34
Chương 2 MÁY THU HÌNH TRẮNG ĐEN 2.1 Sơ đồ tổng quát 2.1.1 Sơ đồ khối của máy thu hình trắng đen 8 KĐCT Mạch trộn Dao đg nội T.són g Hình Thúc KĐCS Hình KĐCS Hình Tách XĐBộ AFC KĐại thúc KĐCS Dọc Dđộng Dọc Dđộng Ngang KĐại thúc KĐCS Ngang Fly Bac k HV RECT B+ Cổng AGC AGC Trễ AGC KĐCS Âthan h Tách sóng Tiếng Hình 2.1 Sơ đồ khối của máy thu hình trắng đen Sửa dạng 1 3 4 5 12 11 7 6 2 8 9 10 13 14 15 16 17 18 20

Chương 2: May thu hinh trang den

Embed Size (px)

DESCRIPTION

Kỹ thuật truyền hình

Citation preview

Page 1: Chương 2: May thu hinh trang den

Chương 2

MÁY THU HÌNH TRẮNG ĐEN

2.1 Sơ đồ tổng quát2.1.1 Sơ đồ khối của máy thu hình trắng đen

8

KĐCT Mạch trộn

Dao đg nội

T.sóng Hình

KĐ Thúc

KĐCSHình

KĐCS Hình

Tách XĐBộ

AFC

KĐại thúc

KĐCSDọc

DđộngDọc

DđộngNgang

KĐại thúc

KĐCSNgang Fly

Back

HVREC

T

B+

CổngAGC

KĐAGC

TrễAGC

KĐCS Âthanh

Táchsóng

KĐTiếng

Hình 2.1 Sơ đồ khối của máy thu hình trắng đen

Sửa dạng

1

3 4 5

12

11

762

89

10

13

14

15 16

17

18 20

Page 2: Chương 2: May thu hinh trang den

2.1.2 Chức năng của các khốiTa khảo sát chức năng các khối của một máy thu hình bán dẫn sử dụng phần tử

tích cực là các Transistor- là cơ sở của các máy thu hình hiện đại sử dụng các IC chuyên dụng (tích hợp hoá các Transistor)

+ Khối khuếch đại cao tần: Khối này thường dùng một transistor, có mức nhiễu thấp dùng để khuếch đại tín

hiệu thu được từ anten, làm tăng tỉ số tín hiệu trên nhiễu nên hình rõ nét hơn. Ngoài ra, do tính đơn hướng khối có tác dụng phân cách mạch dao động ngoại sai và anten.

+ Khối trộn sóng:Dùng để tạo tín hiệu có tần số trung gian (trung tần). Trong các máy thu siêu ngoại

sai, các tín hiệu của các kênh khác nhau vào máy thu từ anten sẽ được trộn với tín hiệu dao động ngoại sai để tạo ra tín hiệu trung tần có tần số ổn định. Nhờ vậy, tín hiệu này dễ dàng được khuếch đại, qua các tầng khuếch đại có hệ số khuếch đại lớn và ổn định, mạch dễ thực hiện trung hoà nên không phát sinh dao động tự kích. Bộ trộn thường dùng Transistor có đặc tính ngõ vào có độ phi tuyến lớn và làm việc với dòng nhỏ để hiệu suất trộn sóng cao hơn.

+ Khối dao động ngoại sai:Tạo ra tín hiệu hình sine tần số foi để đổi tần tín hiệu đến máy thu theo công thức

fIF=foi-fai. Mạch thường dùng một Transistor cao tần. Người ta thường thiết kế thêm nút tinh chỉnh tần số dao động nhằm lấy được tần số dao động chính xác để có hình và tiếng rõ nhất.

+ Khối khuếch đại tín hiệu trung tần hình:Để máy thu có độ nhạy cao, người ta thường dùng 3 đến 4 tầng khuếch đại trung

tần hình. Đây là các tầng khuếch đại cộng hưởng, có tín chọn lọc tần số và có băng thông rộng. Để có độ lợi lớn, các Transistor làm việc với dòng IE= (4-7)mA. Trong mỗi tầng thường dùng tụ trung hoà để triệt tiêu dao động tự kích. Các mạch cộng hưởng được chỉnh lệch tần số để tạo ra đáp tuyến chọn lọc tần số rộng. Trong tầng này, người ta còn dùng mạch cộng hưởng nối tiếp để nén tín hiệu tiếng nhằm giảm ảnh hưởng của nhiễu tiếng vào đường hình. Hiện nay, các mạch cộng hưởng lệnh tần số được thay thế bằng các bộ lọc SAW (Surface Acoustic Wave)

+ Khối tách sóng tín hiệu hình:Để lấy tín hiệu hình ra khỏi tín hiệu trung tần hình. Khối này thường dùng một

Diođe để tách sóng biên độ, lấy tín hiệu video ra khỏi trung tần hình. Trong tín hiệu tách ra, còn có tín hiệu trung tần thứ 2 của tiếng (SIF), dạng điều chế FM, có tần số là 4,5MHz, 5,5MHz hoặc 6,5MHz tương ứng với các chuẩn FCC, CCIR hoặc OIRT.

+ Khối khuếch đại thúc tín hiệu hình:Do biên độ tín hiệu video cần đủ lớn để cung cấp cho tầng AGC khoá, tầng tách

xung đồng bộ, tầng khuếch đại tín hiệu hình nên để giảm ảnh hưởng nặng tải lên tầng tách sóng hình, người ta thiết kế thêm tầng khuếch đại thúc. Đối với tín hiệu hình, tầng này làm việc ở chế độ C chung nên chỉ khuếch đại dòng, nhưng trở kháng vào của nó lớn nên giảm ảnh hưởng nặng tải lên tầng tách sóng.

+ Khối khuếch đại hình:

9

Page 3: Chương 2: May thu hinh trang den

Nhằm nâng cao tác dụng của tín hiệu hình ở âm cực đèn hình hiệu quả hơn, người ta dùng tầng khuếch đại hình để tăng biên độ tín hiệu hình lên trên 50Vpp (Máy thu hình càng lớn thì điện áp này càng cao). Để tín hiệu ra ít bị méo, tải ở cực C phải là phần tử trở, do đó muốn lấy được biên độ tín hiệu cao, điện áp cung cấp phải lớn (lớn hơn 100V). Trong tầng này thường có chiết áp Contrast để điều chỉnh hệ khuếch đại điện áp tín hiệu, nhằm điều chỉnh độ tương phản của hình.

+ Khối khuếch đại tín hiệu trung tần tiếng thứ 2: ở cực C của tầng khuếch đại thúc, người ta đặt mạch cộng hưởng để lấy tín hiệu

trung tần tiếng thứ 2 SIF. Sau đó tín hiệu được tiếp tục khuếch đại ở 2 hay 3 mạch khuếch đại trung tần cho đủ lớn để đưa vào khối tách sóng âm thanh.

+ Khối tách sóng âm thanh:Là khối tách sóng FM để loại bỏ tần số trung tần tiếng thứ 2 có tần số 4,5MHz

(FCC), 5,5MHz (CCIR), hoặc 6,5MHz (OIRT). Kiểu tách sóng FM tỉ lệ được sử dụng phổ biến trong khối này.

