Chp1 (2).ppt

Embed Size (px)

Citation preview

  • 8/19/2019 Chp1 (2).ppt

    1/63

    The Organic Chemistry of

    Enzyme-Catalyzed Reactions

    Revised Edition

    Professor Richard B. SilvermanDepartment of Chemistry

    Department of Biochemistry, MolecularBiology, and Cell Biology

    Northestern !niversity

  • 8/19/2019 Chp1 (2).ppt

    2/63

    "he #rganic Chemistry ofEn$yme%Cataly$ed Reactions 

    Chapter &

     En$ymes as Catalysts

  • 8/19/2019 Chp1 (2).ppt

    3/63

    'or pu(lished data regarding any en$yme see)http)**.(renda%en$ymes.info*

    NomenclatureEnzyme Names

      EC Number

      Common/ Recommended Name  Systematic Name  Synonyms  CAS Registry Number

    Reaction & Specificity  Pathway  Catalysed Reaction

      Reaction Type  Natural Substrates and Products  Substrates and Products  Substrates  Natural Substrate  Products  Natural Product  Inhibitors  Coactors  !etals/ Ions  Acti"ating Compounds  #igands

    Functional Parameters  $m %alue  $i %alue  pI %alue  Turno"er Number  Speciic Acti"ity  p& 'ptimum  p& Range  Temperature 'ptimum  Temperature Range

    Isolation & Preparation  Puri(cation  Cloned  Renatured  Crystallization

    Organism- related information  'rganism

      Source Tissue  #ocalization

    Stability  p& Stability

      Temperature Stability  )eneral Stability  'rganic Sol"ent Stability  '*idation Stability  Storage Stability

    Enzyme Structure  Se+uence/ SwissProt lin,  -.Structure/ P.0 lin,  !olecular 1eight  Subunits  Posttranslational !odiication

    Disease & References  .isease  Reerences

    pplication & Engineering

      Engineering  Application

  • 8/19/2019 Chp1 (2).ppt

    4/63

    +hat are en$ymes, and ho do they or-

    'irst /isolation0 of an en$yme in &122 Ethanol added to a3ueous e4tract of malt

    5ielded heat%la(ile precipitate that as

    utili$ed to hydroly$e starch to solu(le sugar6precipitate no non as amylase

    &171 % 89hne coined term enzyme % means/in yeast0

    &1:1 % Duclau4 proposed all en$ymes shouldhave suffi4 /ase0

  • 8/19/2019 Chp1 (2).ppt

    5/63

    En$ymes % natural proteins that cataly$e

    chemical reactions 'irst en$yme recogni$ed as protein as ;ac(ean urease

    Crystalli$ed in &:

  • 8/19/2019 Chp1 (2).ppt

    6/63

    En$ymes have molecular eights of severalthousand to several million, yet cataly$e

    transformations on molecules as small ascar(on dio4ide and nitrogen

    'unction (y loering transition%state energiesand energetic intermediates and (y raisingthe ground%state energy

    Many different hypotheses proposed for hoen$ymes cataly$e reactions

    Common lin of hypotheses) en$yme%cataly$ed reaction alays initiated (y theformation of an enzyme-substrate ?or E •SAcomplex  in a small cavity called the active site

  • 8/19/2019 Chp1 (2).ppt

    7/63

    &1: % Lock-and-key hypothesis % 'ischer

    proposed en$yme is the loc into hich thesu(strate ?the eyA fits Does not rationali$e certain o(served

    phenomena)

    Compounds having less (uly su(stituents oftenfail to (e su(stratesSome compounds ith more (uly su(stituents

    (ind more tightly

    Some en$ymes that cataly$e reactions (eteento su(strates do not (ind one su(strate untilthe other one is (ound

  • 8/19/2019 Chp1 (2).ppt

    8/63

    &:@1 % Induced-fit hypothesis proposed (y8oshland)

    +hen a su(strate (egins to (ind to an en$yme,interactions induce a conformational change

    in the en$ymeResults in a change of the en$yme from a lo

    catalytic form to a high catalytic form

    nduced%fit hypothesis re3uires a fle4i(le activesite

  • 8/19/2019 Chp1 (2).ppt

    9/63

    Concept of fle4i(le active site stated earlier (yPauling ?&:=A)

    ypothesi$ed that an en$yme is a fle4i(letemplate that is most complementary tosu(strates at the transition state rather thanat the ground state

