CH3 Worm Gear Design-2

Embed Size (px)

Citation preview

  • 8/10/2019 CH3 Worm Gear Design-2

    1/20

    3.4 Design of Worm and Wormgear

    Pitting, Scuffing and Wear first occur on the surface of wormgear.

    Contact strength of tooth surface and bending strength of tooth.(1) Contact strength of tooth surface

    For design:

    2

    2

    1 2

    HP 2

    15000m d KT

    z

    For Checking: 2H HP2

    1 2

    9400E A V

    TZ K K K

    d d

    T2-- Torque acting on wormgear, N.m;

    K-- Coefficient of load, commonly in range of 1.0-1.4.

    If well-distributed load, v23m/s and higher precise thanGrade 7, a smaller value. Otherwise, a bigger value.

    HP -- Allowable contact stress of wormgear,

    decided by material of wormgear.

    1. Strength of wormgear

  • 8/10/2019 CH3 Worm Gear Design-2

    2/20

    For tin-free bronze, brass and cast iron, HP in Table 3-11;

    For tin bronze, HP='HPZvsZN

    'HPAllowable contact stress if load cycle number NL=107,

    in Table 3-10.ZvsCoefficient of sliding speed, Fig. 3-10.

    ZNCoefficient of contact fatigue life, Fig. 3-11.

    Fig. 3-10 Coefficient of sliding speed

    Injection

    Churning

    Zvs

  • 8/10/2019 CH3 Worm Gear Design-2

    3/20

    Fig. 3-11 Coefficient of contact/bending fatigue life

    For cast iron

    For bronze and brass

    ZNo

    rYN

  • 8/10/2019 CH3 Worm Gear Design-2

    4/20

    Table 3-11 Allowable contact stress of tin-free bronze, HP

    Material of

    wormgearM. of worm

    Sliding speed vs, m/s

    0.25 0.5 1 2 3 4 6 8

    Al-

    bronze

    ZCuAl10Fe3

    Steel,

    Hardening - 250 230 210 180 160 120 90

    ZCuAl10Fe3

    Mn2

    Steel,

    Hardening- 250 230 210 180 160 120 90

    BrassZCuZn38Mn2

    Pb2

    Steel,

    Hardening-- 215 200 180 150 135 95 75

    Grey

    cast

    iron

    HT150,

    HT200

    Steel,

    H.T.160 130 115 90 -- -- -- --

    HT250Steel,

    H.T./Hardening140 110 90 70 -- -- -- --

    ZECoefficient of Elasticity, Table 3-12.

    Material of

    worm

    Material of wormgear

    Cast

    tin bronze

    Cast

    Al bronze

    Cast

    Al brass

    Grey cast

    iron

    Nodular cast

    iron

    Steel 155 156 157 162 182

    Table 3-12 Coefficient of Elasticity

  • 8/10/2019 CH3 Worm Gear Design-2

    5/20

    Table 3-13 Overload Coefficient

    Power sourceDriven machine

    Uniform Moderate shock Heavy shock

    Electrical motor,

    Steam turbine0.8-1.25 0.9-1.5 1.0-1.75

    Multi cylinder

    engine0.9-1.5 1.0-1.75 1.25-2.0

    Single cylinderengine

    1.0-1.75 1.25-2.0 1.5-2.25

    KAOverload coefficient, Table 3-13.

    KVDynamic load coefficient

    If v2

    3m/s, KV

    =1.0-1.1;

    If v2>3m/s, KV=1.1-1.2.

    KLoad distribution coefficient

    If uniform load, K=1.0;

    If variable load, K=1.1-1.3.

  • 8/10/2019 CH3 Worm Gear Design-2

    6/20

    (2) Bending strength of wormgear tooth

    For design: 21 2 FS

    FP 2

    600m d KT Y

    z

    For Checking: 2 A V F FS FP

    1 2

    666T K K K Y Y

    d d m

    FPAllowable bending stress of wormgear, N/mm2, which

    relates to the material of worm gear tooth, satisfying,FP= 'FPYN

    'FP Allowable bending stress if number of load cycles

    NL=106, Table 3-10.

    YNCoefficient of bending fatigue life, Fig. 3-11.

    YFSCombined coefficient of tooth profile, YFS=YFaFSa,

    in Table 2-20 and Table 2-21,

    Equivalent teeth number ze2=z2/cos3.

    YCoefficient of lead angle, Y=1- /120.

