35
/MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Chapter 2

Iron-Carbon AlloysⅡ

Page 2: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Cooling path for the formation of bainite

Bainite

Ms 약간 위의 적정온도까지 빠르게냉각한 후,

transformation

Transformation of austenite to bainite

Page 3: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Transformation of austenite to bainite

• upper bainite (350~550°C)

– non-lamella 구조, bar or rod 형태의 cementite 형성

– C 의 diffusion 에 의해 형성되므로 cementite 가 먼저 형성될지, ferrite 가먼저 형성될지 알 수 없음

– 어떤 경우든, 한 상이 형성되고 나면 다른 한 상은 먼저 형성된 phase 의boundary 에 생성됨

• lower bainite (250~350°C)

– diffusion rate 가 느리기 때문에 ferrite plate 내부에 iron carbide 가precipitation

– supersaturated ferrite 가 austenite 로부터 먼저 형성된 후 ferrite 내부에cementite 가 precipitation 됨

– lower bainite 는 tempered martensite 와 차이가 있음

Page 4: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• upper bainite (350~550°C)

• lower bainite (250~350°C)

Transformation of austenite to bainite

Page 5: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Upper bainite

‘Lath’ shape

Upper bainite in medium-carbon steel

• Upper bainite

– Consists of needles or laths of ferrite

with precipitates

between the laths

• Schematic growth mechanism

carbide

Page 6: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Lower bainite

• Lower bainite

– at sufficiently low T (below ~ °C)

– Microstructure change: lath → plate

– Finer carbide dispersion

• Schematic growth mechanism

Lower bainite in 0.69% C low-alloy steel

Page 7: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Transformation to martensite in pure Fe

The displacive fcc → bcc transformation in pure Fe

– Fraction of martensite: function of only

– MS : the temperature at which martensite starts to form

– MF : the temperature at which martensite to form

– M50, M90

Page 8: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Transformation to martensite in eutectoid steel

The TTT diagram for a 0.8% carbon (eutectoid) steel

– Quench rate at °Cs-1→ miss the nose of the 1% curve

– Quenched into cold water → not all the g will transform to martensite

– “retained” g which can only be turned into martensite below MF(-50°C)

Page 9: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• Hypoeutectoid Steel • Hypereutectoid Steel

nose of the diagram to shift

difficult to obtain 100% martensite

region exist above

nose of the diagram to shift left

to exist above

Isothermal transformation of noneutectoid steels

Page 10: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• CCT diagram

• 실제 산업 현장에서는 IT

(isothermal transformation) 이아니라 CCT임

• IT-diagram 에 비해 CCT-

diagram 의 경우 더 낮은 온도,

더 긴 시간 쪽으로 이동

• IT 보다 CCT 가 더 다양한 temp

range 에서 transformation 하므로 똑같은 100% pearlite 라고할지라도 microstructure 차이생김

Continuous-Cooling Transformations (CCT)

Page 11: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• CCT diagram

• A: full anneal, furnace cooling

→ pearlite

• B: normalizing (상온 냉각)

→ pearlite

• C: oil quench

→ pearlite &

(split transformation)

• D: water quench

→ martensite

• E: cooling rate,

the slowest rate of cooling

without obtaining pearlite

Continuous-Cooling Transformations (CCT)

Page 12: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

TTT and CCT for 4340 steel (Ni, Cr, Mo, Mn, 0.4C)

Page 13: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

TTT for 4340 steel

Page 14: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

CCT for 4340 steel

Page 15: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• normalizing

• cold working & annealing

• full annealing

• process annealing

• spheroidizing annealing

Heat treatment for the combination of strength and ductility

Page 16: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• Austenizing + air cooling

• 100% austenite 로 만든 후 air cooling 시킨다 이때, hypoeutectoid steel

은 온도 이상, hypereutectoid steel 은 온도 이상에서 열처리하고air cooling 시킴

• Main purposes of normalizing

I. To refine the grain structure

II. To reduce segregation in castings or forgings

III. To harden the steel slightly

Normalizing

Page 17: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Annealing (for most metals & alloys after cold work)

