Chapter 5 Expectations

  • Upload
    helki

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

Chapter 5 Expectations. 主講人 : 虞台文. Content. Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables Important Properties of Expectation Conditional Expectations Moment Generating Functions Inequalities - PowerPoint PPT Presentation

Citation preview

  • Chapter 5 Expectations:

  • ContentIntroductionExpectation of a Function of a Random VariableExpectation of Functions of Multiple Random VariablesImportant Properties of ExpectationConditional ExpectationsMoment Generating FunctionsInequalitiesThe Weak Law of Large Numbers and Central Limit Theorems

  • Chapter 5 ExpectationsIntroduction

  • Definition ExpectationThe expectation (mean), E[X] or X, of a random variable X is defined by:

  • Definition ExpectationThe expectation (mean), E[X] or X, of a random variable X is defined by:provided that the relevant sum or integral is absolutely convergent, i.e.,

  • Definition ExpectationThe expectation (mean), E[X] or X, of a random variable X is defined by:provided that the relevant sum or integral is absolutely convergent, i.e.,

  • Example 1Let X denote #defectives in the experiment.

  • Example 2

  • Example 3pdf

  • Example 3

  • Chapter 5 ExpectationsExpectation of a Function of a Random Variable

  • The Expectation of Y=g(X)

  • The Expectation of Y=g(X)

  • Example 4

  • Example 5

  • Moments

  • X :

  • Example 6X ~ B(n, p)E[X]=? Var[X]=?

  • Example 6X ~ B(n, p)E[X]=? Var[X]=?

  • Example 6X ~ B(n, p)E[X]=? Var[X]=?

  • Example 7X ~ Exp()E[X]=? Var[X]=?

  • Summary of Important Moments of Random Variables

  • Chapter 5 ExpectationsExpectation of Functions of Multiple Random Variables

  • The Expectation of Y = g(X1, , Xn)

  • Example 8p(x, y)

  • Example 9

  • Chapter 5 ExpectationsImportant Properties of Expectation

  • LinearityE1.E2.X1, X2, , Xn

  • Example 10XYE[X+Y] = E[X]+E[Y].

  • A QuestionXYE[X+Y] = E[X]+E[Y].?

  • IndependenceE3.If random variables X1, . . ., Xn are independent, then

  • Example 11XYE[XY] = E[X]E[Y].

  • A QuestionXYE[XY] = E[X]E[Y].?

  • Example 12

  • A Question?

  • The Variance of SumDefine

  • The Variance of Sum

  • The Covariance

  • The Covariance

  • Example 13

  • A Question?

  • Properties Related to CovarianceE4.E5.

  • Properties Related to CovarianceE4.E5.Fact:

  • Properties Related to CovarianceE4.E5.E6.E7.

  • Example 14

  • Example 14

  • More Properties on CovarianceE8.

  • More Properties on CovarianceE8.E9.

  • Example 16

  • Example 16

  • Example 16

  • Theorem 1 Schwartz Inequality

  • Theorem 1 Schwartz InequalityPf)

    E=*E

  • Theorem 1 Schwartz InequalityPf)

    E

  • Theorem 1 Schwartz InequalityPf)

    E

  • CorollaryE10.Pf)

  • Correlation CoefficientE11.

  • Correlation CoefficientE11.Fact:Is the converse also true?

  • Correlation CoefficientE11.E12.Pf)

    0

    0

  • Example 18

  • Example 18

  • Example 18

  • Example 19

  • Example 19Method 1:

  • Example 19Method 2:Facts:

  • Chapter 5 ExpectationsConditional Expectations

  • Definition Conditional Expectations

  • Facts a function of X (x)See text for the proofE13.

  • Conditional Variances

  • Example 20

  • Chapter 5 ExpectationsMoment Generating Functions

  • Moment Generating FunctionsMomentsMoments

  • Moment Generating FunctionsThe moment generating function MX(t) of a random variable X is defined byThe domain of MX(t) is all real numbers such that eXt has finite expectation.