  • 8/10/2019 CH3 Worm Gear Design-2

    7/20

    2. Stiffness of worm

    Surface hardness of worm is high, but worm shaft will deform at

    the engagement point under the radial force and tangential force.

    A great deflection will cause unbalanced load or interference,and damage the engagement of worm and wormgear.

    For Checking:

    2 2

    1 1 3

    1 P48

    t rF Fy L y

    EI

    Ft1Tangential force on worm;Fr1Radial force on worm;

    EModulus of elasticity of worm material, if a steel worm,

    E=2.07

    105N/mm2;

    IMoment of inertia at the critical section, mm4,

    I=df14/64, where, df1dia. of dedendum circle;

    L Span between supporting points, decided by structure design,

    initial value L=0.9d2, d2-dia. of pitch circle of wormgear;

    ypAllowable deflection, in the range of yp=(0.0010.0025)d1,

    d1diameter of pitch circle of worm;

  • 8/10/2019 CH3 Worm Gear Design-2

    8/20

    3. Thermal equilibrium of worm drive

    For the self-locking worm drive, the efficiency is as low as 50%.

    Under closed and continuous driving conditions, there will be

    overheatto deteriorate the lubrication.

    Finally, it will cause failure.

    In worm drive, the power of heat loss is

    1 1sP P P1- Inputting power;

    - Total efficiency.

    Radiating power of in unit time is

    1 2cP kA t t

    k- Thermal conductivity,

    14-17.5 W/(m2

    .C) under good ventilation,8.7-10.5 W/(m2.C) under poor ventilation;

    ACooling area, estimating by A=0.33(a/100)1.73, ais the

    center distance between worm and worm gear, mm.

    t1

    Allowable temperature of lubrication, commonly 95;

    t2Environment temperature, commonly 20.

  • 8/10/2019 CH3 Worm Gear Design-2

    9/20

    11 2

    195

    Pt t

    kA

    Worm drive must under the allowable temperature, so

    If the thermal equilibrium can not be satisfied, Some measures

    need to be adopted to increase heat dissipation .

    Cooling waterVentilator Circulating lubrication

    Fan

    Oil Lubricating oil Oil pump

    Cooler

    Filter

  • 8/10/2019 CH3 Worm Gear Design-2

    10/20

    Example ProblemTry to design the worm drive for hoister.

    Given:

    (1) Inputting power of worm P1=7.5KW;

    (2) Inputting rotational speed n1=1450r/min;(3) Speed ratio i=20;

    (4) Load on driven machine is uniform;

    (5) Slight shock from power source;

    (6) Life expectancy is 5 years, 300 days/year, 8 hours/ day;(7) Worm is arranged below the wormgear;

    (8) Small batch production;

    Solution

    (1) Worm type, precision grade and materialConsidering small inputting power, and medium inputting rotational

    speed, we can choose ZA worm, and precision grade Grade 8.

    Material of worm: Steel 45, Case hardening, Hardness HRC=45-50.

    Material of wormgear: ZCuSn10P1, sand mould casting process.

  • 8/10/2019 CH3 Worm Gear Design-2

    11/20

    (2) Teeth of worm and wormgear

    Speed ratio i=20, by Table 3-4, z1=2, z2=iz1=40.

    Rotational speed of worm gear n2=n1/i=1450/20=72.5r/min.

    (3) Allowable contact stress of worm gearMaterial of worm gear is tin bronze, so HP='HPZvsZN

    By Table 3-10, 'HP=200N/mm2.

    By Fig. 3-8, the estimated sliding speedv

    s=7m/s, churning lubrication.By Fig. 3-10, Coefficient of sliding speed Zvs=0.87.

    Wormgear rotates in unidirectional direction, No. of load cycle on

    wormgear is

    NL=60n2th=60

    1

    72.5

    5

    300

    8=5.22

    107

    By Fig. 3-11, Coefficient of life ZN=0.8.

    HP='HPZvsZN= 200N/mm2

    0.87

    0.8=139.2N/mm2

  • 8/10/2019 CH3 Worm Gear Design-2

    12/20

    (4) Designing by contact stress

    Load coefficient K=1.1, by Table 3-8, the estimated efficiency of

    worm drive =0.8, then the torque on worm gear is

    T2= T1i =9550 P1/n1i =9550 7.5/1450 20 0.8=790.3 N.m2

    2

    1 2

    HP 2

    15000m d KT

    z

    By

    2

    2 3

    1

    150001.1 790.3 6309.12mm

    139.2 40m d

    By Table 3-3, m2d1is about 6400 mm3, then we have m=8mm,

    d1=100mm, q=12.5.