    "herefore, the su(strate does not (ind mosteffectively in the E•S comple4

     s reaction proceeds, en$yme conforms (etter

    to the transition%state structureTransition-state stabilization results in rate

    enhancement

  • 8/19/2019 Chp1 (2).ppt

    10/63

    #nly a do$en or so amino acid residues maymae up the active site

    #nly to or three may (e involved directly insu(strate (inding and*or catalysis

  • 8/19/2019 Chp1 (2).ppt

    11/63

    +hy is it necessary for en$ymes to (e so large-

    Most effective (inding of su(strate resultsfrom close pacing of atoms ithin protein

    Remainder of en$yme outside active site isre3uired to maintain integrity of the active site

    May serve to channel the su(strate into theactive site

     ctive site aligns the or(itals of su(strates andcatalytic groups on the en$yme optimally forconversion to the transition%state structure%%called orbital steering 

  • 8/19/2019 Chp1 (2).ppt

    12/63

    En$yme catalysis characteri$ed (y tofeatures) specificity  and rate acceleration

     ctive site contains amino acid residues andcofactors that are responsi(le for the a(ovefeatures

    Cofactor , also called a coenzyme, is anorganic molecule or metal ion that is essentialfor the catalytic action

  • 8/19/2019 Chp1 (2).ppt

    13/63

    Specificity of En$yme%Cataly$ed Reactions "o types of specificity) ?&A Specificity of (inding

    and ?

  • 8/19/2019 Chp1 (2).ppt

    14/63

    K s =

    E + S E   . E   . E + P

    k 2

    k -1

    k 1

    k -1

    k 1

    S P

    Scheme &.&

    k on

    k off 

    Michaeliscomple4

    +hen k < FF k %&,

  • 8/19/2019 Chp1 (2).ppt

    15/63

    aEigen, M.6 ammes, G.G. !d" Enzymol" 1963, #$ , &.

    Table 1.1. Examles of T!rno"er #!mbersa

    Enzyme T!rno"er n!mber  

    k cat $s-1%

    papain &>car(o4ypeptidase &><

    acetylcholinesterase&>

    2

    inases &>2

    dehydrogenases &>2

    aminotransferases &>2

    car(onic anhydrase &>=

    supero4ide dismutase &>=

    catalase &>7

  • 8/19/2019 Chp1 (2).ppt

    16/63

    K m is the concentration of su(strate thatproduces half the ma4imum rate

    K m is a dissociation constant , so the smallerthe K m the stronger the interaction (eteen Eand S

    k cat*K m is the specificity constant  % used toran an en$yme according to ho good it isith different su(strates

    !pper limit for is rate of diffusion ?&>: M%&s%&AK m

    k cat

  • 8/19/2019 Chp1 (2).ppt

    17/63

      o does an en$yme release product soefficiently given that the en$yme (inds the

    transition state structure a(out &>&<

     times moretightly than it (inds the su(strate or products-

     fter (ond (reaing ?or maingA at transitionstate, interactions that match in the transition%state sta(ili$ing comple4 are no longer present.

    "herefore products are poorly (ound, resulting in

    e4pulsion. s (onds are (roen*made, changes in electronic

    distri(ution can occur, generating a repulsiveinteraction, leading to e4pulsion of products

  • 8/19/2019 Chp1 (2).ppt

    18/63

    E S comple4'igure &.&#on-co"alent interactions

    electrostatic

    ?ionicAC

    O

    O

    +

    RNH 3

    ion-dipole R

    C NH3

    R'

    δ  +

    διπολε−διπολε   Ρ 

     Χ Ο

    Ρ∋

    Οδ

    δδ δ

    Η 

    Η−βονδ ινγ  

    Ο

    ΡΧ Ο Η  

    Ο

    Η 

    χηαργετρανσφερ

     

    Α

    Α

    ηψδροπηοβιχ

     

    ΟΡΧ

    Ο

  • 8/19/2019 Chp1 (2).ppt

    19/63

    HGI J %R"lnK e3

    f K e3 J >.>&, HGI of %@.@ cal*mol neededto shift K e3 to &>>

  • 8/19/2019 Chp1 (2).ppt

    20/63

    Specific 'orces nvolved inES Comple4 'ormation

    'igure &.<

    NH3

    O

    OH

    CH

    3

    COCH

    2

    CH

    2

    NMe

    3

    +

    +

    δ

    δ

    +

    δ

    διπολε−διπολεδ

    +

    ιον−διπολε

    Ο

    Ο

    ιονιχ

    E4amples of ionic, ion%dipole, and dipole%dipoleinteractions. "he avy line represents theen$yme active site

