42
1 Chương 6 Chẩn đoán hồi quy: Tự tương quan Domadar N. Gujarati (Econometrics by example, 2011). Người dịch và diễn giải: Phùng Thanh Bình, MB (5/11/2017) Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự tương quan. Nhớ lại rằng một trong những giả định của mô hình hồi quy tuyến tính cổ điển là các hạng nhiễu, ut, không tương quan – nghĩa là, hạng nhiễu tại thời điểm t không tương quan với hạng nhiễu tại thời điểm (t - 1) hoặc bất kỳ hạng nhiễu nào trong quá khứ. Nếu các hạng nhiễu tương quan sẽ dẫn đến các hậu quả sau đây 1 : 1. Các ước lượng OLS vẫn không chệch và vẫn nhất quán. 2. Chúng (tức các ước lượng OLS) vẫn theo phân phối chuẩn trong các mẫu lớn. 3. Nhưng chúng không còn hiệu quả nữa. Nghĩa là, chúng không còn BLUE nữa (ước lượng tuyến tính không chệch tốt nhất). Trong hầu hết các trường hợp, các sai số chuẩn OLS bị ước lượng thấp (underestimated), nghĩa là các giá trị t ước ượng bị thổi phồng (tức cao hơn bình thường), điều này nhìn bề ngoài có vẽ như một hệ số có ý nghĩa thống kê hơn là nó thực sự có thể. [Diễn giải: Dễ bác bỏ giả thuyết H0, mặc dù H0 có thể là giả thuyết đúng]. 4. Kết quả là, như trong trường hợp phương sai thay đổi, thủ tục kiểm định giả thuyết trở nên đáng nghi, vì các sai số chuẩn ước lượng có thể không 1 Để biết chi tiết, xem Gujarati/Porter, Chương 12.

Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

  • Upload
    leliem

  • View
    228

  • Download
    9

Embed Size (px)

Citation preview

Page 1: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

1

Chương 6

Chẩn đoán hồi quy: Tự tương quan

Domadar N. Gujarati

(Econometrics by example, 2011).

Người dịch và diễn giải: Phùng Thanh Bình, MB (5/11/2017)

Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là

hiện tượng tự tương quan. Nhớ lại rằng một trong những giả định của mô hình

hồi quy tuyến tính cổ điển là các hạng nhiễu, ut, không tương quan – nghĩa là,

hạng nhiễu tại thời điểm t không tương quan với hạng nhiễu tại thời điểm (t - 1)

hoặc bất kỳ hạng nhiễu nào trong quá khứ. Nếu các hạng nhiễu tương quan sẽ

dẫn đến các hậu quả sau đây1:

1. Các ước lượng OLS vẫn không chệch và vẫn nhất quán.

2. Chúng (tức các ước lượng OLS) vẫn theo phân phối chuẩn trong các mẫu

lớn.

3. Nhưng chúng không còn hiệu quả nữa. Nghĩa là, chúng không còn BLUE

nữa (ước lượng tuyến tính không chệch tốt nhất). Trong hầu hết các

trường hợp, các sai số chuẩn OLS bị ước lượng thấp (underestimated),

nghĩa là các giá trị t ước ượng bị thổi phồng (tức cao hơn bình thường),

điều này nhìn bề ngoài có vẽ như một hệ số có ý nghĩa thống kê hơn là

nó thực sự có thể. [Diễn giải: Dễ bác bỏ giả thuyết H0, mặc dù H0 có thể

là giả thuyết đúng].

4. Kết quả là, như trong trường hợp phương sai thay đổi, thủ tục kiểm định

giả thuyết trở nên đáng nghi, vì các sai số chuẩn ước lượng có thể không

1 Để biết chi tiết, xem Gujarati/Porter, Chương 12.

Page 2: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

2

tin cậy, thậm chí tiệm cận (tức là trong các mẫu lớn). Vì vậy, các kiểm

định t và F có thể không có hiệu lực.

Như trong trường hợp phương sai thay đổi, chúng ta cần tìm hiểu xem liệu tự

tương quan có tồn tại trong một ứng dụng cụ thể hay không và có hành động

chỉnh sửa hoặc tìm kiếm các thủ tục ước lượng thay thế khác sao cho có được

các ước lượng tuyến tính không chệch tốt nhất. Trước khi thực hiện điều này,

chúng ta hãy xem xét một ví dụ cụ thể.

6.1 Hàm tiêu dùng của Mỹ, 1947 – 2000

Table 6.1 là tệp dữ liệu về chi tiêu cho tiêu dùng thực (C), thu nhập cá nhân khả

dụng thực (DPI), tài sản thực (W), và lãi suất thực (R) của Mỹ giai đoạn 1947 –

2000; thuật ngữ ‘thực’ nghĩa là đã được điều chỉnh lạm phát2. Table 6.1 có thể

được tìm thấy trên trang web của cuốn sách.

