CH3 Worm Gear Design-1

Embed Size (px)

Citation preview

  • 7/26/2019 CH3 Worm Gear Design-1

    1/38

    3.1 Properties, Classification of Worm Gear Drive

    3.2 Worm Gear Nomenclature and Geometrical Features

    3.3 Loading and Stress in Worm Gear Drive

    3.4 Design of Worm and Wormgear3.5 Structure of Worm Gear drive

    Chapter 3 Worm Gear Drive Design

  • 7/26/2019 CH3 Worm Gear Design-1

    2/38

    90

    Examples of Worm Gear Drive

    Worm gear drive can be used for the power drive under skew axes.

    Commonly, worm is active; gear is passive. For speed reduction.

    Worm

    Wormgear

    http://localhost/var/www/apps/conversion/tmp/scratch_1/n137.flc
  • 7/26/2019 CH3 Worm Gear Design-1

    3/38

    Introduction of Worm/WormGear Drive

    Forming of worm

    If a helical gear with very few teeth(z1=1) and a great helical angle1,

    teeth will form several cycles of helical spline.

    The gear shaft 1: Worm. The mating gear 2: Wormgear.

    Worm2

    2

    Wormgear

    1

    1

    Left

    helicalworm

    Right

    helical

    worm

  • 7/26/2019 CH3 Worm Gear Design-1

    4/38

    Improvements:Cutting tool is manufactured as the shape of worm. Using generating

    cutting method, we can get the wormgear with line contact.

    Point contact

    Advantages:

    A great speed ratio, compact structure, smooth movement, low noise,Self-lockingIndexing gear mechanismi=1000, commonly i=8~80.

    Disadvantages:

    Low efficiency, teeth of wormgear made from Bronze, high cost.

    Line contact

  • 7/26/2019 CH3 Worm Gear Design-1

    5/38

    Worm

    TypeHourglass

    worm gear drive

    Cylinder

    worm gear drive

    Cylind

    er worm

    Spiroid

    worm gear drive

    Hourglass worm

    Spiroid worm

    3.1 Classification of Worm Gear Drive

  • 7/26/2019 CH3 Worm Gear Design-1

    6/38

    Worm Hourglass worm

    Cylinder worm

    3.1 Classification of Worm Gear Drive

    Spiroid worm

    Involute worm

    Straight sided normal worm

    Archimedes worm

    Archimedes worm (ZA)

    Archimedes' spiral

    2 Single processing

    Turning, milling,

    tooth shaping,grinding (modified wheel)

    Difficult to have hard surface and high

    precision, commonly used for small load

    transmission.

  • 7/26/2019 CH3 Worm Gear Design-1

    7/38

    3.1 Classification of Worm Gear Drive

    Involute worm (ZI)

    Worm Hourglass worm

    Cylinder worm

    Spiroid worm

    Involute worm

    Straight sided normal worm

    Archimedes worm

    Involute spline Base circle

    Hobbing,

    grinding (flat surface wheel)

    Easy to have hard surface and high precision, commonly used for high speed

    and heavy load transmission.

  • 7/26/2019 CH3 Worm Gear Design-1

    8/38

    dx

    prolate involute

    Straight sided normal

    worm (ZN)

    3.1 Classification of Worm Gear Drive

    Worm Straight sided normal wormHourglass worm

    Cylinder worm

    Spiroid worm

    Archimedes worm

    Involute worm

    Worm type will be decided by the manufacturing method, load, rotationalspeed and cost.

  • 7/26/2019 CH3 Worm Gear Design-1

    9/38

    1. Geometrical parameters

    3.2 Worm Gear Nomenclature and Geometrical Features

    Standard center distance

    Radial clearance

    Helical of wormgear

    Lead angle of worm

    Dia. of dedendum circle

    Dia. of addendum circle

    Dedendum

    Addendum

    Dia. of pitch circle

    WormgearWorm

    FormulaSymbolName

    d

    ah

    fh

    ad

    fd

    ca

    mqd 1 2 2d mz

    mha

    mhf 2.1mqda )2(1 mZda )2( 22

    mqdf )4.2(1 mZdf )4.2( 22

    1arctanz

    q

    mc 2.0

    1 2 20.5( ) 0.5 ( )a d d m q z

    Table 3-1 Geometrical parameters of worm/wormgear

  • 7/26/2019 CH3 Worm Gear Design-1

    10/38

    Midplane

    2. Engagement conditions

    Definition of Midplane:

    A plane containing the axis of worm and perpendicular to the axis of wormgear.

