性に

富んでおり、直径1インチの円筒形に湾曲させる事が出来ますので、パイプ

などに貼り付けてお使いになるには最適です。

熱流束センサーの校正作業をお引き受けいたします。校正証明書は米国基準局NISTにトレーサブルです。校正設備の物理的な制約で、お引き受けできない場合もあります。ご相談ください。

使用例●電気・電子機器内の発熱・放熱状態測定●熱交換器の効率測定●パイプの放熱状況測定

シート状熱流束センサー

熱流束センサー校正サービス

水冷却型

熱伝導冷却型

CAPTECCAPTEC

5 5 300 300 [mm] 0.4 [mm]0.00015 [ /(W/m2)]2.7 W/mK

200 200 [ ]200 [ms]

30 [mm]

T350 [ ] 380 [ ]

5 5 50 50 [mm] 0.25 [mm]

200 250 [ ]50 [ms]

30 [mm] T

350 [ ] 380 [ ]

CAPTEC

CAPTEC URL: http://www.techno-office.com/

225-0011 3-20-8-B TEL. 045 (901) 9861 FAX. 045 (901) 9522

LaVision

Laser Imaging Solution

High-SpeedMaster System

StrainMaster

PlasmaMaster

FlameMasterEngineMaster

SprayMasterSizingMaster

FlowMasterFluidMaster

LIIRayleighRamanPIVLIFMieLaser Imaging Techniques

Email [email protected]. (03)6825-9090 FAX. (03)5371-7680URL http://www.kanomax.co.jp/fgroup.html

PIV LIF Raman Rayleigh LII

2009 1 - 50 - J. HTSJ, Vol. 48, No. 202

Heart Transfer

Takemi Chikahisa (Hokkaido University)e-mail: [email protected]

TSE

060-8628 13 8Tel: 011-706-6785 Fax: 011-706-7889 [email protected]

Note from the Editorial Board