Bây giờ hãy xem xét mô hình hồi quy sau đây:

Lưu ý rằng chúng ta dùng chỉ số dưới là t (thay vì i) để chỉ ra rằng chúng ta

đang xử lý dữ liệu chuỗi thời gian. Cũng lưu ý rằng ln là logarít tự nhiên.

Để đơn giản hóa việc giải thích, chúng ta sẽ gọi phương trình (6.1) là hàm tiêu

dùng. Các biến giải thích trong phương trình này là các biến được sử dụng phổ

biến trong hàm tiêu dùng, mặc dù có thể có các biến đổi trong lựa chọn các

2 Dữ liệu được thu thập từ nhiều nguồn khác nhau của chính phủ, như Phòng công thương, Ngân hàng dự trữ liên bang và Báo cáo kinh tế cho tổng thống.

Page 3: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

3

biến DPI, tài sản, và lãi suất. Tham khảo bất kỳ giáo trình kinh tế vĩ mô nào để

tìm hiểu lý thuyết kinh tế nền tảng của hàm tiêu dùng.

Lưu ý rằng chúng ta cho các biến C, DPI, và W ở dạng log, nhưng R ở dạng

tuyến tính bởi vì một số lãi suất thực có giá trị âm. Các hệ số B2 và B3 lần lượt

là các hệ số co giãn của chi tiêu cho tiêu dùng theo thu nhập khả dụng và tài

sản, và B4 là hệ số bán co giãn theo lãi suất thực (nhớ lại là thảo luận của chúng

ta về các dạng hàm của mô hình hồi quy ở chương 3)3. Theo tiên nghiệm, chúng

ta kỳ vọng các hệ số co giãn theo thu nhập và tài sản có dấu dương và hệ số

bán con giãn theo lãi suất mang dấu âm.

Kết quả hồi quy

Kết quả ước lượng mô hình hồi quy được trình bày trong Bảng 6.2.

3 Trong phân tích hàm tiêu dùng, chúng ta thường sử dụng các dạng log hoặc bán log, vì các hệ số có thể được giải thích như các hệ số co giãn hoặc hệ số bán con giãn.

Page 4: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

4

Đánh giá kết quả

Các hệ số độ dốc có dấu đúng như kỳ vọng. Nếu thỏa mãn các giả định của

mô hình hồi quy tuyến tính cổ điển, thì các hệ số ước lượng có ý nghĩa thống

kê “cao”, vì các giá trị xác suất p rất thấp. Hệ số co giãn theo thu nhập là 0.8

cho chúng ta biết rằng, khi giữ nguyên các biến khác không đổi, nếu thu nhập

khả dụng thực cá nhân tăng thêm 1%, thì chi tiêu cho tiêu dùng trung bình tăng

thêm khoảng 0.8%. Hệ số của tài sản khoảng 0.20 cho chúng ta biết bằng nếu

tài sản thực tăng thêm 10%, thìchi tiêu cho tiêu dùng trung bình tăng thêm

khoảng 0.2%, khi giữ nguyên các biến khác không đổi. Hệ số bán co giãn theo

lãi suất cho chúng ta biết rằng nếu lãi suất tăng thêm một điểm phần trăm

(không phải 1%), thì chi tiêu cho tiêu dùng trung bình giảm xuống khoảng

0.25%, khi giữ nguyên các biến khác không đổi.

R2 cao và các thống kê khác trong bảng kết quả trên có thể cho thấy rằng mô

hình hồi quy rất phù hợp, mặc dù chúng ta nên thận trọng với một giá trị R2 gần

như bằng 1. Điều này bởi vì khả năng hồi quy giả mạo (spurious regression)

xảy ra khi cả biến phụ thuộc và các biến giải thích tăng qua thời gian. [Diễn giải:

Khi các biến trong mô hình là các chuỗi không dừng thì hồi quy có thể cho kết

quả R2 cao, t cao, nhưng R2 > DW]. Nhưng chúng ta sẽ thảo luận chủ đề này

chi tiết hơn ở chương về kinh tế lượng chuỗi thời gian (chương 13).

Vì chúng ta đang xử lý dữ liệu chuỗi thời gian, có ta phải dè chừng hiện tượng

tự tương quan (hoặc tương quan chuỗi). Nếu có tự tương quan trong hạng nhiễu,

thì các sai số chuẩn ước lượng, và tự bản thân nó, các giá trị t ước lượng sẽ bị

nghi ngờ. Vì thế, trước khi chúng ta chấp nhận các kết quả được trình bày trong

bảng trên, chúng ta cần kiểm tra xem có sự hiện diện của hiện tượng tự tương

quan hay không.

Page 5: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

5

6.2 Các kiểm định tự tương quan

Mặc dù có nhiều kiểm định tự tương quan, nhưng ở đây chúng ta sẽ chỉ thảo

luận một vài cách, cụ thể là phương pháp đồ thị (graphical method), kiểm định

Durbin-Watson, và kiểm định Breusch-Godfrey (BG)4.