    In the midplane: mt2=ma1=m , t2=a1= Standard value.

    In midplane, worm/wormgear seems gear-track engagement.Engagement conditions:

    2

  • 7/26/2019 CH3 Worm Gear Design-1

    11/38

    ZA worm gear a=20 in the axial direction

    (1) mis standard value

    First series 1, 1.25, 1.6, 2, 2.5 , 3.15, 4, 5, 6.3, 8, 10, 12.5,

    16, 20, 25, 31.5, 40

    Second series 1.5, 3, 3.5, 4.5, 5.5, 6, 7, 12, 14

    Table 3-2 Recommendation of module m

    3. Module mand pressure angle

    Pressure angle ZN worm gear n=20 in the normal direction

    ZI worm gear n=20

  • 7/26/2019 CH3 Worm Gear Design-1

    12/38

    To reduce the number of cutting tools, we define d1 as the standard value.

    Worm and wormgear have the same helical direction.

    if90

    12

    1+190Wormgear: righthand helical

    Worm: righthand helical1+2

    We define the cylindrical surface as the pitch cylinder where s=e.

    d1

    e s

    d2

    4. Dia. of worm pitch cylinder, d1

    t

    t

    2

  • 7/26/2019 CH3 Worm Gear Design-1

    13/38

    Table 3-3 Dia. of worm pitch cylinder, d1 and module m mm

    Module,

    m(mm)

    Dia. Pitch

    circle

    d1/mm

    Diameter

    coefficient

    q

    Number of

    threads of worm,

    z1

    Dia. dedendum

    circle

    df/ mm

    m2d1/ mm3

    1 18 18.000 1 15.6 18

    1.2520 16.000 1 17 31.25

    22.4 17.920 1 19.4 35

    1.620 12.500 1, 2, 4 16.16 51.2

    28 17.500 1 24.16 71.68

    2

    (18) 9.000 1, 2, 4 13.2 72

    22.4 11.200 1, 2, 4, 6 17.6 89.6

    (28) 14.000 1, 2, 4 23.2 112

    35.5 17.750 1 30.7 142

    2.5

    (22.4) 8.960 1, 2, 4 16.4 140

    28 11.2 1, 2, 4, 6 22 175

    (35.5) 14.200 1, 2, 4 29.5 221.9

    45 18.000 1 39 281

    The ratio of , worm diameter coefficient.q=d1/mUsually q=818

  • 7/26/2019 CH3 Worm Gear Design-1

    14/38

    Module,

    m(mm)

    Dia. Pitch

    circle

    d1/mm

    Diameter

    coefficient

    q

    Number of

    threads of

    worm,

    z1

    Dia.

    dedendum

    circle

    df/ mm

    m2d1/ mm3

    3.15

    (28) 8.889 1, 2, 4 20.4 277.8

    35.5 11.270 1, 2, 4, 6 27.9 352.2

    (45) 14.286 1, 2, 4 37.4 446.5

    56 17.778 1 48.4 556

    4

    (31.5) 7.875 1, 2, 4 21.9 50440 10.000 1, 2, 4, 6 30.4 640

    (50) 12.500 1, 2, 4 40.4 800

    71 17.750 1 61.4 1 136

    5

    (40) 8.000 1, 2, 4 28 1 000

    50 10.000 1, 2, 4, 6 38 1 250

    (63) 12.600 1, 2, 4 51 1 575

    90 18.000 1 78 2 250

    6.3

    (50) 7.936 1, 2, 4 34.9 1 985

    63 10.000 1, 2, 4, 6 47.9 2 500

  • 7/26/2019 CH3 Worm Gear Design-1

    15/38

    Module,

    m(mm)