+ Khối khuếch đại công suất âm thanh: Dùng để khuếch đại tín hiệu âm thanh đến mức đủ lớn để đưa ra loa. Nó gồm có tầng khuếch đại thúc và tầng khuếch đại công suất tín hiệu âm tần.+ Đèn phóng tia âm cực (CRT: Cathode Ray Tube):Đèn thường có dạng hình phễu, mặt đèn có dạng hình chữ nhật. Dưới tác dụng của

điện thế rất lớn (đại cao thế) ở vách dương cực đèn hình, các tia điện tử được hút từ bề mặt Cathode được đốt nóng, với vận tốc lớn, đập vào màn hình làm phát sáng chất phốtpho được phun trên bề mặt màn hình tạo ra các điểm sáng tối. ở cỗ đèn hình, có bố trí các cuộn dây lệch dọc và lệch ngang để lái tia điện tử theo chiều dọc và theo chiều ngang trên màn hình. Khi tín hiệu video đưa vào Cathode thay đổi thì số điện tử đập vào màn hình cũng thay đổi theo, làm cho các điểm khác nhau trên màn hình có độ sáng tối (độ chói) thay đổi và tạo ra hình ảnh.

+ Cổng AGC:Để ổn định độ tương phản của hình, giảm ảnh hưởng của hình biến đổi theo cường

độ sóng thu được ở anten, người ta dùng mạch tự động điều chỉnh độ lợi (hệ số khuếch đại) AGC. Mạch đo biên độ tín hiệu hình, qua đó chỉnh lại độ lợi của các tầng khuếch đại trung tần và cao tần.

Trong các máy thu hình Transistor, người ta dùng kỹ thuật AGC khoá (cổng AGC) để giảm sự gây rối bởi các nhiễu biên độ cao trong tín hiệu hình. Mạch AGC chỉ mở để đo biên độ của xung đồng bộ ngang và căn cứ vào đó để điều chỉnh lại độ lợi, còn trong các khoảng thời gian còn lại thì mạch đóng cổng.

+ Khuếch đại AGC (AGC Amp):Khuếch đại tín hiệu AGC nhằm tăng hiệu quả cho việc tự động điều chỉnh.+ Trễ AGC (AGC Delay):Tác dụng thường xuyên của mạch AGC vào tầng khuếch đại cao tần sẽ làm tăng

nhiễu hột và giảm chất lượng của hình. Mạch trễ AGC có tác dụng chỉ cho tín hiệu AGC tác động vào mạch khuếch đại cao tần khi tín hiệu vào anten quá lớn, tác động giảm độ lợi của tầng khuếch đại trung tần không bù đủ cho mức tăng của tín hiệu vào, lúc đó

10

Page 4: Chương 2: May thu hinh trang den

mạch trễ AGC sẽ cho tín hiệu AGC qua mạch khuếch đại cao tần làm giảm độ lợi của nó, tránh cho nó bị bảo hoà vì tín hiệu vào quá lớn.

+ Khối tách xung đồng bộ, khuếch đại xung và đảo pha xung:Để đồng bộ tín hiệu giữa máy phát và các máy thu, trong tín hiệu truyền hình,

ngoài tín hiệu hình, người ta còn phát đi các xung đồng bộ dọc và đồng bộ ngang. Khối này tiến hành tách các xung đồng bộ, khuếch đại và có khi đảo pha chúng để thực hiện đồng bộ các mạch quét ngang và dọc để giữ cho hình ảnh đứng yên theo chiều ngang và theo chiều dọc trên màn hình.

+ Khối quét dọc gồm dao động dọc, khuếch đại thúc và k đại công suất dọc:Dao động dọc có tần số 50 Hz (CCIR, OIRT) hoặc 60Hz (FCC) được tạo ra từ

mạch dao động đa hài, dao động nghẹt hoặc dao động thạch anh (được chia xuống từ tần số cao). Sau đó, được khuếch đại thúc và khuếch đại công suất để đưa đến cuộn lệch dọc. Điện áp tín hiệu quét dọc thường có dạng hình thang biên độ trên 60Vpp, sao cho dòng điện quét tạo ra trong cuộn lệch dọc phải có dạng răng cưa tuyến tính để tạo lực từ lái tia điện tử theo chiều dọc trên màn hình.

+ Khối tự động điều chỉnh tần số AFC:Tín hiệu đồng bộ ngang được so pha với tín hiệu dao động ngang (sau khi đã được

sửa dạng cho phù hợp việc so pha) để lấy ra điện áp sai lệch VAFC , điều chỉnh mạch dao động ngang chạy đúng tần số và pha của đài phát.

+ Khối quét ngang gồm dao động ngang, khuếch đại thúc và khuếch đại công suất ngang:Dao động ngang có tần số 15.625 Hz (CCIR, OIRT) hoặc 15.750Hz (FCC) được

tạo ra từ mạch dao động đa hài, dao động nghẹt hoặc dao động thạch anh (được chia xuống từ tần số cao). Sau đó, được khuếch đại thúc và khuếch đại công suất để đưa đến cuộn lệch ngang. Tầng khuếch đại công suất ngang làm việc theo cơ chế khoá. Điện áp tín hiệu quét ngang thường có dạng hình chữ nhật biên độ trên 80Vpp, sao cho dòng điện quét tạo ra trong cuộn lệch ngang phải có dạng răng cưa tuyến tính để tạo lực từ lái tia điện tử theo chiều ngang trên màn hình.

+ Biến thế Flyback: Là loại biến thế làm việc với xung hồi ngang, có số vòng dây rất lớn, đặc biệt là số

vòng dây thứ cấp, tạo ra các xung đại cao thế, trung thế và các tín hiệu dùng cho mạch so pha, cung cấp xung mở cổng cho mạch AGC khoá, đưa đến cực E của mạch khuếch đại hình để xoá tia quét ngược trên màn hình...

+ Mạch nắn điện đại cao thế:Cung cấp điện áp điện thế rất lớn (từ 9Kv-24Kv) để cung cấp dương cực ở vách

đèn hình.+ B+: mạch nắn điện trung thế, cung cấp điện cho tầng xuất hình, tầng khuếch đại công

suất dọc, âm thanh, và cung cấp điện cho chân đèn hình gồm lưới màn (Screen) lưới hội tụ (Focus)...

11

Page 5: Chương 2: May thu hinh trang den

2.2 Khối đổi kênh2.2.1 Sơ đồ khối

2.2.2 Mục đích yêu cầu+ Thu các kênh sóng ở dải tần VHF và UHF. Sau đó biến đổi xuống thành tần số

trung tần.+ Cần phải có độ khuếch đại đồng đều ở tất cả các kênh.+ Có tỉ số tín hiệu trên nhiễu (S/N) đủ lớn.+ Có chiều rộng dải tần đúng tiêu chuẩn.+ Có độ ổn định lớn, nghĩa là khả năng dao động tự kích nhỏ.+ Khả năng lựa chọn tần số tốt. Tương ứng với 1 dao động nội (dao động ngoại

sai), có thể có 2 tần số, một cao, một thấp hợp với tần số dao động nội để tạo ra trung tần. Khối trộn tần phải có khả năng lựa chọn lấy một.

+ Cần phối hợp trở kháng giữa anten và tầng khuếch đại cao tần để tránh hiện tượng phản xạ sóng và nhiễu vào máy thu. Nếu không được phối hợp trở kháng thì khi sóng điện từ vào máy thu năng lượng sẽ vào máy thu một phần (lớn hay bé phụ thuộc vào mức độ phối hợp trở kháng), phần còn lại sẽ bị dội lại chạy đến đầu kia dây dẫn sóng ra đến anten, đến đây sóng vào lại máy thu và cũng chỉ một phần năng lượng vào máy thu, cứ như vậy cho đến lúc năng lượng giảm đủ nhỏ. Sự phản xạ này tạo ra các hình phụ bên cạnh hình chính trên màn hình. Số hình phụ tỉ lệ với số chu kỳ dội lại của sóng điện từ, còn khoảng cách giữa hình chính và hình phụ tỉ lệ với chiều dài dây dẫn sóng.