Phương pháp đồ thị

Khi đánh giá các kết quả hồi quy thì một cách thực hành tốt là luôn luôn phải

vẽ đồ thị phần dư từ mô hình được ước lượng để nhận diện ra các manh mối về

sự khả năng vi phạm một hoặc nhiều hơn một trong số các giả định OLS. Như

một tác giả lưu ý: “Bất kỳ ai cố gắng phân tích một chuỗi thời gian mà không vẽ

đồ thị là đang tìm đến rắc rối”5.

Ví dụ, trong thảo luận của chúng ta về phương sai thay đổi, chúng ta vẽ đồ thị

phần dư bình phương theo giá trị ước lượng của biến phụ thuộc để tìm ra một

dạng nào đó trong các phần dư này, điều này có thể gợi ý loại chuyển hóa mà

bạn có thể thực hiện đối với mô hình gốc để trong mô hình được chuyển hóa

chúng ta không gặp vấn đề phương sai thay đổi.

Vì tự tương quan là sự tương quan giữa các hạng nhiễu, ut, nên một phương

pháp đơn giản tình thế để kiểm định tự tương quan đơn giản là vẽ các giá trị của

ut theo thời gian. Không may, chúng ta không thể quan sát các ut một cách trực

tiếp. Thứ mà chúng ta có thể quan sát là các đại diện của chúng, tức các et, tức

phần dư mà chúng ta có thể quan sát sau khi ước lượng mô hình hồi quy.

Mặc dù các et không hoàn toàn giống các ut, nhưng các et là các ước lượng

nhất quán của các ut, theo nghĩa là khi cỡ mẫu tăng, thì các et hội tụ về các giá

trị thực, tức các ut, của chúng. Mẫu của chúng ta với 54 quan sát thì về mặt kỹ

4 Để tìm hiểu các phương pháp khác dùng để phát hiện tự tương, xem Gujarati/Porter, Chương 12, trang 429-40. 5 Chris Chatfield, The Analysis of Time Series: An Introduction, 6th edn, Chapman and Hall, 2004, p.6.

Page 6: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

6

thuật không phải là lớn, nhưng chúng bao quát dữ liệu cả giai đoạn sau chiến

tranh thế giới lần thư hai. Thậm chí nếu chúng ta mở rộng cỡ mẫu đến cuối năm

2009, thì chúng ta sẽ chỉ có thêm có 9 quan sát. Vì thế, chúng ta không thể làm

nhiều về cỡ mẫu của chúng ta.

Bằng cách vẽ dữ liệu các et theo thời gian, chúng ta có thể có một ấn tượng trực

giác về khả năng tồi tại vấn đề tự tương quan. Thực hiện như thế, chúng ta có

được Hình 6.1.

Hình 6.1: Phần dư (nhân với 100) và phần dư chuẩn hóa.

Hình này cho thấy rằng phần dư S1 thu được từ hồi quy (6.1) và phần dư chuẩn

hóa, S2, tức đơn giản là lấy S1 chia cho sai số chuẩn của hồi quy [Diễn giải: Tức

là căn bậc hai của RSS / bậc tự do]. Để tương đồng về quy mô, chúng ta nhân

S1 với 100.

Page 7: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

7

[Diễn giải: Cách tạo S1 và S2 trên Eviews:]

ls lnconsump c lndpi lnwealth interest

scalar se_reg=0.011934

genr S2=resid/se_reg

genr S1=resid*100

plot s1 s2

Các đồ thị S1 và S2 cho thấy một dạng chuyển động lên – xuống, điều này cho

chúng ta biết rằng các phần dư có tương quan với nhau. Điều này có thể được

thấy rõ hơn nếu chúng ta vẽ đồ thị phần dư tại thời điểm t the phần phần dư tại

thời điểm (t - 1), như trong Hình 6.2.

Hình 6.2: Phần dư hiện hành và phần dư trễ một giai đoạn.

Page 8: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

8

[Diễn giải: Để vẽ được Hình 6.2 trên Eviews, chúng ta thực hiện như sau: Chọn

Quick\Graph …, nhập tên biến, ví dụ resid và resid(-1), và chọn tiếp như bảng

dưới đây:]

Đường hồi quy trong Hình 6.2 cho thấy rằng các phần dư có mối tương quan

dương với nhau.