• Full annealing

– austenizing + slow cooling

– 즉, austenite 로 만든 후 slow cooling, 이때 hypoeutectoid steel 은A3 온도 이상, hypereutectoid steel 은 A1 온도 이상에서austenizing

c.f. normalizing: austenizing + air cooling

• Process annealing

– 약 0.3 wt% C 이하 hypoeutectoid steel 을 A1 온도 이하에서annealing 하는 것, dislocation density 를 줄여서 하게 만듬

– frequently referred to as stress-relief or recovery

Page 18: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Microstructural change during annealing

• Recovery

- rearrangement of into lower energy configurations

• Recrystallization

- formation of new -free grains by the migration of angle grain

boundaries

• Grain growth (+ Coarsening)

- growth of grains at the expense of grains

Page 19: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Deformed high purity Fe at different annealing T

As cold rolled Annealed at 300°C Annealed at 370°C

Annealed at 460°CAnnealed at 410°C Annealed at 650°C

Page 20: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Formation of a nucleus at GB in recrystallization

Page 21: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Grain Growth (of soap cells in a flat container)

Page 22: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

정의: 재결정 온도 이하에서 재료에 을 가하여 hardening 시키는 것

의미: Cold working 을 하게 되면 grain 들의 elongation 이 발생하고, 각 grain

내의 dislocation density 가 하고 그 dislocation 들이 tangle 하게 되어서 dislocation cell 을 형성한다. 이때 cold working 을 많이 할수록dislocation density 가 증가하고, cell wall 의 thickness 가 증가해도 cell

의 부피가 감소하면서 재료의 는 증가한다.

(a) Low-Carbon steel

cold-rolled 65%

(b) Thin foil electron

micrograph of the

cold-rolled 65%

Cold working (strain hardening)

Page 23: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• 열처리하면 dislocation density 도 낮아지고 dislocation 이 lower energy

state 로 dislocation climb 와 rearrangement 가 일어난다. 이때 subgrain

boundary 가 형성되어 subgrain 을 만들게 된다. 즉 subgrain 을 형성하는low-angle grain boundary 를 만드는 것을 이라 한다.

• recovery 동안에 mechanical change 는 거의 없으나 는 defect

의 감소로 인해 증가한다.

• recovery 의 driving force 는 stored energy 의 release 이다.

Recovery

Page 24: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

0.06% Carbon Steel

partially recrystallized

Recrystallization and grain growth

• Recrystallization

– cold working 시 변했던 mechanical properties 들이 원래 상태로 돌아간다.

이때의 driving force 또한 stored strain energy 의 release 이고,

recrystallization 의 과정은 과 과정이다.

• Grain growth

– equlibrium size 에 도달할 때까지 large grain 들은 smaller grain 들을consume 함으로써 grain growth 가 일어나고, 이때의 driving force 는 grain

growth 에 따른 단위부피당 free energy 의 감소이다.

fully recrystallized

Page 25: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• Fully martensite 를 얻기 위해서는 critical cooling rate 보다 빨리 cooling

시켜야 한다. 그러나 실제강의 경우, 두께로 인해 cooling 시 내·외부간의온도 차가 생기게 되어 very thin steel 을 제외하고는 fully martensite 를 얻기 힘들다. 이러한 문제를 해결하기 위하여 등의 원소를 첨가하여 nose 를 더 time 쪽으로 이동시켜서 slow cooling 시켜도martensite 를 쉽게 만들 수 있게 한다.

(a) Water quench

(b) Oil quench

Residual stress- contraction due to cooling

- expansion due to fcc to bcc

transformation

Quench hardening

Page 26: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

• A1 온도 이하에서 process annealing 함으로써 residual stress 를시킴

• martensite 는 hardness 와 strength 는 크지만, toughness 와 ductility 는낮다. tempering 을 통해 hardness 와 strength 는 약간 감소하지만toughness 와 ductility 는 크게 시킬 수 있다.