12

KĐ cao tần

Trộn tần

D động nội

Trộn tần

D động nội

Hình 2.2 Sơ đồ khối của khối đổi kênh

Page 6: Chương 2: May thu hinh trang den

+ Vấn đề phối hợp trở kháng để lượng phản xạ nhỏ nhất phải đi đôi với vấn đề giảm mức nhiễu không làm giảm tỉ số S/N, do đó người ta thường đặt các bộ lọc suy giảm nhiễu ở ngay mạch vào máy thu.

+ Mạch vào của các kênh sóng VHF có kết cấu khác nhau tuỳ theo nó được nối với anten 300 hay 75 . Có máy bố trí cả mạch vào 300 hay 75 với nhiều đầu dây ra.

+ Mạch vào của các kênh sóng UHF có khi không dùng mạch điều hưởng, chỉ có bộ lọc suy giảm nhiễu trong dải tần.2.2.3 Chức năng các khối+ Mạch khuếch đại cao tần:

Có nhiệm vụ tăng tỉ số tín hiệu trên nhiễu (S/N), khử can nhiễu, nhất là tần số ảnh và tần số lọt thẳng bằng trung tần. Ngoài ra, do tính đơn hướng, mạch khuếch đại cao tần có tác dụng phân cách mạch dao động ngoại sai và anten, giảm khả năng dao động nội bức xạ ngược ra anten gây nhiễu; tăng độ ổn định cho tầng dao động ngoại sai và nâng cao tác dụng của mạch tự điều chỉnh độ khuếch đại AGC.

Hệ số khuếch đại của mạch này không cần lớn lắm ( 20dB) để tránh hiện tượng dao động tự kích. Đồng thời, nó phải ưu đãi cả sóng mang hình và tiếng. Thông thường đặc tuyến khối này có hình cánh cung, hai cạnh của đặc tuyến phải đủ dốc dể lọc bỏ được các tần số ảnh.

Trong các kênh sóng VHF, mạch khuếch đại cao tần thường được mắc theo sơ đồ E chung, có trở kháng đầu vào khoảng (0,5 - 1K ), lớn hơn so với sơ đồ B chung nên dễ phối hợp với mạch vào. Tuy nó có hệ số khuếch đại lớn nhưng phải dùng tụ trung hoà B-C. Một số máy mắc theo B chung, có tần số cắt cao nên khó bị dao động tự kích. Có máy lại dùng sơ đồ C chung, có trở kháng vào khá lớn (độ vài trăm K ) nhưng hệ số khuếch đại điện áp nhỏ.

Trong các kênh sóng UHF, mạch khuếch đại cao tần thường được mắc theo sơ đồ B chung. Nhiều máy không có mạch khuếch đại cao tần.

+ Mạch trộn tần:Có nhiệm vụ tạo ra tín hiệu trung tần cho quá trình trộn tín hiệu từ đài phát đến

anten của máy thuĠ và tín hiệu dao động nộiĠ tại máy thu. Thông thường trong máy thu hình người ta thường dùng phương pháp trộn kiểu tổng chứ không trộn kiểu nhân.

Bảng 2.1. Tần số trung tần hình và tiếng và khoảng cách giữa chúng theo các chuẩn khác nhau

FCC CCIR OIRTfIF/VID 45,75MHz 38MHz 38MHzfIF/S 41,25MHz 32,5MHz 31,5MHzKhoảng cách 4,5MHz 5,5MHz 6,5MHz

ưu điểm của phương pháp này là chỉ cần tín hiệu nội có biên độ nhỏ, vì vậy nó không bức xạ ra anten gây nhiễu. Mỗi một kênh tương ứng với một tần số dao động nội riêng sao cho hiệu tương ứng với kênh i muốn thu nào đó phải đúng bằng tần

13

Page 7: Chương 2: May thu hinh trang den

số trung tần ổn định ( =không đổi) Thông số trung tần hình và tiếng của 3 chuẩn trắng đen khác nhau như sau:+ Mạch dao động nội:

Tạo ra tín hiệu hình sine để đổi tần với tín hiệu từ đài phát đến anten của máy thu theo biểu thức: .Đối với các máy thu hình bán dẫn, mạch dao động ngoại

nội thường được thiết kế theo sơ đồ dao động 3 điểm điện dung mắc B chung vì nó đảm bảo cho biên độ dao động không đổi trong toàn dải tần và sự gia tăng hồi tiếp đối với tần số cao được bù bằng sự giảm hệ số khuếch đại ở tần số đó nên nó ổn định. Trong mạch, người ta còn bố trí các núm tinh chỉnh, tạo ra tần số dao động ngoại nội chính xác để có hình và tiếng rõ nhất.2.2.3 Sự phân bố tần số tín hiệu hình và tiếng

Việt Nam hiện nay sử dụng hệ tiêu chuẩn truyền hình hệ PAL D/K, trong đó hệ màu PAL được xây dựng dựa theo chuẩn trắng đen OIRT. Theo đó, kênh truyền hình được chia thành 5 dải:Bảng 2.2. Sự phân bố của các dải tần số theo chuẩn OIRT

Tên dải tần Kênh Tần số [MHz]Dải I 1 đến 2 48 đến 66Dải II 3 đến 5 76 đến 100Dải III 6 đến 12 174 đến 230Dải IV 21 đến 60 470 đến 582Dải V 61 đến 81 582 đến 960

Ví dụ dải tần III (kênh 6 -12):

14

fRF/VID7 fRF/VID9fRF/S7 fRF/S9

183,25MHz 189,75 199,25MHz

0,5 0,75

fRF/VID8 fRF/S8

191,25MHz 197,75

1,5MHz

0,5 0,75 6,5MHz

8MHz

Kênh 8Kênh 7 Kênh 9

Hình 2.3 Sự phân bố các kênh theo trục tần số (chuẩn OIRT)

f

Page 8: Chương 2: May thu hinh trang den

Bảng 2.3. Sự phân bố tần số của dải III theo chuẩn OIRT

Kênh Cao tần hình fRF/VID[MHz] Cao tần tiếng fRF/S[MHz]

6 175,25 181,757 183,25 189,758 191,25 197,759 199,25 205,7510 207,25 213,7511 215,25 221,7512 223,25 229,75

2.3 Khối khuếch đại trung tần hình2.3.1 sơ đồ khối

ở tầng này, trung tần hình và tiếng đều được khuếch đại nhưng hình được khuếch đại nhiều hơn nên tầng này được gọi là trung tần hình.2.3.2 Mục đích yêu cầu

15

fRF/VID8 fRF/S8

191,25MHz 197,75MHz

0,5 0,75 6,5MHz

Lọc bỏ để tiết kiệm dải tần

f

Hình 2.4 Đặc tính biên tần cụt của cao tần(chuẩn OIRT).