    Dia. Pitch

    circle

    d1/mm

    Diameter

    coefficient

    q

    Number of

    threads of

    worm,

    z1

    Dia.

    dedendum

    circle

    df/ mm

    m2d1/ mm3

    6.3(80) 12.698 1, 2, 4 64.8 3 175

    112 17.778 1 96.9 4 445

    8

    (63) 7.875 1, 2, 4 43.8 4 032

    80 10.000 1, 2, 4, 6 60.8 5 376

    (100) 12.500 1, 2, 4 80.8 6 400140 17.500 1 120.8 8 960

    10

    (71) 7.100 1, 2, 4 47 7 100

    90 9.000 1, 2, 4, 6 66 9 000

    (112) 11.200 1, 2, 4 88 11 200

    160 16.000 1 136 16 000

    12.5

    (90) 7.200 1, 2, 4 60 14 062

    112 8.960 1, 2, 4 82 17 500

    (140) 11.200 1, 2, 4 110 21 875

    200 16.000 1 170 31 250

  • 7/26/2019 CH3 Worm Gear Design-1

    16/38

    Module,

    m(mm)

    Dia. Pitch

    circle

    d1/mm

    Diameter

    coefficient

    q

    No. of threads

    of worm,

    z1

    Dia. dedendum

    circle

    df/ mm

    m2d1/ mm3

    16

    (112) 7.000 1, 2, 4 73.6 28 672

    140 8.750 1, 2, 4 101.6 35 840

    (180) 11.250 1, 2, 4 141.6 46 080

    250 15.625 1 211.6 64 000

    20

    (140) 7.000 1, 2, 4 92 56 000

    160 8.000 1, 2, 4 112 64 000

    (224) 11.200 1, 2, 4 176 89 600

    315 15.750 1 267 126 000

    25

    (180) 7.200 1, 2, 4 120 112 500

    200 8.000 1, 2, 4 140 125 000(280) 11.200 1, 2, 4 220 175 000

    400 16.000 1 340 250 000

  • 7/26/2019 CH3 Worm Gear Design-1

    17/38

    5. Thread number of worm z1, Teeth number of wormgearz2

    z1: Number of helical splines

    Worm rotates one revolution(as the track translates z1 teeth), and the

    wormgear will rotates z1 teeth.

    Often, z1=1 2 4 6

    z2= i z1 To avoid under cutting

    z226

    Commonly z280

    z2 Length of wormStiffness and precisionStructure dimension

    Table 3-4 Recommendation of z1and z2

    Speed ratio i 5 7~15 14~30 29~82

    z1 6 4 2 1

    z2 29~31 29~61 29~61 29~82

    z2: Teeth number of wormgear

  • 7/26/2019 CH3 Worm Gear Design-1

    18/38

    6. Lead angle of worm

    Expanding the pitch cylinder, we have

    = z1 pa1/d1 =mz1/d1tan1=l/d1 =z1/q

    d1

    1

    1

    d1

    l

    pa1

    1

    1, lead angle of worm

    1, helical angle of worm

  • 7/26/2019 CH3 Worm Gear Design-1

    19/38

    , one of the factors affecting efficiency of worm gear drive.For power drive, a bigger value of is needed.

    That means a bigger value of z1, or a smaller dia. of pitch circle of worm.

    When >30, the efficiency will not increase obviously.

    When >45, the efficiency will go down slowly.

    For worm gear set with self-locking requirements,

  • 7/26/2019 CH3 Worm Gear Design-1

    20/38

    7. Speed ratio iand teeth number ratio u

    Speed ratio:

    If a bigger iis needed, we can have z1=1, but low efficiency.For applications of power drive, we have z1=2, or 4.

    z1

    z2= ---

    n2

    n1i = --- = u ----teeth number ratio

    8. Standard center distance of worm gear drive

    a =(d1+d2 )/2= m(q+ z2) /2

    40 50 63 80 100 125 160 (180) 200

    (225) 250 (280) 315 (335) 400 (450) 500

    Recommendation of center distance

    9 M difi ti f d i

  • 7/26/2019 CH3 Worm Gear Design-1

    21/38

    9. Modification of worm gear drive

    Purposes:

    (1) To adjust center distance

    (2) To adjust speed ratio

    (3) To increase load capacity

    (4) To avoid under cutting

    Forming method:

    Like the modification of gear drive, modification of worm gear drive is

    achieved by changing the radial position of cutting tool with respect to

    the wormgear blank.