  • 8/19/2019 Chp1 (2).ppt

    21/63

    %(onds

      type of dipole%dipoleinteraction (eteen K%

    and 5) ?N, #A

    'igure &.2

    %(onds

    ydrogen (onding in the secondary structure ofproteins) α%heli4 and β%sheet. 

  • 8/19/2019 Chp1 (2).ppt

    22/63

    Charge "ransfer Comple4es

    +hen a molecule ?or groupA that is a goodelectron donor comes into contact ith amolecule ?or groupA that is a good electronacceptor, donor may transfer some of itscharge to the acceptor 

  • 8/19/2019 Chp1 (2).ppt

    23/63

    ydropho(ic nteractions

    +hen to nonpolar groups, each surrounded(y ater molecules, approach each other, theater molecules (ecome disordered in anattempt to associate ith the ater moleculesof the approaching group

    ncreases entropy, resulting in decrease inthe free energy ?∆%° J ∆& °%T ∆S°A

  • 8/19/2019 Chp1 (2).ppt

    24/63

    van der +aals 'orces

     toms have a temporary nonsymmetricaldistri(ution of electron density resulting ingeneration of a temporary dipole

    "emporary dipoles of one molecule induceopposite dipoles in the approaching molecule

  • 8/19/2019 Chp1 (2).ppt

    25/63

    Binding Specificity

    Can (e a(solute or can (e very (road Specificity of racemates may involve ES comple4

    formation ith only one enantiomer or EScomple4 formation ith (oth enantiomers, (utonly one is converted to product

    En$ymes accomplish this (ecause they are chiralmolecules ?mammalian en$ymes consist of only

    L%amino acidsA

  • 8/19/2019 Chp1 (2).ppt

    26/63

    Binding specificity of enantiomers

    Scheme &.<

    EnzL  + ( R,S ) EnzL + EnzL R S 

    diastereomers

    Resolution of a racemic mi4ture

  • 8/19/2019 Chp1 (2).ppt

    27/63

    Binding energy for ES comple4 formation

    ith one enantiomer may (e much higherthan that ith the other enantiomer 

    Both ES comple4es may form, (ut only oneES comple4 may lead to product formation

    Enantiomer that does not turn over is said toundergo nonproductie binding 

  • 8/19/2019 Chp1 (2).ppt

    28/63

    Steric hindrance to (inding of enantiomers

    'igure &.

    OOCNH

    3

    H

    OOC NH3

    H

    A B

    S R

    Leu

    Basis for enantioselectivity in en$ymes

  • 8/19/2019 Chp1 (2).ppt

    29/63

    Reaction Specificity

    !nlie reactions in solution, en$ymes can shospecificity for chemically identical protons

  • 8/19/2019 Chp1 (2).ppt

    30/63

    'igure &.@

    R R'

    R R'

    Ha

    Hb

    B

    -

    enzyme

    En$yme specificity for chemically identicalprotons. R and R′ on the en$yme are

    groups that interact specifically ith R andR′, respectively, on the su(strate.

  • 8/19/2019 Chp1 (2).ppt

    31/63

    Rate cceleration

     n en$yme has numerous opportunities toinvoe catalysis)

      Sta(ili$ation of the transition state

      Desta(ili$ation of the ES comple4  Desta(ili$ation of intermediates

    Because of these opportunities, multiple

    steps may (e involved

  • 8/19/2019 Chp1 (2).ppt

    32/63

    'igure &.= &>&>%&>& fold typically

    E+S

    E+P

    ESEP

    Catalyzed

    Uncatalyzed

    Reaction Coordinate

    A

    Uncatalyzed

    Enzyme Catalyzed

    Reaction Coordinate

     

    B

    Effect of ?A a chemical catalyst and?BA an en$yme on activation energy

  • 8/19/2019 Chp1 (2).ppt

    33/63

    En$yme catalysis does not alter the e3uili(riumof a reversi(le reaction6 it accelerates attainmentof the e3uili(rium

  • 8/19/2019 Chp1 (2).ppt

    34/63

    a "aen from Rad$ica, .6 +olfenden, R. Science 199&, #'( , :>.( "aen from orton, .R.6 Moran, L..6 #chs, R.S.6 Ran, .D.6 Scrimgeour,8.G. )rinciples of *iochemistry 6 Neil Patterson) Engleood Cliffs, N, &::2.