  • Example 21

  • Example 22

  • Summary of Important Moments of Random Variables

  • Moment Generating FunctionsThe moment generating function MX(t) of a random variable X is defined byThe domain of MX(t) is all real numbers such that eXt has finite expectation.MX(t) ?

  • Moment Generating Functions

  • Moment Generating Functions

  • Moment Generating Functions

  • Moment Generating Functions

  • Example 23

  • Example 23

  • Example 23

  • Example 23

  • Example 23

  • Correspondence or Uniqueness TheoremLet X1, X2 be two random variables.

  • Example 24

  • Example 24

  • Example 24

  • Example 24

  • Example 24

  • Theorem Linear TranslationPf)

  • Theorem ConvolutionPf)

  • Example 25

  • Example 25

  • Example 25

  • Example 25

  • Example 25

  • Example 26

  • Example 26

  • Example 26

  • Theorem of Random Variables Sum

  • Theorem of Random Variables SumWe have proved the above five using probability generating functions.They can also be proved using moment generating functions.

  • Theorem of Random Variables Sum

    ?

  • Theorem of Random Variables Sum

  • Theorem of Random Variables Sum

    ?

  • Theorem of Random Variables Sum

  • Theorem of Random Variables Sum

  • Theorem of Random Variables Sum

    ?

  • Theorem of Random Variables Sum

  • Theorem of Random Variables Sum

  • Chapter 5 ExpectationsInequalities

  • Theorem Markov InequalityLet X be a nonnegative random variable with E[X] = .Then, for any t > 0,

  • Theorem Markov InequalityDefineWhy?

  • Theorem Markov InequalityDefine

  • Example 27MTTF Mean Time To Failure

  • Example 27MTTF Mean Time To FailureBy MarkovBy Exponential Distribution

  • Theorem Chebyshev's Inequality

  • Theorem Chebyshev's Inequality

  • Theorem Chebyshev's InequalityFacts:

  • Theorem Chebyshev's InequalityFacts:

  • Example 28

  • Example 28

  • Chapter 5 ExpectationsThe Weak Law of Large Numbers andCentral Limit Theorems

  • The Parameters of a PopulationWe may never have the chance to know the values of parameters in a population exactly.

  • Sample Meaniid random variables

    iid: identical independent distributions Sample Mean

  • Expectation & Variance of

  • Expectation & Variance of

  • Expectation & Variance ofn?

  • Theorem Weak Law of Large NumbersLet X1, , Xn be iid random variables having finite mean .

  • Theorem Weak Law of Large NumbersLet X1, , Xn be iid random variables having finite mean .Chebyshev's Inequality

  • Central Limit TheoremLet X1, , Xn be iid random variables having finite mean and finite nonzero variance 2.

  • Central Limit TheoremLet X1, , Xn be iid random variables having finite mean and finite nonzero variance 2.

  • Central Limit Theorem

  • Central Limit Theorem

  • Central Limit Theorem

    =0 as n

  • Central Limit Theoremn0

  • Central Limit Theoremn

  • Central Limit Theorem

  • Central Limit Theorem

  • Central Limit TheoremLet X1, , Xn be iid random variables having finite mean and finite nonzero variance 2.

  • Normal ApproximationBy the central limit theorem, when a sample size is sufficiently large (n > 30), we can use normal distribution to approximate certain probabilities regarding to the sample or the parameters of its corresponding population.