    Af ter modif ication:

    For worm: As the worm can be regarded as the hobbing tool, thedimensions of worm will not change, but the pitch circle will change

    a little.

    For wormgear: Addendum circle, dedendum circle and tooth

    thickness will change, but the pitch circle will not change.

    m m

  • 7/26/2019 CH3 Worm Gear Design-1

    22/38

    e. Modification, x2>0,

    z2'z2, a'=a

    Fig. 3-6 Modifications of worm gear drive

    O2

    P

    d'1=d

    1

    a

    O2

    a'

    P

    d1

    d1

    x2m

    x2m

    x2m

    x2m

    d1

    d1

    P

    a'

    O2

    Center line of worm

    x2m

    d1 d

    1

    d1

    d1

    x2m

    O2 O2

    a

    P PCenter line of worm

    b. Modification, x2

  • 7/26/2019 CH3 Worm Gear Design-1

    23/38

    Functions of modification:

    Standard worm gear drive

    a=(d1+d2)/2=m(q+z2)/2

    (1) Modification to adjust center distance

    a'=a+x2m=m(q+z2+2x2)/2

    x2=a'/m-(q+z2)/2Coefficient of modification -0.5

  • 7/26/2019 CH3 Worm Gear Design-1

    24/38

    10. Rotational speed of wormgear

    1

    2

    2v

    (1) Left hand for left hand helical, Right hand for right hand helical.

    (2) Bending direction of fingers matches with the rotational direction.(3) Tip of thumb points to the oppositedirection of v2.

    1

    2

    2v

    11 C l l ti f t i

  • 7/26/2019 CH3 Worm Gear Design-1

    25/38

    Example:

    Worm: module m=4mm,

    number of threads z1=2,

    Dia. of pitch circle d1=40mm;

    Worm gear: teeth number z2=39;

    Try to find diameter coefficient q, lead angle and center distance a.

    11. Calculations of geometries

    Solution:

    (1) by q=d1/m ,q=40/4=10

    (2) by tan=z1/q, tan=2/10=0.2, =11.3099(1118'36'')

    (3) Center distance a=0.5m(q+ z2)=0.54(10+39)=98mm

  • 7/26/2019 CH3 Worm Gear Design-1

    26/38

    Discussions:

    (1) If non-standard center distance is allowable, we have a=98mm.

    (2) If non-standard center distance is not allowable, we have to

    adjust center distance to a standard value a'=100mm. Modification

    to adjust center distance:

    (3) If we want to adjust the speed ratio 20, z2'=40. Modification to

    adjust speed ratio:

    Then, x2=a'/m-(q+z2)/2=100/4-(10+39)/2=0.5.

    Then we have x2=(z2-z2')/2=0.5.

    12 Pre ision rade of orm dri e

  • 7/26/2019 CH3 Worm Gear Design-1

    27/38

    Precision

    grade

    Applications Manufacturing

    process

    Roughness

    Ra/m

    Allowable

    sliding speed

    Grade 6

    Indexing

    mechanisms for

    machine tool

    Grinding and

    polishing;

    Carburizing

    Worm: 0.4

    Gear: 0.4

    >10m/s

    Grade 7Conveyor with

    medium precision

    Grinding and

    polishing;

    Carburizing

    Worm: 0.4-0.8

    Gear: 0.4-0.8

    10m/s

    Grade 8Low line speed, not

    important situation

    Turning or

    worm gear

    milling

    Worm: 0.8-1.6

    Gear: 1.6

    5m/s

    Grade 9Low speed or hand

    appliance

    Turning or

    worm gear

    milling

    Worm: 1.6-3.2

    Gear: 3.2

    2m/s

    12. Precision grade of worm drive

    Table 3-6 Precision grade of worm drive

    13 Efficiency of worm drive

  • 7/26/2019 CH3 Worm Gear Design-1

    28/38

    13. Efficiency of worm drive

    Power loss of worm drive

    Friction loss

    Oil resistance lossBearing friction loss

    Efficiency of closed gear drive = 123

    1Efficiency in mesh, decided by precision grade;

    2Churning loss;

    3Bearing efficiency.