    Table 1.'. Examles of Enzymatic Rate (cceleration

    Enzyme #onenzymatic rate

      )non $s-1%

    Enzymatic rate

      )cat $s-1%

    Rate acceleration  )cat *)non

    cyclophilina %< &.2 4 &>B .= 4 &>@

    car(onic anhydrasea &.2 4 &>%& &>= 7.7 4 &>=

    chorismate mutasea %@ @> &.: 4 &>=

    chymotrypsin( 4 &>%: 4 &>%< &>7

    triosephosphateisomerase(

    = 4 &>%7 < 4 &>2 2 4 &>:

    fumarase( < 4 &>%1 < 4 &>2 &>&&

    etosteroid isomerasea &.7 4 &>%7 =.= 4 &>B 2.: 4 &>&&

    car(o4ypeptidase a 2 4 &>%: @71 &.: 4 &>&&

    adenosine deaminasea &.1 4 &>&> 27> &<

    urease( 2 4 &>%&> 2 4 &>B &>&B

    alaline phosphatase( &>%&@ &>< &>&7

    orotidine @O%phosphatedecar(o4ylasea

    %&= 2: &. 4 &>&7

  • 8/19/2019 Chp1 (2).ppt

    35/63

    Mechanisms of En$yme Catalysis 

     ppro4imation Rate enhancement (y pro4imity

    En$yme serves as a template to (ind the

    su(strates Reaction of en$yme%(ound su(strates

    (ecomes first order 

    E3uivalent to increasing the concentration ofthe reacting groups

    E4emplified ith nonen$ymatic model studies

  • 8/19/2019 Chp1 (2).ppt

    36/63

    Scheme &.2

    CH3COAr

    O O

    CO

    C

    O

    H3C+ CH3COO-

    CH3+ ArO-

    Second%order reaction of acetate itharyl acetate

  • 8/19/2019 Chp1 (2).ppt

    37/63

    OAr

    O

    O

    O

    -

    OAr

    O

    O

    O

    -

    OAr

    O

    O

    O

    -

    OAr

    O

    O

    O

    O

    O

    -

    Relative rate  ( k rel

    )

    1  M 

    -1

      s

    -1

    220 s

    -1

    5.1 x 10

    4

     s

    -1

    2.3 x 10

    6

     s

    -1

    1.2 x 10

    7

    s

    -1

    Decreasing rotational and

    translational entropy

    + CH3

    COO

    -

    OAr

    Effective Molarity (EM)

    5.1 x 10

    4

     M 

    2.3 x 10

    6

     M 

    1.2 x 10

    7

     M 

    220  M 

    "a(le &.2. Effect of ppro4imation on Reaction Rates

  • 8/19/2019 Chp1 (2).ppt

    38/63

    Covalent Catalysis

    Scheme &.anchimeric assistance

    Most common

    Cys ?SASer ?#Ais ?imida$oleALys ?N

  • 8/19/2019 Chp1 (2).ppt

    39/63

    Scheme &.@

    SCl

    SOH

    S+

    1.2

    HO--Cl-

     nchimeric assistance (y a neigh(oring group

  • 8/19/2019 Chp1 (2).ppt

    40/63

    Model Reaction for Covalent Catalysis

    Scheme &.=

    Early evidence to support covalent catalysis

    O

    O

    18O

    O 18OCH

    3C

    18O

    18OH

    O

    OH

    18O18

    +Ar

    H2O

    H2OO-

    (-ArO-)

  • 8/19/2019 Chp1 (2).ppt

    41/63

    General cid*Base Catalysis

    "his is important for any reaction in hich protontransfer occurs

  • 8/19/2019 Chp1 (2).ppt

    42/63

    'igure &.7catalytic triad

    "he catalytic triad of α%chymotrypsin. "hedistances are as follos) d & J

  • 8/19/2019 Chp1 (2).ppt

    43/63

    Scheme &.7

    HN

    NH

    NHR'