  • Example 29Let Xi represent the lifetime of ith bulbWe want to findn > 30

  • Example 30n > 30

  • Example 30

    Chart4

    0.000000018

    0.0000003854

    0.0000040465

    0.0000277477

    0.0001397297

    0.0005509343

    0.0017708604

    0.004770481

    0.0109891437

    0.0219782874

    0.0386189907

    0.06018544

    0.08382972

    0.1050174515

    0.1189483379

    0.1223468618

    0.114700183

    0.0983144425

    0.077247062

    0.0557572778

    0.0370387631

    0.0226767938

    0.012810916

    0.0066839561

    0.0032226217

    0.0014363685

    0.0005919101

    0.0002254896

    0.0000793815

    0.0000258088

    0.0000077426

    0.0000021408

    0.0000005448

    0.0000001273

    0.0000000273

    0.0000000053

    0.000000001

    0.0000000002

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Sheet1

    00.0000000180.0000027363

    10.00000038540.0000108868

    20.00000404650.0000393803

    30.00002774770.0001295079

    40.00013972970.0003872148

    50.00055093430.001052559

    60.00177086040.0026012348

    70.0047704810.0058445527

    80.01098914370.0119388261

    90.02197828740.022172292

    100.03861899070.0374367532

    110.060185440.057467775

    120.083829720.0802027408

    130.10501745150.1017636458

    140.11894833790.1173909796

    150.12234686180.1231162606

    160.1147001830.1173909796

    170.09831444250.1017636458

    180.0772470620.0802027408

    190.05575727780.057467775

    200.03703876310.0374367532

    210.02267679380.022172292

    220.0128109160.0119388261

    230.00668395610.0058445527

    240.00322262170.0026012348

    250.00143636850.001052559

    260.00059191010.0003872148

    270.00022548960.0001295079

    280.00007938150.0000393803

    290.00002580880.0000108868

    300.00000774260.0000027363

    310.00000214080.0000006253

    320.00000054480.0000001299

    330.00000012730.0000000245

    340.00000002730.0000000042

    350.00000000530.0000000007

    360.0000000010.0000000001

    370.00000000020

    3800

    3900

    4000

    4100

    4200

    4300

    4400

    4500

    4600

    4700

    4800

    4900

    5000

    Sheet1

    Sheet2

    Sheet3

    00.0000000180.00000273630.95518350291.6973368496

    10.00000038540.0000108868

    20.00000404650.0000393803

    30.00002774770.0001295079

    40.00013972970.0003872148

    50.00055093430.001052559

    60.00177086040.0026012348

    70.0047704810.0058445527

    80.01098914370.0119388261

    90.02197828740.022172292

    100.03861899070.0374367532

    110.060185440.057467775

    120.083829720.0802027408

    130.10501745150.1017636458

    140.11894833790.1173909796

    150.12234686180.1231162606

    160.1147001830.1173909796

    170.09831444250.1017636458

    180.0772470620.0802027408

    190.05575727780.057467775

    200.03703876310.0374367532

    210.02267679380.022172292

    220.0128109160.0119388261

    230.00668395610.0058445527

    240.00322262170.0026012348

    250.00143636850.001052559

    260.00059191010.0003872148

    270.00022548960.0001295079

    280.00007938150.0000393803

    290.00002580880.0000108868

    300.00000774260.0000027363

    310.00000214080.0000006253

    320.00000054480.0000001299

    330.00000012730.0000000245

    340.00000002730.0000000042

    350.00000000530.0000000007

    360.0000000010.0000000001

    370.00000000020

    3800

    3900

    4000

    4100

    4200

    4300

    4400

    4500

    4600

    4700

    4800

    4900

    5000

    Sheet3

    0.000000018

    0.0000003854

    0.0000040465

    0.0000277477

    0.0001397297

    0.0005509343

    0.0017708604

    0.004770481

    0.0109891437

    0.0219782874

    0.0386189907

    0.06018544

    0.08382972

    0.1050174515

    0.1189483379

    0.1223468618

    0.114700183

    0.0983144425

    0.077247062

    0.0557572778

    0.0370387631

    0.0226767938

    0.012810916

    0.0066839561

    0.0032226217

    0.0014363685

    0.0005919101

    0.0002254896

    0.0000793815

    0.0000258088

    0.0000077426

    0.0000021408

    0.0000005448

    0.0000001273

    0.0000000273

    0.0000000053

    0.000000001