-26dB-40dB

-6dB

fIF/S fIF/VID

Tần số hình của kênh trên Tần số tiếng của

kênh dưới

Hình 2.6 Đặc tuyến biên tần trung tần hình

Bẩy sóng

KĐạiTT 1

Cộng hưởng

1, f1

KĐạiTT 2

2

Cộng hưởng

2, f2

KĐạiTT 3

Cộng hưởng

2, f3

Hình 2.5 Sơ đồ khối phần trung tần máy thu hình

Page 9: Chương 2: May thu hinh trang den

+ Tầng khuếch đại trung tần hình phải đảm bảo phần lớn hệ số khuếch đại của toàn máy thu hình- Tín hiệu từ bộ trộn (mixer) đến (đầu vào mạch bẩy sóng) có biên độ khoảng vài mV mà tầng tách sóng hình cần đến vài V đối với tín hiệu nhỏ nhất (tuỳ thuộc độ nhạy của máy thu), nên khối khuếch đại trung tần hình phải có độ khuếch đại đến khoảng mấy ngàn lần, do đó trong các máy thu hình sử dụng Transistor, thường dùng 3 đến 4 transistor mắc theo mạch cực phát chung. Mỗi bộ khuếch đại trung tần có thể đạt độ khuếch đại khoảng 20dB và dòng IE các trong các Transistor khoảng 4mA đến 7mA.- Các transistors ở tần này là loại cao tần, yêu cầu có điện dung vào và ra nhỏ để giảm ảnh hưởng của các transistors đến độ ổn định tham số của các tầng khuếch đại. Tuy nhiên do các transistors thường được mắc theo sơ đồ E chung nên điện dung giữa các cực lớn, ảnh hưởng đến độ ổn định, ngoài ra, đầu vào đầu ra của chúng thường có các mạch cộng hưởng nên dễ xảy ra dao động tự kích. Do đó, người ta thường bố trí các mạch trung hoà hồi tiếp ký sinh mắc giữa 2 cực B và C của các transistors để ổn định và chống các dao động tự kích này. ở tầng này sự trung hoà được thực hiện dễ dàng hơn ở khối đổi kênh vì tần số làm việc thấp hơn và trị số hồi tiếp thường cố định.

+ Đặc tuyến tần số phải có độ đồng đều cao đối với tín hiệu trung tần hình và có độ chọn lọc tần số tốt, loại trừ can nhiễu của các tần số không mong muốn.- Tầng này phải có độ méo pha nhỏ (rất quan trọng đối với hình ảnh ở đèn hình), đặc tuyến tần số cần chọn sao cho đối với tần số thấp thì méo nhỏ, nghĩa là không gây ra việc nén tần số của một biên tần khi qua dải thông. - Độ suy giảm phải xuống đến 40-60dB đối với tín hiệu trung tấn hình và trung tần tiếng của kênh lân cận. Ngoài ra, nó còn làm suy giảm trung tần tiếng so với trung tần hình của kênh đang thu xuống khoảng 26 dB để giảm ảnh hưởng của tiếng vào đường hình.

16

100%

70%

50%

10%

Đáp tuyến bao quát của 3 mạch cộng

hưởng

Biên độ[%]

Đáp tuyến mạch cộng

hưởng1

Đáp tuyến mạch cộng

hưởng 2

Đáp tuyến mạch cộng

hưởng 3

Hình 2.7 Đáp tuyến của các mạch cộng hưởng và đáp tuyến bao quát của chúng

Page 10: Chương 2: May thu hinh trang den

- Để tạo ra đặc tuyến biên tần rộng, có độ đồng đều cao đối với tín hiệu trung tần hình thì trong các khối khuếch đại trung tần hình người ta thiết kế các mạch cộng hưởng có các tần số cộng hưởng khác nhau nhưng thuộc phạm vi của băng tần. Ngoài ra, trong các mạch cộng hưởng còn bố trí các điện trở song song để mở rộng băng thông.- Để triệt ảnh hưởng của hình của kênh trên và tiếng của kênh dưới đến kênh đang thu, đồng thời giảm biên độ tại tần số trung tần tiếng để khỏi ảnh hưởng vào đường hình, người ta còn bố trí các bẩy sóng ở đầu vào của khối trung tần này.2.4 Khối khuếch đại hình và tách sóng hình2.4.1 Mục đích yêu cầu+ Tách tín hiệu hình (Video) tổng hợp ra khỏi sóng mang trung tần hìnhTín hiệu hình tổng hợp có biên độ khoảng từ 1Vpp đến 5Vpp.+ Khuếch đại tín hiệu hình tổng hợp lên đến mức khoảng từ 40Vpp-100Vpp (tuỳ theo kích cỡ máy thu hình)- Vì tín hiệu hình tổng hợp là tín hiệu băng rộng (0-6MHz) nên mạch khuếch đại trung tần hình là mạch khuếch đại băng rộng. Muốn vậy, người ta bố trí mạch bù tần số bằng cuộn dây và tụ đIện để mở rộng băng thông về phía tần số cao. Một số phương pháp mở rộng băng tần thông dụng là sử dụng cuộn đỉnh nối tiếp, cuộn đỉnh song song và mạch bù tần số song song RC. 2.4.2 Sơ đồ mạch điện

2.4.3 Thành phần mạch điện và nguyên lý hoạt độngD1: Diode tách sóng hình, tách tín hiệu hình tổng hợp ra khỏi sóng mang trung tần hình. Dùng diode và mạch lọc thông thấp để tách sóng vì tín hiệu hình tổng hợp được điều chế AM. Đồng thời tại đây cũng xảy ra quá trình trộn sóng 2 tần số trung tần hình f IF/VID và

17

R1

82kC1

20uF

.005

L1 L2

C3

6pC4

6p

R3

12k

R2

10k

C2

C L

B12

R4

8,2k

R9

43Ω

L3

1uH C5

L4

C6

R7

8,2kR8

2,2k

R6

82kQ1

Q2

C7 20uF

C8

.0022 R12

220kC9

47uFR10

3k

A

B

L5

KC10 .2

R14

220k

R13

500k R15

1MC11

.05

B150

R11

10k

R5

330

B400

D1

Hình 2.8 Sơ đồ mạch điện tách sóng hình và khuếch đại hình tiêu biểu

Page 11: Chương 2: May thu hinh trang den

trung tần tiếng fIF/S để tạo ra trung tần thứ hai của tiếng fIF/S2 theo biểu thức: fIF/VID-fIF/S

=fIF/S2 . - Đối với chuẩn FCC: 45,75MHz-41,25MHz=4,5MHz- Đối với chuẩn CCIR: 38MHz-32,5MHz=5,5MHz- Đối với chuẩn OIRT: 38MHz-31,5MHz=6,5MHz

Do diode có anode quay về cực B của Q1 nên cực tính của tín hiệu video sẽ dương ở masse và âm ở cực B của Q1 như hình vẽ tạo nên tách sóng âm. ưu điểm của nó là chống nhiễu cao. Nhiễu thường cùng chiều với xung đồng bộ, khi có nhiễu lớn thì điện áp đặt lên tiếp giáp BE của Q1 càng âm, do đó Q1sẽ tắt, nên tín hiệu không đến được tầng khuếch đại hình, nghĩa là triệt được nhiễu biên độ.Q1: Khuếch đại thúc tín hiệu hình tổng hợpQ2: Khuếch đại tín hiệu hình tổng hợpR1, R2: Cầu phân cực cho D1.C1: tụ thoát, tụ lọc tần số thấpC2: tụ thoát, tụ lọc tần số caoR3, R4: Cầu phân cực cho Q1.L1, C3, C4: mạch lọc trung tần hình, lọc thông thấpL2: cuộn đỉnh nối tiếp

Để mở rộng băng thông người ta thiết kế các cuốn đỉnh nối tiếp và song song (nhằm nâng cao biên độ tín hiệu tại các tần số cao: điểm A, B, C…) L2, Ci: hình thành mạch cộng hưởng nối tiếp tại tần số f1 (điểm A) làm vB/Q1>> vì làm

tăng biên độ tín hiệu tại điểm A như hình vẽ.Tương tự, đối với tầng khuếch đại hình thì

L3 là cuộn đỉnh nối tiếp tại tần số f2 (điểm B). Chú ý, Co là điện dung ra của Q1là giảm

biên độ tín hiệu ra ở tần số cao.