    SerO

    H

    R1

    O R2

    O

    R

    N N H

    His

    -OOC Asp

    Charge relay system for activation of an active%site serine residue in α%chymotrypsin

  • 8/19/2019 Chp1 (2).ppt

    44/63

    pK a values of amino acid side%chain groups ithinthe active site of en$ymes can (e 3uite differentfrom those in solution

    Partly result of lo polarity inside of proteins

    Molecular dynamics simulations shointeriors of these proteins have dielectric

    constants of a(out

  • 8/19/2019 Chp1 (2).ppt

    45/63

    Basic group in a nonpolar environment has aloer pK a 

    pK a of a (ase ill fall if ad;acent to other(ases

     ctive%site lysine in acetoacetate

    decar(o4ylase has a pK a of @.: ?pK a insolution is &>.@A

  • 8/19/2019 Chp1 (2).ppt

    46/63

    "o inds of acid*(ase catalysis)

    Specific acid  or specific base catalysis -catalysis (y a hydronium ?2#QA or hydro4ide?#%A ion, and is determined only (y the p

    %eneral acid+base catalysis % reaction rateincreases ith increasing (uffer concentrationat a constant p and ionic strength

    Eff t f th ( ff t ti ?A

  • 8/19/2019 Chp1 (2).ppt

    47/63

    'igure &.1

    Specific acid*(ase catalysis General acid*(ase catalysis

    k  k 

    [Buffer] [Buffer]

    pH 7.9

    pH 7.3

    pH 7.9

    pH 7.3

    A   B

    Effect of the (uffer concentration on ?Aspecific acid*(ase catalysis and ?BA

    general acid*(ase catalysis

  • 8/19/2019 Chp1 (2).ppt

    48/63

    Scheme &.1

    Specific cid%Base Catalysis

    O

    C OEt

    poornucleophile

    weak electrophile

    ++H3C

    EtOHCH3COOHH2O

    ydrolysis of ethyl acetate

  • 8/19/2019 Chp1 (2).ppt

    49/63

    Scheme &.:

     laline hydrolysis of ethyl acetate

    O

    COHH3C

    O

    COC2H5H3C

    O

    CO-H3C

    + +

    strongnucleophile

    C2H5O-

    HO-

    C2H5OH

  • 8/19/2019 Chp1 (2).ppt

    50/63

    Scheme &.&>

    O

    COHH3C

    OH

    COC2H5H3C

    OH

    COC2H5H3C

    O

    COC2H5H3C

    +

    +

    ++

    strongelectrophile

    H3O+

    H2O

    C2H5OH

     cid hydrolysis of ethyl acetate

  • 8/19/2019 Chp1 (2).ppt

    51/63

    Scheme &.&&

    B

    +

    H

    R Y

    O

    H OHB:

    Simultaneous acid and (ase en$yme catalysis

    (ase catalysis

    acid catalysis

    En$ymes can utili$e acid and (asecatalysis simultaneously

  • 8/19/2019 Chp1 (2).ppt

    52/63

    Simultaneous acid*(ase catalysis is the reason for

    ho en$ymes are capa(le of deprotonating eacar(on acids

  • 8/19/2019 Chp1 (2).ppt

    53/63

    Scheme &.&<

    Simultaneous acid and (ase en$yme catalysisin the enoli$ation of mandelic acid

    Ph

    HaHOOHb

    O

    PhO-

    O

    HaHO

    Ph

    HaHOOHb

    OHc

    Ph

    HaHOOHb

    OHcPh

    HO

    O-

    OHb

    Ph

    HO

    OHc

    OHb

    pKE = 18.6

    +

    +

    pKa ~ 7.4pKa = 6.6

    ± Hc+   ± Ha+

    pKE = 15.4

    pKa = 22.0

    ± Ha+

    pKa ~ -8

    ± Hc+

    pKa = 3.4

    ± Hb+

    1.3  1.4

    1.51.6

  • 8/19/2019 Chp1 (2).ppt

    54/63

    Lo,-barrier hydrogen bonds % short ?F

  • 8/19/2019 Chp1 (2).ppt

    55/63

    X R

    H

    O

    H

    B:

    BH

    X R

    HO

    :B

    B+H

    R

    O

    R = H, alkyl, SR'