    0.0000000002

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Chart6

    0.0000027363

    0.0000108868

    0.0000393803

    0.0001295079

    0.0003872148

    0.001052559

    0.0026012348

    0.0058445527

    0.0119388261

    0.022172292

    0.0374367532

    0.057467775

    0.0802027408

    0.1017636458

    0.1173909796

    0.1231162606

    0.1173909796

    0.1017636458

    0.0802027408

    0.057467775

    0.0374367532

    0.022172292

    0.0119388261

    0.0058445527

    0.0026012348

    0.001052559

    0.0003872148

    0.0001295079

    0.0000393803

    0.0000108868

    0.0000027363

    0.0000006253

    0.0000001299

    0.0000000245

    0.0000000042

    0.0000000007

    0.0000000001

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Sheet1

    00.0000000180.0000027363

    10.00000038540.0000108868

    20.00000404650.0000393803

    30.00002774770.0001295079

    40.00013972970.0003872148

    50.00055093430.001052559

    60.00177086040.0026012348

    70.0047704810.0058445527

    80.01098914370.0119388261

    90.02197828740.022172292

    100.03861899070.0374367532

    110.060185440.057467775

    120.083829720.0802027408

    130.10501745150.1017636458

    140.11894833790.1173909796

    150.12234686180.1231162606

    160.1147001830.1173909796

    170.09831444250.1017636458

    180.0772470620.0802027408

    190.05575727780.057467775

    200.03703876310.0374367532

    210.02267679380.022172292

    220.0128109160.0119388261

    230.00668395610.0058445527

    240.00322262170.0026012348

    250.00143636850.001052559

    260.00059191010.0003872148

    270.00022548960.0001295079

    280.00007938150.0000393803

    290.00002580880.0000108868

    300.00000774260.0000027363

    310.00000214080.0000006253

    320.00000054480.0000001299

    330.00000012730.0000000245

    340.00000002730.0000000042

    350.00000000530.0000000007

    360.0000000010.0000000001

    370.00000000020

    3800

    3900

    4000

    4100

    4200

    4300

    4400

    4500

    4600

    4700

    4800

    4900

    5000

    Sheet1

    Sheet2

    Sheet3

    00.0000000180.00000273630.95518350291.6973368496

    10.00000038540.0000108868

    20.00000404650.0000393803

    30.00002774770.0001295079

    40.00013972970.0003872148

    50.00055093430.001052559

    60.00177086040.0026012348

    70.0047704810.0058445527

    80.01098914370.0119388261

    90.02197828740.022172292

    100.03861899070.0374367532

    110.060185440.057467775

    120.083829720.0802027408

    130.10501745150.1017636458

    140.11894833790.1173909796

    150.12234686180.1231162606

    160.1147001830.1173909796

    170.09831444250.1017636458

    180.0772470620.0802027408

    190.05575727780.057467775

    200.03703876310.0374367532

    210.02267679380.022172292

    220.0128109160.0119388261

    230.00668395610.0058445527

    240.00322262170.0026012348

    250.00143636850.001052559

    260.00059191010.0003872148

    270.00022548960.0001295079

    280.00007938150.0000393803

    290.00002580880.0000108868

    300.00000774260.0000027363

    310.00000214080.0000006253

    320.00000054480.0000001299

    330.00000012730.0000000245

    340.00000002730.0000000042

    350.00000000530.0000000007

    360.0000000010.0000000001

    370.00000000020

    3800

    3900

    4000

    4100

    4200

    4300

    4400

    4500

    4600

    4700

    4800

    4900

    5000

    Sheet3

    0.000000018

    0.0000003854

    0.0000040465

    0.0000277477

    0.0001397297

    0.0005509343

    0.0017708604

    0.004770481

    0.0109891437

    0.0219782874

    0.0386189907

    0.06018544

    0.08382972

    0.1050174515

    0.1189483379

    0.1223468618

    0.114700183

    0.0983144425

    0.077247062

    0.0557572778

    0.0370387631

    0.0226767938

    0.012810916

    0.0066839561

    0.0032226217

    0.0014363685

    0.0005919101

    0.0002254896

    0.0000793815

    0.0000258088

    0.0000077426

    0.0000021408

    0.0000005448

    0.0000001273

    0.0000000273

    0.0000000053

    0.000000001

    0.0000000002

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0