2.5 Mạch tự động điều chỉnh độ khuếch đại2.5.1 Nguyên lý hoạt động

18

Tín hiệu hỗn hợp

VE = Cte(Phân cực không đổi)

Thời gian BJT dẫn

8 56

15750 Hz

Xung từ Flyback đến

Hình 2.10 Sơ đồ nguyên lý hoạt động của khối AGC khoá

Page 12: Chương 2: May thu hinh trang den

Để ổn định độ tương phản của hình, giảm ảnh hưởng của hình biến đổi theo cường độ sóng thu của hiện tượng Ant (hiện tượng FADING) nhà thiết kế dùng mạch tự động điều chỉnh độ lợi AGC. Mạch đo biên độ tín hiệu hình và qua đó điều chỉnh lại độ lợi của các tầng khuếch đại trung tần hay cao tần.

Để tăng hiệu quả, trong TV transistor, thường dùng kỹ thuật AGC khóa để giảm sự gây rối của các nhiễu biên độ cao trong tín hiệu hình. Mạch AGC này chỉ mở để đo xung đồng bộ ngang và căn cứ vào đó để chỉnh lại độ lợi của các tầng khuếch đại.

* Nguyên lý hoạt động của mạch AGC khóa (KEYED AGC)Vậy: BJT chỉ dẫn trong thời gian tồn tại xung đồng bộ ngang. Trong các thời gian còn lại BJT tắt. Nhờ vậy, mạch AGC hạn chế được nhiễu biên độ cao trong tín hiệu hình, đồng thời xung đồng bộ và xung FlyBack có tần số cao 15750Hz nên mạch AGC đáp ứng nhanh. Đó chính là ưu điểm của mạch AGC khóa so với các mạch AGC khác như mạch AGC loại RC.

2.5.2 Mạch điện tiêu biểu

19

VIDIFAMP

VIDEODRIVE

VIDEOOUTPUT

AGCDELAY

AGCAMP

AGCGATE

DETECTORTUNER

RFAMP

Hình 2.11 Sơ đồ khối của mạch điện AGC khoá

B12

B12

R1R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

A

B

TO RFAMP

TO VIDIFAMP

C1

C2 C3

C4LOCAL

AGC LEVEL

DISTANCE

FROM VIDEO OUTPUT

Q1

KEYED AGC

Q2

AMP AGC

D1 AGC

VE

+_

+_

_

+

+_

Hình 2.12 Sơ đồ mạch AGC khoá tiêu biểu sử dụng BJT

Page 13: Chương 2: May thu hinh trang den

2.5.2.1 Thành phần mạch điệnQ1 : : AGC khóa (Keyed AGC)Q2 : AGC AmplifierR2, R3, R4 : Cầu phân cực, xác định điện áp VEQ1 = CteC1 : Tụ thoát cực E của Q1

R1 : Trở định dòng phân cực Q1 đồng thời cách ly giữa Q1 và KĐHC2 : Tụ ngăn DCR5C3 : Mạch lọc AGC, lọc gợn do mạch hoạt động ở chế độ SwitchingR6 : Phân cực Q2

R7R8 : Tải cho Q2

R9, R10, R11 : Cầu chỉnh phân cực cho RFAMPD1 : AGC trễ (Delay AGC)C4 : Tụ thoát2.5.2.2 Hoạt động của mạch AGC

Khi vi tăng tín hiệu hình hỗn hợp tại VIDEO DRIVE (hoặc VIDEO

OUTPUT) tăng theo xung đồng bộ ngang càng cao IBQ1 tăng và do xung FlyBack đến cùng lúc với xung đồng bộ đó làm Q1 dẫn mạch ICQ1 tăng C2 được nạp mạnh hơn Sau khi hết xung đồng bộ (hết xung FB) Q1 tắt vCQ1<0 (do điện áp trên C2) vCQ1 càng âm IBQ2 giảm vEQ2 giảm làm giảm phân cực IF và RF làm Av giảm vo = Cte.Ngược lại

Khi vi giảm xung đồng bộ ngang nhỏ IBQ1 giảm ICQ1 giảm vCQ1 ít âm hơn vEQ2 tăng làm tăng phân cực IF và RF làm Av tăng vo = Cte.

2.5.2.3 Hoạt động của AGC trễ D1

Gọi vimin là điện áp vào nhỏ nhất mà tuner vẫn đạt tỉ số:

Khi vi < vimin S/N không đạt cắt bỏ AGC để cho RF Amplifier phân cực mạnh nhất Av = Avmax hình thu không bị nhiễu.Khi vi vimax AGC hoạt động giảm phân cực RFAMP tránh làm bão hòa cho tầng này. D1 giữ nhiệm vụ đó.Cụ thể:

Khi tín hiệu nhập vào quá bé vi<vimin Q1 dẫn yếu vCQ1 ít âm vBQ2 tăng Q2 dẫn mạnh vEQ2 tăng D1 tắt, tương đương với trường hợp cắt bỏ AGC không cho tác động đến RFAMP để cho nó tác động mạnh làm cho tín hiệu đầu ra của Tuner tăng S/N thỏa và trên màn hình không xuất hiện nhiễu.

Khi tín hiệu vào tăng quá lớn vi>vimax Q1 dẫn rất mạnh Q2 dẫn rất yếu vEQ2 giảm nhỏ D1 dẫn điện AGC tác động lên RF làm giảm phân cực RFAMP để tránh làm cho nó bão hòa.

20

Page 14: Chương 2: May thu hinh trang den

AGC Tuner chỉ hoạt động khi vi>vimax

2.5.2.4 Tác dụng của R3 và R8, R10

Khi R3 A vEQ1 tăng vi có biên độ lớn thì Q1 mới hoạt động được, tương ứng với máy thu đặt gần đài phát.

R3 A: LOCAL :ở gần

Khi R3 B vEQ1 giảm vi có biên độ thấp thì Q1 hoạt động bình thường, tương ứng với máy thu đặt ở xa đài phát.

R3 B : DISTANCE :ở xaVậy R3 là biến trở chỉnh biên độ tín hiệu nhập vào máy thu để mạch AGC làm việc bình thường. R3 gọi là AGC LEVEL.

Khi điều chỉnh R8, R10

Khi điều chỉnh R8, R10 thì thay đổi điện áp phân cực cho tầng khuếch đại trung tần hình và tầng khuếch đại cao tần.R8, R10 gọi là chiết áp AGC.2.5.2.5 AGC thuận và AGC nghịchĐịnh nghĩa:

AGC thuận: Khi vi tăng mà mạch AGC có tác dụng làm tăng dòng phân cực cho IFAMP và RFAMP để giảm Av.

AGC nghịch: Khi vi tăng mà mạch AGC có tác dụng làm giảm dòng phân cực cho IFAMP và RFAMP để giảm Av.

Đặc tuyến hfe = f(ic) của BJT có dạng như hình vẽ.Đoạn [BC] dốc hơn đoạn [AB]Trong đoạn [AB] ta có: ICQ1 < ICQ2 thì hfe1 < hfe2

Xét điểm Q2 [AB]

Khi vi tăng, muốn Av giảm thì ta phải giảm hfe vì

21

ic

AGC thuậnAGC nghịch

Q1

Q2

Q3

Q4

c

hfe1

hfe2

hfe3hfe4

hfe

ICQ1 ICQ2 ICQ3 ICQ4

B

A

Hình 2.13 Đặc tuyến hfe = f(ic) của BJT

Page 15: Chương 2: May thu hinh trang den

Muốn vậy, mạch AGC phải làm giảm phân cực điểm Q2 phải dời về điểm Q1 (ICQ2 ICQ1).Vậy đoạn [AB] ứng với mạch AGC nghịch.