[Diễn giải: Cách vẽ Hình 6.1 trên Stata]:

Ngay sau khi hồi quy với Stata

predict s1, resid

gen s1_100=100*s1

label var s1_100 "Residuals"

predict s2, rstandard

twoway (line s1_100 time) (line s2 time)

Page 9: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

9

[Diễn giải: Dạng đồ thị phần dư và nhận dạng loại tự tương quan]

Tự tương quan dương:

-2-1

01

23

0 20 40 60Time

Residuals Standardized residuals

Page 10: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

10

Page 11: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

11

Tự tương quan âm:

Không có tự tương quan:

Page 12: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

12

Kiểm định d Durbin-Watson6

Kiểm định nổi tiếng nhất và thường được sử dụng nhất để phát hiện tương quan

chuỗi được phát triển bởi hai nhà thống kê Durbin và Watson, và được biết rộng

rãi với tên gọi là thống kê d Durbin-Watson. Thống kê d Durbin-Watson được

định nghĩa như sau:

Đây là tỷ số của tổng bình phương khác biệt giữa hai phần dư liền kề nhau so

với tổng bình phương phần dư. Lưu ý rằng bậc tự do trên tử số là (n - 1), vì

chúng ta mất một quan sát để tạo ra các chênh lệch liền kề của phần dư. Cũng

lưu ý rằng giá trị d luôn nằm giữa 0 và 47.

[Diễn giải: Công thức (6.2) có thể được triễn khai như sau:

d = ∑ 𝑒𝑡

2𝑡=𝑛𝑡=2 + ∑ 𝑒𝑡−1

2 −2 ∑ 𝑒𝑡𝑒𝑡−1𝑡=𝑛𝑡=2

𝑡=𝑛𝑡=2

∑ 𝑒𝑡2𝑡=𝑛

𝑡=1 (a)

Do ∑ 𝑒𝑡2𝑡=𝑛

𝑡=2 và ∑ 𝑒𝑡−12𝑡=𝑛

𝑡=2 chỉ khác nhau một quan sát, nên chúng được xem là

xấp xỉ bằng nhau, vậy công thức (a) có thể được viết gọn lại như sau:

d = 2 (1 −∑ 𝑒𝑡𝑒𝑡−1

𝑡=𝑛𝑡=2

∑ 𝑒𝑡2𝑡=𝑛

𝑡=1

) (b)

Nếu đặt �̂� = ∑ 𝑒𝑡𝑒𝑡−1

𝑡=𝑛𝑡=2

∑ 𝑒𝑡2𝑡=𝑛

𝑡=1, ta có:

d = 2(1 − �̂�) (c)

6 Để biết thêm chi tiết, xem Gujarati/Porter, Chương 12. 7 Để biết chi tiết, xem Gujarati/Porter, Chương 12, trang 435 – 6.

Page 13: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

13

Qua công thức (c) chúng ta thấy 0 < d < 4, vì -1 < �̂� < 1; �̂� = 1, d = 0, và �̂� = -

1, d = 4].

Giá trị d Durbin-Watson cho ví dụ của chúng ta là 1.2829 1.28. Chúng ta làm

gì với giá trị này?

Trước khi chúng ta tìm hiểu thống kê d được sử dụng như thế nào, điều quan

trọng cần nhớ là các giả định cơ bản của thống kê d. Các giả định này là:

1. Mô hình hồi quy có hệ số cắt8.

2. Các biến giải thích là cố định trong lấy mẫu lặp đi lặp lại.

3. Các hạng nhiễu, ut, theo cơ chế tự hồi quy bậc một [AR(1), first-order

autoregressive scheme]:

Trong đó, (rho) là hệ số tự tương quan (coefficient of autocorrelation)

[Diễn giải: Ước lượng của hệ số này chính là AC bậc 1 trong giản đồ tự

tương quan của Eviews], nằm trong khoảng -1 < < 1. Nó được gọi là AR

bậc một bởi vì chỉ liên quan đến hạng nhiễu hiện tại và hạng nhiễu trễ

một giai đoạn. vt là hạng nhiễu ngẫu nhiên.

4. Hạng nhiễu ut theo phân phối chuẩn.

5. Các biến giải thích không bao gồm các giá trị trễ của biến phụ thuộc, Yt,

nghĩa là, các biến giải thích không bao gồm các biến Yt-1, Yt-2, và các số

hạng trễ khác của Y.

Như bạn có thể thấy, các giả định này có thể khá hạn chế trong thực tế.

Phân phối xác suất chính xác của d thì khó để suy ra bởi vì nó phụ thuộc vào

một cách phức tạp về các giá trị được nhận của các biến giải thích. Và vì các

8 Nếu không có hệ số cắt, Farebrother đã điều chỉnh kiểm định d để tính đến trường hợp này. Để biết thêm chi tiết, xem Gujarati/Porter, trang 434.

Page 14: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

14

giá trị mà các biến giải thích nhận được có tính đặc thì của mẫu, nên không có

cách duy nhất để suy ra phân phối mẫu của d.

Tuy nhiên, dựa trên cỡ mẫu và số lượng các biến giải thích, Durbin và Watson

có thể thiết lập hai giá trị tới hạn (critical values) của thống kê d, gọi là dL và dU,

gọi là giới hạn dưới và giới hạn trên. Vì thế, nếu giá trị d tính toán nằm dưới giới

hạn dưới, hoặc trên giới hạn trên, hoặc nằm giữa hai giá trị giới hạn, thì một

quyết định có thể được thực hiện về sự tồn tại hiện tượng tự tương quan hay

không.