Tempering (for steels after quenching)

Page 27: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Tempering

• Segregation of carbon atoms

– redistribution of carbon to lower energy sites

such as dislocation, grain or lath boundaries

– rearrangement of carbon into clustering in high carbon martensite

• Carbide precipitation

– ε-carbide: Fe2.4C hcp structure, 100~200°C

– Hăgg (χ: chi) carbide: Fe5C2 monoclinic, 200~300°C

– cementite: Fe3C orthorhombic, 250~700°C

• Decomposition of retained austenite

– austenite → ferrite + cementite

– transformation to bainite

• Recovery and recrystallization of the ferrite matrix

Page 28: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

ε-carbide

Tempering

• ε-carbide: Fe2.4C hcp structure, 100~200°C

– carbon 함량이 0.2 wt% C 이상의 plain carbon steel 을 100~200°C 에서tempering 하면 ε-carbide precipitation 됨

– 그러나 0.2 wt% C 보다 낮은 plain carbon steel 의 경우, carbon atoms 이dislocation 주위보다 energy 가 낮은 dislocation site 에 모두 수용되므로 ε-

carbide 가 precipitation 되지 않음

– structure 이므로 온도를 더 올리면 Hăgg carbide 나 cementite

형성

• Hăgg (χ: chi) carbide: Fe5C2 monoclinic

– metastable structure, 200~300°C

– sometimes used as a catalyst for chem rxn

Page 29: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

CementiteTempered martensite showing

progressive agglomeration of cementite

(400~600°C)

Tempering

• cementite: Fe3C orthorhombic, 250~700°C

– 낮은 온도에서의 초기 cementite 의 모양은 -like 형태

– 낮은 온도에서는 martensite lath boundary 주위에 cementite 가 needle-

like 형태로 생성되고, 높은 온도에서는 바로 ferrite grain boundary 주위에spherical 형태로 바로 precipitation 됨

– 낮은 온도에서 높은 온도로 올라갈 경우, 형태가 바뀌는 이유는 형성된carbide 의 coalescence 때문이고 이 때 driving force 는 ferrite matrix 내의cementite 의 surface energy 감소

Page 30: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Recovery

Recovered Microstructure 10 minutes at 600°C

Recrystallization

0.18% C Steel 600°C for 96 h 0.18% C Steel 700°C for 8h

Tempering

partial recrystallization complete recrystallization

Page 31: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Effect of tempering on the hardness

0.026~0.39%C Steel 0.35~1.2%C Steel

Tempering

Page 32: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

- grain size 가 작을수록 대부분 properties 를 향상시킬 수 있음

- 단, 의 경우는 예외, creep rate 은 grain size 가 작을수록 증가함,

creep 은 grain boundary 에서 함으로써 propagation 함,

따라서 grain size 가 작을수록 단위부피당 grain boundary 가 커지므로creep rate 증가

N: 100배 확대했을 때 in2 당 grains 의 수n: ASTM grain-size number

Grain size effect

Page 33: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

Effect of austenite grain

size on proeutectoid

ferrite distribution in

hypo steel air cooled

from (a) 900C (b) 1150C

Grain size effect

Page 34: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

100% bainite 를 생성하기 위한 isothermal heat treatment process

Ms 위 적정온도까지 빠르게 cooling 시킨 후 100% 를 얻을 때까지 충분한 시간 동안 holding 시킨 후 상온까지 air cooling 시킴

Austempering

Page 35: Chapter 2triangle.kaist.ac.kr/lectures//MS371/2019 spring/Chap 2... · 2019-03-05 · /MS371/ Structure and Properties of Engineering Alloys Chapter 2 Iron-Carbon AlloysⅡ

/MS371/ Structure and Properties of Engineering Alloys

열처리된 재료의 을 최소화 시키기 위해서 하는 modified

quenching 과정이다. 즉, 빠른 quenching 에 따른 residual stress,

cracking, distortion 을 최소화하기 위한 process

• steel 을 austenizing 한 후 steel 을 Ms 온도 약간 위나 약간 아래 온도까지quenching 시킴

• steel 전체에 걸쳐 온도가 해질 때까지 온도를 일정 시간 동안 유지함

• steel 의 surface 와 center 사이 온도 차가 매우 커지지 않을 정도의 rate

로 cooling 함

Martempering (=Marquenching)