    (5) Calculating Geometrical parameters

    Dia. of pitch circle of wormgear d2=mz2=840=320mm.

    Lead angle of worm tan =z1/q=2/12.5=0.16, then =9.09.

  • 8/10/2019 CH3 Worm Gear Design-2

    13/20

    Face width of wormgear

    2 2 0.5 1 2 8 0.5 12.5 1 mm=66.788mmb m q

    We can set b2=68mm.

    The center distance between worm and wormgear

    a=0.5(d1+d2)=0.5(100+320)mm=210mm

    (6) Linear speed ,and efficiency of worm gear

    Linear speed of wormgear

    v2=d2n2/(601000)=320725/(601000)=1.21m/s

    Relative sliding speed

    vs=v1/cos =d1n1/(60

    1000)

    cos 9.09=7.69m/sBy Table 3-7, Equivalent angle of frictione=1 03 =1.05 , we

    have

    1

    tan tan 9.090.894

    tan tan 9.09 1.05e

  • 8/10/2019 CH3 Worm Gear Design-2

    14/20

    Efficiency of churning 2=0.96, Efficiency of rolling bearing

    3=0.99, we have

    = 123=0.894

    0.96

    0.99=0.85

    Approximating to the estimated

    value

    (7) Checking the contact strength

    Torque on the worm gear

    T2= T1i =9550 P1/n1i=9550 7.5/1450 20 0.85=839.7N.m

    By Table 3-12, coefficient of elasticity ZE=155.

    By Table 3-13, overload coefficient KA=1.

    As v2=1.21m/s

  • 8/10/2019 CH3 Worm Gear Design-2

    15/20

    666T K K K

  • 8/10/2019 CH3 Worm Gear Design-2

    16/20

    2 A V

    F FS

    1 2

    FP

    666

    666 790.3 1.05 14.04 0.92 8.03

    100 320 8

    T K K K Y Y

    d d m

    Bending strength is OK.

    (9) Checking stiffness of worm

    Tangential force

    6

    1

    1

    1

    7.52 9.55 10

    2 1450987.93N

    100t

    TF d

    Radial force

    3

    2

    r1 a

    2

    2 2 839.7 10tan tan 20 1910.2N

    320

    TF

    d

    Span between supporting points2

    0.9 0.9 320 288L d

    Moment of inertia at the critical section

    44

    6 4f1 100 2.5 8

    2.01 10 mm64 64

    dI

    Allowable deflexion

    10.001 0.001 100 0.1mmPy d

    W h th d fl ti f

  • 8/10/2019 CH3 Worm Gear Design-2

    17/20

    We have the deflection of worm2 2

    1 1 3

    1

    2 2

    3

    5 6

    48

    987.93 1910.2

    28848 2.1 10 2.01 10

    0.0025mm

    t r

    P

    F Fy L

    EI

    y

    Stiffness of worm is OK.

    (10) Calculating the thermal equilibrium

    Efficiency of worm drive =0.85, thermal conductivity

    k=15W/(m2), temperature of environment t2=20,

    Cooling area, estimated by

    A=0.33(a/100)1.73=0.33(210/100)1.73=1.191m2

    1

    1 2

    1 7500 1 0.85

    20 82.97 9515 1.191

    P

    t tkA

    Thermal equilibrium is OK.

    (11) Calculating other geometrical parameters (Omitted)

    (12) Designing structure (Omitted)

    3 5 S f W G d i

  • 8/10/2019 CH3 Worm Gear Design-2

    18/20

    Worm structure:

    Commonly Worm in a form of shaft worm shaft

    3.5 Structure of Worm Gear drive

    1) Non-tool withdrawal groove, by milling the worm teeth

    2) Tool withdrawal groove, by turning the worm teeth

    L

    df1

    L

    df1

    T. W. G. T. W. G.

    W

  • 8/10/2019 CH3 Worm Gear Design-2

    19/20

    ormgear tooth width angle 90~130

    Thickness of wormgear c 1.6m+1.5 mm

    Width of flange B 0.75da 0.67 da

    Dia. of wormgear addendum de2 da2 +2m da2 +1.5m da2 +2m

    o. of thread z1 1 2 4

    Wormgear structure

    Unit wormgear Combined

    by interference fit

    de2

    de2

    de2

    de2

    BB B B

    c cc

    Combined

    by bolt connection

    Combined

    by casting

    Set screw 4~8, =2~3mm

  • 8/10/2019 CH3 Worm Gear Design-2

    20/20