Quy tắc quyết định như sau:

1. Nếu d < dL, có thể có bằng chứng về tự tương quan dương.

2. Nếu d > dU, có thể có bằng chứng tự tương quan âm.

3. Nếu dL < d < dU, không có kết luận xác định về tự tương quan dương.

4. Nếu dU < d < 4 – dL, không có bằng chứng về tự tương quan dương hoặc

âm.

5. Nếu 4 – dU < d < 4 – dL, không có kết luận xác định về tự tương quan âm.

6. Nếu 4 - dL < d < 4, có thể có bằng chứng về tự tương quan âm.

Như đã lưu ý, giá trị d nằm giữa 0 và 4. Càng gần về 0, càng có bằng chứng về

tự tương quan dương; và càng gần về 4, càng có bằng chứng về tự tương quan

âm. Nếu d khoảng bằng 2, không có bằng chứng về tự tương quan âm hoặc

dương bậc một.

Page 15: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

15

[Diễn giải: Chúng ta có thể minh họa bằng sơ đồ sau đây:]

Durbin và Watson chuẩn bị các bảng về các giới hạn dưới và giới hạn trên của

thống kê d cho một số quan sát được chọn (tối đa đến 200) và số biến giải thích

(tối đa đến 10) và cho các mức ý nghĩa 5% và 1%.

Trở lại với hàm tiêu dùng của chúng ta, chúng ta có n = 54, X (số biến giải thích)

= 3. Các giá trị phê phán ở mức ý nghĩa 5% cho kết hợp này (sử dụng n = 55):

(1,4552, 1.681). Vì giá trị d Durbin-Watson tính toán là khoảng 1.28, giá trị này

nằm dưới giới hạn dưới, nên chúng ta kết luận rằng có thể có tự tương quan

dương trong hạng nhiễu.

Giá trị d phê phán ở mức ý nghĩa 1% là (1.284, 1.506). Giá trị tính toán d hơi

thấp hơn giới hạn dưới, một lần nữa cho thấy rằng hồi quy của chúng ta có thể

bị hiện tượng tự tương quan dương bậc một.

Page 16: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

16

[Diễn giải: Cách kiểm định d Durbin-Watson trên Stata, … dùng giá trị xác suất,

khỏi cần tra bảng]:

[

Lưu ý: burbinalt chính là thống kê Durbin h, sẽ được thảo luận ở phần sau.

Page 17: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

17

Kiểm định Breusch – Godfrey (BG) về tự tương quan9

Để tránh vài tính chất hạn chế của kiểm định d, Breusch và Godfrey đã phát

triển một kiểm định tự tương quan mang tính tổng quát hơn, kiểm định này cho

phép: (1) Các giá trị trễ của biến phụ thuộc được đưa vào mô hình như các biến

giải thích, (2) Cơ chế tự tương quan bậc cao hơn, chẳng hạn AR(2) và AR(3),

và (3) Các số hạng trung bình di động (MA) của hạng nhiễu, như ut-1, ut-2, …10

Để minh họa kiểm định BG, giả sử trong phương trình (6.1), hạng nhiễu theo

cấu trúc như sau:

Trong đó, vt là hạng nhiễu theo các giả định cổ điển thông thường.

Phương trình (6.4) là một cấu trúc tự hồi quy AR(p) trong đó hạng nhiễu hiện

tại phụ thuộc vào các hạng nhiễu trước đó cho tới độ trễ p. Giá trị chính xác của

p thường là một quá trì thử và sai [Diễn giải: Thường dựa vào các tiêu chí AIC

hoặc SIC để xác định độ trễ tối ưu, hoặc dựa vào giản đồ tự tương quan (xem

bài giảng về chuỗi dừng)], mặc dù trong hầu hết các chuỗi thời gian kinh tế bạn

không phải chọn một giá trị p cao.

Giả thuyết H0 như sau:

Nghĩa là, không có tương quan chuỗi ở bất kỳ độ trễ nào.

9 Để biết chi tiết, xem Gujarati/Porter, trang 438 – 40. 10 Ví dụ, một cơ chế AR(2) nghĩa là hồi quy giá trị hạng nhiễu hiện tại của một biến theo các độ trễ một và hai giai đoạn của nó. Trong khi, một cơ chế MA(1) là hồi quy theo hạng nhiễu hiện tại và giá trị giai đoạn trước đó của hạng nhiễu. Cơ chế MA được thảo luận chi tiết hơn ở Chương 16.

Page 18: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

18

Trong thực tế, chúng ta chỉ quan sát các phần dư et, đó là các ước lượng của

ut. Vì thế, kiểm định BG được thực hiện theo các bước sau đây:

1. Ước lượng phương trình (6.1) theo OLS và thu phần dư et.