Xét điểm Q3 [BC]

Khi vi tăng, muốn Av giảm thì ta phải giảm hfe vì . Muốn vậy mạch AGC phải

làm tăng phân cực điểm Q3 phải dời về điểm Q4 (ICQ3 ICQ4).Vậy đoạn [BC] ứng với mạch AGC thuận.Trong mạch AGC đã khảo sát ta thấy: Khi vi tăng mạch AGC có tác dụng làm giảm phân cực IF và REAMP nên là mạch AGC nghịch và các BJT khuếch đại trung tần và cao tần phải làm việc trong đoạn AB của đường đặc tuyến hfe = f(ic). 2.6 Mạch đồng bộ 2.6.1 Mục đích yêu cầu

Tách tín hiệu đồng bộ dọc 60Hz (hoặc 50Hz) và tách tín hiệu đồng bộ ngang 15750Hz (hoặc 15625Hz) ra khỏi tín hiệu hình hỗn hợp.

Tín hiệu đồng bộ dọc sẽ đồng bộ hoá cho mạch quét dọc chạy đúng tần số 60Hz (hoặc 50Hz) của đài phát. hình ảnh sẽ đứng yên theo chiều dọc. Nếu không đúng thì hình ảnh sẽ trôi theo chiều dọc.

Tín hiệu đồng bộ ngang sẽ đồng bộ hoá cho mạch quét ngang chạy đúng tần số 15750Hz (hoặc 15625Hz) để hình ảnh đứng yên theo chiều ngang hay không bị xé hình.

Mạch đồng bộ lấy tín hiệu hình hỗn hợp (composite Signal) có biên độ và cực tính thích hợp.

Thông thường tín hiệu hình hỗn hợp được lấy từ ngõ ra của VIDEO DRIVE.

2.6.2 Mạch điện tiêu biểu

22

RL

hieAv = hfe .

R1

4,7k

C1

.047C2

R2

12kR4

120Ω

D1

1µF R3

820k R5

4,7k

C3

4,7µR’

5

10k

R7

330R8

22k

R9

15kA B

C6

.01C7

.01

C5

.01

C4

.01

R6

330

Q1

2SC564Q2

2SC828

Q0

Hình 2.14 Sơ đồ mạch đồng bộ tiêu biểu

Page 16: Chương 2: May thu hinh trang den

2.6.3 Thành phần mạch điệnQo : BJT khuếch đại thúc Video (Video Drive)Q1 : BJT tách xung đồng bộQ2 : BJT khuếch đại đồng bộ và tải phaRo : tải của Qo

R1, C1 : thành phần triệt nhiễu RCC2 : tụ liên lạcD1, R2, R3: thành phần phân cực Q1

D1 : chặn xung dương từ C2 lên R2 khi nó xã qua R3

R5 : tải của Q1

C3 : tụ liên lạcR'5 : trở tạo điện thế âm để tắt Q2 trong thời gian không có xung đồng bộR6, R7 : điện trở tải của Q2

C4, C5 : tụ liên lạcR8, C6, R9, C7: Mạch tích phân2.6.4 Hoạt động của mạch

Trong thời gian không có xung đồng bộ:Q1 OFF vCQ1 = 0Q2 OFF vCQ2 = 1, vEQ2 = 0, vA = vB = 0

Trong thời gian có xung đồng bộ xung âm tác dụng vào B của Q1, C2 được nạp qua mối nối BE của Q1 Q1: ON vCQ1 = 1C3 nạp qua BE của Q2 vEQ2 = 1, vCQ2 = 0

Trong thời gian không có xung đồng bộ (I3), C2 phóng điện qua R3 áp một điện tích dương lớn vào cực B của Q1 làm cho Q1 tắt nhanh, Diode D ngăn không cho C2 phóng qua R2.

Điện áp trên các cực của Q1, Q2 được vẽ như hình vẽ.C3 phóng điện từ cực dương qua R5, R'5 về cực âm của nó làm trên R'5 xuất hiện một điện áp âm lớn và Q2 tắt nhanh trong thời gian không có xung đồng bộ.

Mạch triệt nhiễu R1C1

Nhiễu có phổ rất cao (tần số nhiễu rất lớn). Nếu đặt 2 tụ nối tiếp C1 và C2 mà C1<<C2 thì khi nhiễu xuất hiện, C1 nạp rất mạnh

(biên độ lớn hơn rất nhiều biên độ trên C2), trong khi đó C2 chưa tác động kịp nên nạp một lượng nhiễu nhỏ. Sau đó C1 phóng nhanh qua R1 để có thể nạp lại xung thứ hai. Đây là mạch triệt nhiễu RC.2.6.5 Một số mạch đồng bộ có bộ có mạch triệt nhiễu Hình 2.15Q2 : tách xung đồng bộQ1 : BJT triệt nhiễu (noise cancellor)R5, C3 : triệt nhiễu RCR8 : tải Q2

R1, R2: cầu phân áp định VE/Q1

C1 : tụ thoát (ổn định điện áp tại cực E của Q1)

23

Page 17: Chương 2: May thu hinh trang den

R3 : tải Q1

R4 : điện trở cách lyC2 : tụ liên lạcR6, R7: cầu phân cực cho Q2

R9, R5, R10, C6: mạch tích phânC4 : tụ liên lạcKhi tín hiệu nhiễu dưới 75% thì Q1 OFF. Nó sẽ triệt nhiễu bằng R5C3

hìnhKhi tín hiệu nhiễu có biên độ lớn hơn thì Q1 dẫn làm xuất hiện xung dương rất lớn ở cực C của Q1. Nó cộng với xung nhiễu âm tại cực B của Q2 tạo ra xung dương tại B/Q2 làm Q2

OFF trong thời gian có xung nhiễu lớn.Hình 2.16

Q1 : DamperR1, R2, R3, R4: cầu phân áp, phân cực Q2, tiếp tế Q2

R1 : điện trở tải Q1

R4 : tải Q2

VBT : biến áp giao động dọc dao động chặn (nghẹt)

24

C1

1µF

R1

18k

R2

10k

R3

22kC4

1µF

R7

820k R8

4,7k

R5

1,5k C3

.022

R4

390

C2

1µF

Q1

Q2

R6

27k

R9

22k

R10

15k

C5

.01C6

.01

B12

FROM VIDEO DRIVE

TO AFC

Hình 2.15 Sơ đồ mạch đồng bộ sử dụng BJT

R1

4,7k R2

12k

R3

68k

C1

100µF

B12

Q1

2SC201 Q2

2SC536

R4

22k

Q3

2SA564

C2

10µF

R5

47k R6

1k C3

.01

C4

.01

B12

FROM EMITTER OF VIDEO

TO OSC

Hình 2.16 Sơ đồ mạch đồng bộ sử dụng BJT

Page 18: Chương 2: May thu hinh trang den

D1 : bảo vệC1 : tụ thoát để Q2 mắc theo CBC2 : tụ liên lạcR5 : phóng điện cho C2

R6, R7 : điện trở tảiC3C4 : tụ liên lạcQ2 : tách đồng bộQ3 : đảo pha + khuếch đạiTrong thời gian có xung đồng bộ Q1: OFF Q2: ON vc/Q2 = 0Khi không có xung đồng bộ Q1: ON Q2: OFF

2.6.6 Phân chia xung đồng bộ dọc

Ta có dạng xung đồng bộ và tín hiệu video tổng hợp (theo chuẩn FCC)Trong thời gian quét mành ngược cần có nhưng xung ngắn (như xung đồng bộ

dòng) để chuyển động của chùm tia điện tử quét dòng vẫn phải thực hiện liên tục đồng thời sau xung đồng bộ dọc cần phải có những xung ngắn như xung đồng bộ ngang để giữ cho hình ảnh đứng yên ở mép trên cùng bên trái của màn đèn hình CRT.

