23
Chapter 1 Chapter 1 Measurment Introduction to Physics Introduction to Vectors Introduction to Calculus( 微微微 Chapter 0 Preface

Chapter 1 Chapter 1 Measurment Introduction to Physics Introduction to Vectors Introduction to Calculus( 微积分 ) Chapter 0 Preface

Embed Size (px)

Citation preview

Chapter 1Chapter 1 Measurment

Introduction to Physics

Introduction to Vectors

Introduction to Calculus( 微积分 )

Chapter 0 Preface

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Introduction to Physics

1) Objects studied in physics

2) Methodology for studying physics

3) Some other key points

(See 动画库 \ 力学夹 \ 绪论 .exe)

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Introduction to Vectors

A scalar is a simple physical quantity that does not depend on direction.

mass, temperature, volume, work…

A vector is a concept characterized by a magnitude and a direction.

force, displacement, velocity…

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

1) Representation of vectors

2) Addition and subtraction of vectors

3) Dot and cross products

(See 动画库 \ 力学夹 \0-4 矢量运算 .exe)

(See 动画库 \ 力学夹 \0-4 矢量运算 .exe)

Chapter 1Chapter 1 Measurment

θ A

B

θ A

B

?

?

Chapter 0 Preface

)(||| θcos|BABA

3.1) Dot product:

θ A

B

θ A

B

)(Bcos

)(

Acos

No problem , if θ

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

kAjAiAA zyx

kBjBiBB zyx

?BA

)BBB()( kjikAjAiABA zyxzyx

zzyyxx BABABA

zzyyxx BABABABA

ABBA

22 A|AAA

|

CABACBA

)(

Prove it?

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

3.2) Cross product: nABsinBA)(

is a unit vector perpendicular to both and .

, , and also becomes a right handed system. nn

The length of   ×  can be interpreted as the area of the parallelogram having A and B as sides.

A

B

A

B

A

B

A

B

BA

n

BA-AB

θ

AB|BA| ,BA If

0BA ,B//A If

Scalar triple product:

?)( CBA

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

kAjAiAA zyx

kBjBiBB zyx

?BA

)BBB()( kjikAjAiABA zyxzyx

jBABAiBABA zxxzyzzy

)()(

kBABA xyyx

)(

zyx

zyx

BBB

AAA

kji

BA

jBABA zxxz

)( kBABA xyyx

)(

iBABA yzzy

)(

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Introduction to Calculus( 微积分 )1) Limit of a function

Lxfcx

)(limƒ(x) can be made to be as close to L as desired by making x sufficiently close to c.

“The limit of ƒ of x, as x approaches c, is L."

Note that this statement can be true even if       or ƒ(x) is not defined at c. Lcf )(

1

1)(

2

x

xxfExample:

2|1)(lim 11

xx

xxf

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

2) Derivative of a function( 函数的导数 )

• Motion with constant velocity

t

s

t1 t2

12

12 )()()(

tt

tststv

t

s

t1 t2

• Motion with changing speed

12

12 )()()(

tt

tststv

?

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

How to find the instantaneous speed at t1?

12

121

)()(lim)(

12 tt

tststv

tt

• Motion with changing speed

t

tsttstv

t

)()(lim)(

0

tt 1ttt 2

dt

ds

Derivative of s

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

For general function, its derivative is defined as:

x

xfxxf

dx

xdfx

)()(lim

)(0

')(' yxf

x

f(x)

x1 x2

A

A’

tangent

The meaning of derivative of a function:

x

y

tan

1

0limtanlim

xxAA' x

AA'

)(' 1xftan

tan)(' 1 xf

Chapter 1Chapter 1 Measurment

How big is an infinitesimal?...

0x is infinitesimal.x

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Example:2xy

xx

xxx

x

xxx

x

xfxxfy

xx

x

22

lim)(

lim

)()(lim'

2

0

22

0

0

Some basic formulae:

0)'( c

xx ee )'(

1)'( xx)( numberrealais

xx cos)'(sin

xx sin)'(cos

xx

1)'(ln

Chapter 1Chapter 1 MeasurmentSome basic rules:

Chapter 0 Preface

'')'( vuvu '')'( uvvuuv

)0(''

)'(2

vv

uvvu

v

u

)(),( xvvfy )(')(')(' xvvfxy

dx

dv

dv

dy

dx

dyor

For a vector:

kdt

dAj

dt

dAi

dt

dA

dt

tAd zyx

)(

')'( CuCu ,C is a const.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

3) Differential of a function ( 函数的微分 )

If f(x) has its derivative at point x, then f ’(x)dx is its differential at that point.

dxxfdy )('dx

Differential of the function

Differential of the variable

So f ’(x) is also called differential quotient ( 微商 ) dx

dy

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

dvduvud )(udvvduuvd )(

)0()(2

vv

udvvdu

v

ud

CduCud )( ,C is a const.

Operation rule is the same as that for derivative:

......

One application of differential

))((')()( 000 xxxfxfxfy 0xxif

))((')()( 000 xxxfxfxf

00 xWhen xffxf )0(')0()(

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Example:

0,)0cos(|)'(sin)0sin()sin( 0 xxxxxx x

Following approximate formulae often used in physics ( ) :

xx )sin(

Nxx N 1)1(

xx2

111

xx )1ln(

xex 1

xx )tan(

......

0x

xffxf )0(')0()(

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

4) Integrals( 积分 )

• Motion with constant velocity

• Motion with changing speed

0vtS

t

v

t00

S

t

v

t00

S

How to find S?

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

t

v

t00

t

i

ttvttvttvS N )(......)()( 21

NtifttvN

ii ,0,)(

1

0

01

0)()(lim

tN

ii

Nt

dttvttvS

In general, the integral from a to b of f(x) with respect to x is expressed as:

b

adxxf )( definite integral

dxxf )( indefinite integral

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

How to find an integral of a function?

)()()( abxdb

a

If function f(x) is continuous on the interval [a, b] and if on the interval (a, b), then )()(' xfx

b

a

b

a

b

adx

dx

xddxxdxxf

)()(')(

)()('),()()( xfxabdxxfb

a

)()(',)()( xfxCxdxxf

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Example: ?12

1 dx

x

xx

1)'(ln xx ln)(

2ln|ln1 2

1

2

1 xdx

x

Basic integral formulae:

Cxdx

Ckxkdx

Cxxdx sincos

Cxxdx cossin

Cedxe xx

Cxdxx

ln1

)1(,1

1

aCa

xdxx

aa

k,C: const.