2. Hồi quy et theo các biến giải thích trong mô hình (6.1) và p hạng nhiễu tự

hồi quy như trong phương trình (6.4), nghĩa là chạy hồi quy sau đây:

và thu được R2 từ hồi quy phụ này.

3. Nếu cỡ mẫu lớn (về mặt kỹ thuật, là vô cùng), thì BG cho thấy rằng:

Nghĩa là, trong mẫu lớn, (n - p) nhân với R2 theo phân phối Chi bình

phương với p bậc tự do.

4. Một cách khác, chúng ta có thể sử dụng giá trị F thu được từ hồi quy (6.6)

để kiểm định giả thuyết H0 trong (6.5). Giá trị F này lần lượt có (p, n – k -

p) bậc tự do trên tử và dưới mẫu, trong đó k thể hiện số tham số trong

phương trình (6.1) (bao gồm cả hệ số cắt).

Vì thế, nếu trong một ứng dụng, giá trị Chi bình phương tính toán lớn hơn giá trị

Chi bình phương phê phán tại một mức ý nghĩa được chọn, chúng ta có thể bác

bỏ giả thuyết H0 cho rằng không có tự tương quan, trong trường hợp đó ít nhất

có một giá trị p trong (6.6) khác 0 một cách có ý nghĩa thống kê. Nói cách khác,

chúng ta có một hình thức tự tương quan nào đó. Hầu hết các phần mềm thống

kê hiện nay đều có trình bày giá trị xác suất p của giá trị Chi bình phương ước

lượng, nên chúng ta không cần chọn mức ý nghĩa một cách tùy tiện.

Tương tự, nếu giá trị F tính toán lớn hơn giá trị F phê phán tại một mức ý nghĩa

cho trước, chúng ta cũng có thể bác bỏ giả thuyết H0 cho rằng không có tự

Page 19: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

19

tương quan. Thay vì chọn mức ý nghĩa, chúng ta có thể dựa vào giá trị xác suất

p của thống kê F ước lượng và bác bỏ giả thuyết H0 nếu giá trị p này thấp.

Hai kiểm định này cho các kết quả tương tự, điều này không có gì ngạc nhiên

vì chúng ta biết rằng có mối quan hệ giữa thống kê F và Chi bình phương11.

Trước khi minh họa kiểm định, các tính chất sau đây của kiểm định BG có thể

được lưu ý:

1. Kiểm định đòi hỏi rằng phương sai của hạng nhiễu ut, khi cho trước các

giá trị của các biến giải thích và các số hạng trễ của hạng nhiễu, là đồng

nhất. Nếu điều này không xảy ra, chúng ta sẽ phải sử dụng phương sai

điều chỉnh phương sai thay đổi, chẳng hạn như sai số chuẩn mạnh theo

thủ tục của White.

2. Một vấn đề thực tế khi áp dụng kiểm định BG là việc lựa chọn số số hạng

trễ của hạng nhiễu, p, trong phương trình (6.4). Giá trị p có thể phụ thuộc

vào loại chuỗi thời gian. Đối với dữ liệu theo tháng, chúng ta có thể đưa

vào 11 biến trễ của hạng nhiễu, đối với dữ liệu theo quý, chúng ta có thể

đưa vào 3 biến trễ của hạng nhiễu, và đối với dữ liệu theo năm, một độ

trễ của hạng nhiễu có thể đủ. Dĩ nhiên, chúng ta có thể chọn số độ trễ

theo cách thử và sai và chọ giá trị p dựa vào các tiêu chi AIC và SIC (xem

chương 2). Giá trị các tiêu chí này càng nhỏ, thì mô hình càng tốt.

Quay lại ví dụ về hàm tiêu dùng của chúng ta, các kết quả hồi quy (6.6) như

sau: Để minh họa, chúng ta chỉ đưa vào một biến trễ của phần dư trong hồi quy

này bởi vì chúng ta có dữ liệu theo năm. Kết quả được trình bày trong Bảng 6.3.

11 Mối quan hệ này như sau: Đối với bậc tự do ở mẫu số lớn, thì bậc tự do ở tử số nhân với giá trị F xấp xỉ bằng giá trị Chi bình phương với số bậc tự do của tử số, trong đó m và n lần lượt là các bậc tự do của mẫu và tử số.

Page 20: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

20

Như các kết quả này cho thấy, có bằng chứng mạnh về tự tương quan bậc một,

vì cả các giá trị F và Chi bình phương đều có ý nghĩa cao bởi vì các giá trị xác

suất p rất thấp.

Bảng 6.3: Kiểm định BG về tự tương quan của hàm tiêu dùng.