    Mostsignificant

    factor

    For speed reduction:

    1tan

    tan e

    e-- Equivalent angle of friction, which relates to the materials of

    worm and wormgear, precision grade and relative sliding speed.

    We can findein Table 3-7.

    For speed increase:

    1

    tan

    tan

    e

    (1) Equivalent angle of friction

  • 7/26/2019 CH3 Worm Gear Design-1

    29/38

    3.00 0.028 136 0.035 2 0.045 235

    4.00 0.024 122 0.031 147 0.04 2175.00 0.022 116 0.029 140 0.035 2

    8.00 0.018 102 0.026 129 0.03 143

    10.0 0.016 055 0.024 122

    15.0 0.014 048 0.020 109

    24.0 0.013 045

    Table 3-7 Equivalent angle of friction

    Wormgaer material Tin bronze Tin-free bronze Grey cast iron

    HB of worm(Steel) HRC 45 other HRC 45 HRC 45 other

    Sliding speed fv e fv e fv e fv e fv e

    0.01 0.11 6 17 0.12 651 0.18 1012 0.18 1012 0.19 1045

    0.10 0.08 4 34 0.09 543 0.13 724 0.14 758 0.16 905

    0.50 0.055 309 0.065 343 0.09 509 0.09 509 0.1 543

    1.00 0.045 235 0.055 309 0.07 4 0.07 4 0.09 509

    2.00 0.035 2 0.045 235 0.055 309 0.07 4

    vs m/s

    (1) Equivalent angle of frictione V

    arctan f

    (2) Relative sliding speed

  • 7/26/2019 CH3 Worm Gear Design-1

    30/38

    (2) Relative sliding speed

    vs=v1/cos v1Linear speed of worm pitch circle;

    vsRelative sliding speed, in Fig. 3-8.

    Fig. 3-8 Estimation of sliding speed

    14 Self locking of worm drive

  • 7/26/2019 CH3 Worm Gear Design-1

    31/38

    14. Self-locking of worm drive

    Self-locking:

    For speed reduction applications, worm can drive the wormgear, but, if

    torque is applied to the wormgear shaft, the worm does not turn.

    Self-locking condition:

    lead angle equivalent angle of frictione

    Efficiency of worm drive with self-locking

    0.5

    Table 3-8 Estimation of worm drive efficiency,

    Threads of

    worm z1

    1

    (self-locking)

    1 2 4 6

    0.4 0.65-0.75 0.75-0.82 0.82-0.85 0.85-0.95

    3 3 Loading and Stress in Worm Gear Drive

  • 7/26/2019 CH3 Worm Gear Design-1

    32/38

    1. Force analysis of worm drive

    Ft2Fr2

    Fa2

    Ft1

    Fr1

    Fa1

    2

    Normal force Fncan be decomposed into 3 components

    Tangential force

    Ft

    Axial forceFa

    Radial forceFr

    Between worm and wormgear, we have,Ft1= -Fa2

    Fr1= -Fr2

    Fa1= -Ft2

    =2000T1/ d1

    =2000T2/ d2

    = Ft2tan

    T1, T2are the torques acting on worm and wormgear, and

    T2= T1i

    1

    Ft1, opposite to the linear speed

    Fa1, Right/Left Hand Rule

    Fr1

    , to the center

    d1, d2Pitch diameters of worm and wormgear;

    --Pressure angle on pitch diameter of worm.

    3.3 Loading, and Stress in Worm Gear Drive

    S ifi ti f f di ti

  • 7/26/2019 CH3 Worm Gear Design-1

    33/38

    Specification of force direction

    1

    2

    p

    Ft2 Fa1

    Fr1

    Fr2

    2

    2) For worm gear: directions of Ft2,2are same; and Ft2=-Fa1

    4)Fr1, Fr2pointing to the center, and Fr1=-Fr2.