    O–

    OX

    H H

    M+

    BH

    O–

    OX H

    M+

    B

    O

    O

    H

    M+

    BH

    B

    H

    B

    B:

    B:

    BH

    -HX

    A

    B

    Scheme &.&2

    lo%(arrier%(ond

    /ea0(ase

    /strong0acid

    /strong0(ase

    /ea0 acid

    lo%(arrier%(ond

    stronger acidneeded

    #ne%(asemechanismsyn%elimination

    car(o4ylic acids

    &,%elimination of β%su(stituted ?A aldehydes,etones, thioesters and ?BA car(o4ylic acids

    "o%(asemechanismanti %elimination

  • 8/19/2019 Chp1 (2).ppt

    56/63

    Scheme &.&

    ElcB mechanism % not relevant 

    X R

    H

    O

    H

    X R

    O

    B+H

    R

    O

    B:

    Base cataly$ed &,%elimination of β%su(stitutedcar(onyl compounds via an enolate

    intermediate ?ElcB mechanismA

    Needs acid or metal catalysis

  • 8/19/2019 Chp1 (2).ppt

    57/63

     lternative to Lo%Barrier ydrogen Bond

    Scheme &.&@

    R

    H

    O

    H

    R' R

    O

    R'

    H

    B: B+

    H

    Electrostatic en$yme catalysis in enoli$ation

  • 8/19/2019 Chp1 (2).ppt

    58/63

    Electrostatic Catalysis

    Scheme &.&=

    o4yanion hole

    HN

    NH

    HN

    NH

    NH

    HN

    NH

    HN

    O

    O

    O O

    OO

    O

    R"

    R'

    RR"

    R'

    R

    O

    ++

    also could be aH bond or dipole

    Electrostatic sta(ili$ation of the transition state

  • 8/19/2019 Chp1 (2).ppt

    59/63

    Desolvation

      E4poses su(strate to loer dielectric

    constant environment  E4poses ater%(onded charged groups for

    electrostatic catalysis

      Desta(ili$es the ground state

    "he removal of ater molecules at the active siteon su(strate (inding

  • 8/19/2019 Chp1 (2).ppt

    60/63

    Scheme &.&7

    Strain Energy

    k 1.+

    k 1., J &>1

    O

    P

    O HO

    -OP

    O

    O- OO--O

    O

    P

    O

    O--O

    CH3CH3

    OP

    O-O

    -O

    CH3

    CH3

    HO

    1.7   1.8

    -OH -OH

     laline hydrolysis of phosphodiesters

    nduced 'it ypothesis

  • 8/19/2019 Chp1 (2).ppt

    61/63

    'igure &.:

    nduced 'it ypothesisputting strain energy into the su(strate

    E ti Eff t f E C t l i

  • 8/19/2019 Chp1 (2).ppt

    62/63

    'igure &.&>

    Energetic Effect of En$yme Catalysis

    mportance of ground state desta(ili$ation

    Mechanisms of En$yme Catalysis % porpho(ilinogen synthase

  • 8/19/2019 Chp1 (2).ppt

    63/63

    H

    Lys252

    NH2

    NH2

    O

    COO-

    NH2

    O

    COO-

    NH

    NH-Lys252

    COO-

    NH2

    COO-B:

    NH

    NH-Lys252

    COO-

    NH2

    COO-

    NH

    COO-COO-

    H

    NH2

    NH-Lys252

    B

    B:

    H

    :B

    NH

    COO- COO-

    NH2

    HNH

    COO- COO-

    NH2

    + +

    ..

    +

    +

    +

    ..

    :

    ZnB(Cys)4

    Lys252

    NH

    NH2

    O

    COO-

    ZnB(Cys)4

    H :B

    Lys252

    NH

    NH2OH

    COO-

    ZnB(Cys)4

    Lys252

    NH

    H2N

    COO-

    NH2

    O

    COO- Lys252

    NH

    N

    COO-

    HH

    :B (X)3ZnA

    HO

    (X)3ZnA

    HO

    H

    (X)3ZnA

    HO

    (X) Z

    HO

    (X) Zn

    HO

    strain energyelectrostatic catalysis

    approximationcovalent catalysis

    base catalysis

    strain energyelectrostatic catalysis

    base catalysis

    base catalysis

    acid catalysis

    base catalysis

    base catalysis

    approximation

    approximation

    (X3)ZnA (X3)ZnA