Chúng ta cũng ước lượng mô hình bao gồm 2 và 3 độ trễ của hạng nhiễu. Tiêu

chí AIC cho các giá trị lần lượt là -6.01, -6.0, -5.96 cho một, hai và 3 độ trễ của

hạng nhiễu trong phương trình (6.6). Mặc dù không có khác biệt đáng kể trong

các giá trị này, trên cơ sở thông tin AIC, nhưng chúng ta chọn mô hình với giá

trị âm lớn nhất, ở đây là -6.01, vì thế chúng ta có thể biện minh cho việc sử dụng

một biến trễ của hạng nhiễu trong phương trình (6.6) là phù hợp12. Cũng vậy,

các hệ số của các hạng trễ thứ hai và thứ 3 cũng không có ý nghĩa thống kê.

12 Lưu ý rằng -5.96 lớn hơn -6.00, và số này lớn hơn -6.01.

Page 21: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

21

[Diễn giải: Kểm điện BG trên Eviews và Stata:]

Page 22: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

22

6.3 Các biến pháp khắc phục

Nếu chúng ta thấy có tự tương quan trong một áp dụng thực tế, chúng ta cần

để ý điều này, vì tùy vào mức độ nghiêm trọng của nó mà chúng ta có rút ra

những kết luận sai lầm bởi vì các sai số chuẩn OLS thông thường có thể bị

chệch nghiêm trọng. Bây giờ, vấn đề mà chúng ta đối mặt là chúng ta không

biết cấu trúc tương quan của các hạng nhiễu ut như thế nào, vì chúng không

thể quan sát một cách trực tiếp.

Tuy nhiên, như trong trường hợp của phương sai thay đổi, chúng ta cần sử dụng

đến ước đoán dựa trên cơ sở kinh nghiệm (educated guess) hoặc một loại

chuyển hóa nào đó về mô hình hồi quy gốc để trong mô hình đã được chuyển

hóa chúng ta không còn gặp phải vấn đề tương quan chuỗi nữa. Có nhiều cách

chúng ta có thể thử áp dụng.

Chuyển hóa sai phân bậc 1

Giả sử tự tương quan là loại AR(1), như trong phương trình (6.3), chúng ta có

thể viết như sau:

Nếu chúng ta biết giá trị của , chúng ta có thể lấy giá trị hiện tại của hạng nhiễu

trừ cho nhân với giá trị hạng nhiễu trước đó một giai đoạn. Hạng nhiễu thu

Page 23: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

23

được, vt, sẽ thỏa mãn các giả định chuẩn của OLS. Vì thế, chúng ta có thể

chuyển hóa hồi quy gốc như sau:

Số hạng cuối cùng trong phương trình này đơn giản là vt, bây giờ không còn

tương quan chuỗi nữa.

Mô hình được chuyển hóa vì thế có thể được ước lượng theo OLS. Tất tả điều

mà chúng ta phải làm là chuyển hóa mỗi biến trong mô hình gốc bằng cách lấy

giá trị ở hiện tại trừ cho nhân với giá trị trước đó và chạy hồi quy. Các hệ số

ước lượng thu được từ mô hình đã được chuyển hóa là các ước lượng tuyến tính

không chệch tốt nhất (BLUE).

Nhưng lưu ý rằng trong chuyển hóa này, chúng ta mất một quan sát, bởi vì đối

với mỗi quan sát đầu tiên không có quan sát trước đó. Nếu mẫu tương đối lớn,

mất một quan sát có thể không phải là vấn đề. Nhưng nếu cỡ mẫu nhỏ, thì việc

mất một quan sát đầu tiên có nghĩa là các ước lượng sẽ không còn BLUE. Tuy

nhiên, có một thủ tục, gọi là chuyển hóa Prais-Winsten, vẫn tính đến quan sát

đầu tiên13.

Bây giờ câu hỏi đặt ra là: chúng ta ước lượng như thế nào? Chúng ta biết rằng

-1 < < 1. Vì thế, bất kỳ giá trị nào trong khoảng này có thể được sử dụng để

chuyển hóa mô hình gốc, như trong phương trình (6.9). Nhưng chúng ta nên

chọn một giá trị nào, vì có vô số các giá trị trong khoảng này?

13 Chúng ta sẽ không theo đuổi thủ tục này ở đây, vì nó đã được xây dựng sẵn trong các phần mềm. Để biết thêm chi tiết, xem Gujarati/Porter, trang 442-3.

Page 24: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

24

Nhiều chuỗi thời gian kinh tế có tự tương quan với nhau rất cao, gợi ý rằng một

giá trị = 1 có thể là thích hợp để chuyển hóa mô hình gốc. Nếu thực sự điều

này đúng, thì phương trình (6.9) có thể được viết như sau:

Ở đây, là toán tử sai phân bậc một. Ví dụ, lnCt = (lnCt – lnCt-1).

Phương trình (6.10) được gọi là chuyển hóa sai phân bậc 1. Ngược lại, phương

trình (6.1) được gọi là hồi quy dạng gốc (level form regression).

Khi ước lượng phương trình (6.10), lưu ý rằng không có hệ số cắt. Vì thế, khi

ước lượng mô hình này bạn phải bỏ hệ số cắt ra. Hầu hết các phần mềm có thể

thực hiện một cách dễ dàng.