    3) For worm: directions of Ft1,1are opposite; and Ft1=-Fa2

    1) For worm: directions of T1,1are same

    T

    T

    Ft1Ft1

    Fa2 Fa2

    Front view Side view

    2 Failure type of worm drive

  • 7/26/2019 CH3 Worm Gear Design-1

    34/38

    2. Failure type of worm drive

    (1)The most common failure of worm drive: scuffing, pitting and wear

    A great sliding speed on the wormgear tooth face;

    Worms diameter is much smaller than the length, so strengthand stiffness of worm may cause failure.

    (2)Design principles of worm drive

    * By calculating stress on critical section of worm shaft

    * By contact strength of wormgearstooth surface* By bending strength of wormgearstooth

    (only z2>80 or negative modification)

    To avoid scuffing and pitting:

    To avoid weakness of worm strength:

    * By checking deflection if a great span between supportsTo avoid weakness of worm stiffness:

    * By checking thermal equilibriumTo avoid overheat of worm drive:

    (3)Materials of worm drive

  • 7/26/2019 CH3 Worm Gear Design-1

    35/38

    (3)Materials of worm drive

    Requirements:

    strength, stiffness, abrasive resistance, anti-wear and anti-scuffing.

    Worm is long and thin, so carbon steel and alloy steel is most commonly used.

    By heat treatment

    Hard surface worm

    Hardened and tempered

    worm

    Grinding and polishing

    Easy to manufacture, and good for

    short impact

    Material trademark Heat treatment Hardness Roughness Ra/m

    45,40Cr, 42SiMn, 40CrNi,38SiMnMo

    Case hardening HRC=45-55 1.6-0.8

    15CrMn, 20CrMn, 20Cr,

    20CrNi

    Carburizing HRC=58-63 1.6-0.8

    45 H.T. HB

  • 7/26/2019 CH3 Worm Gear Design-1

    36/38

    wormgear

    Tin bronze vs 12m/s, continuous drive

    Al bronze vs 10m/s, with hard surface worm

    Brass Low sliding speed

    Grey iron Very low sliding speed, vs 2m/s

    Material of

    wormgear

    Cast

    process

    vs,

    m/s

    B

    N.mm-2

    'HP

    N.mm-2

    'FP

    N.mm-2

    HB of worm

    surface

    One-

    sided

    load

    Both-

    sided

    loadHB350 HRC>45

    Tin

    bronze

    ZCuSn10

    P1

    Sand

    mould

    12 220 180 200 51 32

    Metal

    mould

    25 310 200 220 70 40

    ZCuSn5P

    b5Zn5

    Sand

    mould

    10 200 110 125 33 24

    Metalmould

    12 250 135 150 40 29

    Table 3-10 Common materials of wormgear and allowable stress

    Table 3-10 continued

  • 7/26/2019 CH3 Worm Gear Design-1

    37/38

    Material of

    wormgear

    Cast

    process

    vs,

    m/s

    BN.mm-2

    'HPN.mm-2

    'FPN.mm-2

    HB of worm

    surface

    One-

    sided

    load

    Both-

    sided

    loadHB350 HRC>45

    Al

    bron

    ze

    ZCunAl10Fe

    3

    Sand

    mould

    10 490 82 64

    Metal

    mould

    540 90 80

    ZCuAl10Fe3

    Mn2

    Sand

    mould

    10 490 -- --

    Metal

    mould

    540 100 90

    Brass ZCuZn38Mn

    2Pb2

    Sand

    mould

    10 245 62 56

    Metal

    mould

    345 -- --

    Grey

    cast

    Iron

    HT150 2 150 40 25

    HT200 2-5 200 48 30HT250 2-5 250 56 35

    Homework-10

  • 7/26/2019 CH3 Worm Gear Design-1

    38/38

    Homework-101. Specify the rotational speed direction of worm or worm gear.

    2. Decide the force component directions of worm and wormgear at meshing point.

    Worm is the driving components.

    n11

    2

    n2

    2 1

    n1 1

    2

    n2

    Specify the helical direction ofworm and worm gear

    (1)(2)

    (3)