Do đó người ta chia xung đồng bộ mành và xung xoá mành thành 12 xung san bằng, 6 xung bó sát, 9 đến 12 xung như xung đồng bộ ngang.

* Vì sao xung đồng bộ dòng không tác động được vào mạch V.OSC để có thể làm sai dao động dọc?

Xung đồng bộ ngang có độ rộng xung hẹp nên khi qua mạch tích phân nó không đủ rộng để nạp cho tụ đến một giá trị điện áp cho phép cho nên nó không ảnh hưởng đến mạch V.OSC.

25

R1 +R2 +R3

R1 + R2 +R3 +R4vc/Q2 = Vcc

200µs 190µs 1250µs

(204µs) (192µs) (1500µs)

6 xung san bằng

6 xung bó sát

6 xung san bằng

9 đến 12 xungnhư xung đồng bộ ngang

FCC

(OIRT)

100%

75%

0

Hình 2.17 Dạng xung đồng bộ dọc và xung xoá dọc được phân chia thành các xung nhỏ

Page 19: Chương 2: May thu hinh trang den

Còn xung đồng bộ dọc thì có cấu tạo từ 6 xung bó sát, độ rộng lớn và đứng sát nhau, khi đến mạch tích phân thì làm điện áp trên tụ tăng dần và đến xung thứ 6 thì điện áp trên tụ đủ lớn để kích thích đồng bộ cho mạch V.OSC.

Tác động của xung đồng bộ vào mạch vi phân:

Các xung san bằng, xung bó sát và các xung như xung đồng bộ dòng đều được đổi thành những xung nhọn coi như chúng tương tự như xung đồng bộ dòng vì thời gian quét dòng ngược chuyển động của chùm tia điện tử quét dòng vẫn phải liên tục nhờ các xung này.2.7 Mạch quét dọc2.7.1 Mục đích yêu cầu

Mạch quét dọc làm tia điện tử dịch chuyển theo chiều dọc trên màn hình.

Yêu cầu chính đối với mạch quét dọc là có tần số ổn định, không phụ thuộc vào sự thay đổi của nhiệt độ và điện áp, bảo đảm chắc chắn sự điều khiển đồng bộ, không để các xung gây nhiễu ảnh hưởng, cho điện áp ra lớn có độ tuyến tính cao.

Thông thường hệ thống làm lệch tia điện tử theo chiều dọc là cuộn dây gọi là Vert Yoke. Để đảm bảo cho độ tuyến tính theo chiều dọc thì dòng điện quét chạy trong cuộn dây Iq phải có dạng răng cưa tuyến tính. Mà cuộn dây là cuộn cảm có điện trở lớn nên để Iq có dạng răng cưa thì vq phải có dạng hình thang. 2.7.2 Sơ đồ mạch điện

2.7.3 Thành phần mạch điệnQ1 : V. OSCILATORQ2 : V. DRIVEQ3 : V.OUTPUT R1, R2, R3: cầu phân cực cho Q1

R2 : V. HOLD

26

R1

2k

R2

2k

R3

6,2k

A

B

C1

20µ

V. HOLD

R4

2,7k

C2

20µ

C3

20uF R5

3k

C

D

C4

5u

R6

3k

R7

3k

R7

22k

C5

100µ

R11

3

VDR

B12

C6

.01

R13

500

R14

500

R15

3,9k

R9

6,9k R10

510 R12

3Q1

2SD128Q2

2SB381

Q3

2SC696

V. LINE

TỪ ĐỒNG BỘ

V. SIZE

ĐẾN VIDEO OUTPUT

VCH VDY

Hình 2.18 Sơ đồ mạch quét dọc tiêu biểu sử dụng BJT

Page 20: Chương 2: May thu hinh trang den

VBT : biến áp dao động dọc kiểu blockingC1 : tụ thoátC2 : tụ sửa dạngC3 : tụ liên lạcR4 : cùng với C2 tạo xung răng cưa đưa vào tầng sauR5 : điện trở giảm thế, V. SIZER6, C4: mạch sửa dạngR10 : điện trở tải của Q2

R7, R8, R9: cầu phân cực cho Q2

C5 : tụ lọc tần số thấpVCH : cuộn chặn, làm tải của Q3

R12 : điện trở bổ chính nhiệtVDR : Voltage Depended Resistor: điện trở phi tuyến thay đổi trị số theo điệnthế, để ổn định biên độ điện áp quét dọc.R11 : điện trở ổn định nhiệtR13, R14: điện trở đệmC6 : tụ triệt điện áp cảm ứng từ HDY sang VDYVDY : Vertical Deffection YokeR15 : điện trở giảm thếC7 : tụ liên lạc2.7.4 Hoạt động của mạch2.7.4.1 Hoạt động của mạch dao động dọc

Khi tiếp điện vào mạch, do có tụ C1 và C2 điện áp trên 2 tụ lúc ban đầu bằng 0 (không thay đổi tức thời) nên vBEQ1 = 0 do vB = vE = 12V Q1 tắt. Sau đó C1 và C2 đều nạp. C1 nạp một điện áp do cầu phân thế định. C2 nạp một điện thế bằng Vcc vBE tăng IBQ1 tăng Q1 mở. Dòng qua Q1 chạy từ Vcc qua L2, Q1, R4 xuống masses, làm phát sinh trên L3 một điện áp cảm ứng phải có chiều sao cho Q1 dẫn mạnh hơn dòng qua Q1

tăng sẽ kéo theo điện áp cảm ứng tăng dòng phân cực tăng Q1 càng dẫn mạnh hơn nữa Q1 đi đến bão hoà. Nhưng khi Q1 bão hòa ICQ1=Cte i = 0 làm phát sinh điện cảm ứng sang L3 có chiều ngược với chiều điện áp ban đầu. Vì L3 > L2 điện áp cảm ứng thông thường sẽ rất lớn, hơn điện áp phân cực từ 8 ÷ 10 lần làm Q1 bị ngưng dẫn nhanh chóng. Đây là trường hợp Q1 bị nghẹt hay bị chặn. Gọi là dao động nghẹt hay dao động chặn (Blocking Oscilator).

Sau thời gian t, điện áp cảm ứng tiến dần đến giá trị 0 vBEQ1 tăng đến v Q1

mở và quá trình cứ tiếp diễn: Q1 tắt, Q1 dẫn. Dạng sóng tại R4 sẽ là hình chữ nhật nếu không có tụ sửa dạng C2.2.7.4.2 Tác dụng của chiết áp R2 Gọi:VL3: điện áp cảm ứng trên L3

VPC: điện áp phân cực do R1R2R3 tạo ra vBEQ1 = vL3 + vPC

Khi chiết áp R2 A vPC tăng vBEQ1 ít âm hơn và B BA làm T1 giảm T = T1+T2 giảm fv tăng.

27

Page 21: Chương 2: May thu hinh trang den

Khi chiết áp R2 B vPC giảm vBEQ1 âm hơn và B BB làm T1 tăng T = T1 + T2 tăng fv giảm.

Vậy khi chỉnh R2: B A thì fv tăng.

+ Khi fv = 50Hz hoặc fv = 60Hz: hình đứng yên theo chiều dọc.

R2: giữ hình đứng yên gọi là V.HOLD2.7.4.3 Hiện tượng đồng bộ hoá trong mạch quét

Đồng bộ để giữ cho dao động dọc đồng tần số và đồng pha với đài phát.

Trong thời gian Q1 tắt ta tác động một xung thích hợp thì Q1 sẽ đổi trạng thái. Ta nói Q1 đồng bộ với xung kích.

Muốn đồng bộ được tốt thì xung đồng bộ phải thoả mãn điều kiện: Biên độ phải đủ lớn để vBEQ1 >> v ở thời điểm kích

Phải có cực tính dương

Xung đồng bộ phải đi trước một tí (chỉnh R2 để thoả mãn điều kiện này).

Khi hình ảnh mờ biên độ tín hiệu đồng bộ giảm hình tuôn chạy.

2.7.4.4 Công dụng của tụ C2

Khi Q11 tắt C22 nạp qua R44

Khi Q22 dẫn C22 xã qua Q11 làm VR4R4 tăng

Chú ý VC2 C2 + VR4 R4 = Vcccc

2.7.4.5 Tác dụng mạch khi điều chỉnh R5 5

Khi R5 D R5 max viQ2 min hình ảnh co lại theo chiều dọc.

Khi R5 D R5 min viQ2 max hình ảnh giản ra theo chiều dọc.

Vậy khi chỉnh R5 hình ảnh bị giản ra hay co lại theo chiều dọc.

R5: V.SIZE2.7.4.6 Công dụng của R6C4

R6C4 có tác dụng làm dòng quét dọc Iqd thay đổi tuyến tính theo thời gian, lúc đó hình ảnh sẽ tuyến tính theo chiều dọc trên màn hình.

Hình vẽ mô tả quan hệ giữa độ tuyến tính của dòng Iqdọc trong cuộn dây làm lệch tia điện tử (VDY) và độ tuyến tính của hình ảnh theo chiều dọc.

Dòng quét Iqd theo đường thẳng tương ứng với hình tròn trên màn hình.

Tương tự Iqd theo đường cong tương ứng với hình .

Tương tự Iqd theo đường cong tương ứng với hình .

28

Page 22: Chương 2: May thu hinh trang den

2.8 Mạch quét ngang2.8.1 Mục đích yêu cầu

Mạch quét ngang tạo tín hiệu quét ngang có tần số 15750Hz (hệ FCC) hay

15625Hz (hệ OIRT hay CCIR) đồng bộ với đài phát nhờ xung đồng bộ.

Tạo dòng Iq trong cuộn lệch ngang (H.YOKE) có dạng răng cưa tuyến tính. Mà cuộn lệch ngang được quấn nhiều vòng có tính thuần cảm L nên để tạo Iq dạng răng cưa tuyến tính thì vq phải có dạng chữ nhật.hình

vq = Vq = Cte (xung chữ nhật)

Mạch quét ngang tạo điện áp đại cao thế cung cấp cho Anode.

với điện áp 9KV ÷ 18KV đối với trắng đenvà 18KV ÷ 30KV đối với màu

Tạo điện áp xung Parabol đốt tim đèn hình

Tạo điện áp trung thế từ 100V 400V để cấp cho các phần sau đây:

o Video output (xuất hình)

o Lưới màn (screen)

o Lưới hội tụ Focus

o Katode của đèn hình

o Đôi khi cung cấp cho phần quét dọc và xuất âm

Cung cấp tín hiệu cho mạch AGC khoá

Cung cấp tín hiệu cho mạch AFC

Cung cấp tín hiệu đưa vào cực E của BJT video output để làm tắt BJT trong thời gian xóa ngang.

2.8.2 Sơ đồ khối mạch quét ngangĐối với các máy thu hình bán dẫn, người ta thường sử dụng dao động Blocking

làm dao động ngang vì nó tạo ra xung hình chữ nhật lý tưởng, đồng thời có tần số ổn định.

Trong các máy thu hình hiện nay, người ta sử dụng mạch dao động thạch anh có tần số chuẩn bằng 500KHz. Sau đó, sử dụng mạch chia xuống (Countdown) để tạo ra tần số dao động ngang bằng 15625Hz hoặc 15750Hz, và tiếp tục chia xuống để có tần sô dao động dọc bằng 60Hz hoặc 50Hz. Do đó, các xung dao động ngang và dọc đều có dạng xung vuông lý tưởng, vấn đề còn lại là sử dụng mạch so pha với xung đồng bộ ngang và dọc để giữ đồng pha và đồng tần số so với đài phát.

29

Mạchso pha

Daođộng ngang

Khuếch đại thúc

KĐCSngang

Biến thế Flyback

Mạch sửa dạng

XungĐBngang

Hình 2.19 Sơ đồ khối của mạch quét ngang

XungRăng cưa

Page 23: Chương 2: May thu hinh trang den

2.8.3 Sơ đồ tương đương của mạch khuếch đại công suất ngang

2.8.4 Hoạt động của mạch khuếch đại công suất ngang H.OUTPUTGọi C: là tụ điện tương đương với toàn bộ tụ điện trong khu vực L: là cuộn dây tương đương với toàn bộ cuộn dây trong khu vực

Trong khoảng thời gian 0 ÷ t1:

Xung kích vào vBEQ4 ở mức 1 Q4 bảo hoà vL = -V. Dòng iL tăng tuyến tính (muốn vậy V phải ổn định).

Trong khoảng thời gian t1 ÷ t2:

Xung kích vào vBEQ4 ở mức 0 Q4 tắt, xuất hiện điện áp cảm ứng có chiều

dương ở cực C của Q4, iL vẫn không đổi chiều nhưng giảm dần, dòng này chọn trong vòng L, C và nạp điện cực đại và tụ bắt đầu phóng điện ngược trở lại cuộn dây L cho nên dòng iL đổi chiều iL và tăng dần chiều âm như hình vẽ.

30

+

+

Q4

C L

V

HDT

HDT

C L

VQ4

Hình 2.20 Sơ đồ tương đương của mạch khuếch đại công suất ngang sử dụng BJT công suất

Page 24: Chương 2: May thu hinh trang den

Vì L có giá trị lớn và lớn nên điện áp cảm ứng vL rất lớn (có thể bằng 8 ÷ 10 lần điện

áp tăng cường V) vL đặt lên cực CE của Q4 Q4 phải có điện áp chịu đựng cao khoảng1000V).

Trong khoảng thời gian t2 ÷ t3:

Xung kích ở mức 1 làm Q4 từ tắt chuyển nhanh sang bão hoà và điện áp trên L bằng -V như trong giai đoạn 0 ÷ t1.Chú ý: trong khoảng thời gian t2 ÷ t3 Q4 bão hoà lại nhưng lúc đó trong cuộn dây và tụ điện vẫn còn tích trữ năng lượng L là V V chứ không phải là không đổi dòng iL thực chất là không tăng tuyến tính mà uốn lượn Để khắc phục ta dùng diode Damper D.D triệt năng lượng còn dư trong cuộn LC khi Q4 bảo hòa lại.

31

VL

-V

iL

t1 t2 t3 t4

Không có diode đệm D

t

t

t

VBEQ4

Hình 2.21 Dạng xung của các tín hiệu trong mạch khuếch đại công suất ngang