Sử dụng Eviews, một kết quả thực nghiệm của phương trình (6.10) được trình

bày trong Bảng 6.4.

Bảng 6.4: Chuyển hóa sai phân bậc 1 của hàm tiêu dùng.

Page 25: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

25

[Diễn giải: Trên Eviews, chúng ta không cần tạo ra các biến sai phân, vì chúng

ta có thể sử dụng trực tiếp các lệnh hàm log hoặc sai phân, ví dụ LS

D(LOG(CONSUMPTION)) D(LOG(PDI)) D(LOG(WEALTH)) D(INTEREST).

Trong Stata, ta phải tạo ra các biến log trước, sau đó dùng lệnh như sau: reg

d.lnconsump d.lndpi d.lnwealth d.interest, nocon].

Nếu chúng ta kiểm định tự tương quan của hồi quy này bằng kiểm định BG,

chúng ta thấy rằng không bằng chứng về tự tương quan, cho dù chúng ta sử

dụng 1, 2, hoặc nhiều độ trễ của hạng nhiễu trong phương trình (6.4).

Nếu chúng ta so sánh các kết quả hồi quy của hồi quy gốc được cho trong Bảng

6.2 và các kết quả thu được từ chuyển hóa sai phân bậc 1 trong Bảng 6.4,

chúng ta thấy rằng hệ số co giãn của theo thu nhập gần như giống nhau, nhưng

hệ số co giãn theo tài sản, mặc dù vẫn có ý nghĩa thống kê, nhưng hầu như chỉ

bằng một phần hai và hệ số bán con giãn theo lãi suất thực tế là bằng 0 và sai

dấu. Kết quả này có thể là do chọn sai giá trị để chuyển hóa. Nhưng cơ bản

hơn là nó có thể phải thực hiện với tính dừng của một hoặc nhiều biến, một chủ

đề chúng ta sẽ khám phá chi tiết ở chương về kinh tế lượng chuỗi thời gian

(Chương 13).

Chúng ta nên nhấn mạnh rằng các giá trị R2 trong hồi quy dạng gốc (Bảng 6.2)

và trong dạng sai phân bậc 1 (Bảng 6.4) không thể so sánh trực tiếp bởi vì biến

phụ thuộc trong hai mô hình là khác nhau. Như được lưu ý trước đây, để so

sánh hai hoặc nhiều giá trị R2, biến phụ thuộc phải giống nhau.

Chuyển hóa tổng hóa

Vì sẽ lãng phí thời gian để thử nhiều giá trị để chuyển hóa mô hình gốc, chúng

ta có thể tiến hành theo kiểu hơi phân tích. Ví dụ, nếu giả định ut theo cơ chế

AR(1) là phù hợp, chúng ta có thể hồi quy et theo et-1, sử dụng et làm biến đại

diện cho ut, một giả định có thể phù hợp trong các mẫu lớn, bởi vì trong các mẫu

Page 26: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

26

lớn �̂� là ước lượng nhất quán của [Lưu ý: Trong sách ghi et là không đúng].

Đó nghĩa là chúng ta ước lượng:

Ở đây �̂� là ước lượng của được cho trong phương trình (6.8).

Một khi chúng ta có được một giá trị ước lượng của từ phương trình (6.11),

chúng ta có thể sử dụng giá trị này để chuyển hóa mô hình như trong phương

trình (6.9) và ước lượng mô hình được chuyển hóa.

Các giá trị ước lượng của các tham số thu được vì thế được biết với tên gọi là

các ước lượng bình phương bé nhất tổng quát khả thi (FGLS, feasible

generalized least squares estimators).

Sử dụng dữ liệu của chúng ta, giá trị �̂� thu được là 0.3246.

Một cách khác để có một ước lượng của , đặc biệt trong các mẫu lớn, là sử

dụng mối quan hệ sau đây giữa và d Durbin-Watson:

Ở đây d là DW d thu được từ hồi quy gốc. Trong ví dụ của chúng ta, d bằng

1.2892. Vì thế chúng ta có:

Chúng ta có thể sử dụng giá ước lượng này của để chuyển hóa mô hình gốc.

Các giá trị ước lượng từ phương trình (6.11) và (6.12) là gần giống nhau. Nên

lưu ý rằng �̂� được ước lượng từ (6.11) và (6.12) cung cấp một giá trị ước lượng

nhất quán của giá trị thực. Để minh họa chúng ta sử dụng �̂� = 0.3246 và thu

được các kết quả như được trình bày trong Bảng 6.5.

Page 27: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

27

Bây giờ, chúng ta phần tích phần dư từ hồi quy này để xem có tương quan chuỗi

hay không, ví dụ sử dụng kiểm định BG. Sử dụng 1 và 2 độ trễ trong phương

trình (6.6), chúng ta thấy rằng thống kê BG ước lượng không có ý nghĩa thống

kê, điều này chỉ ra rằng các phần dư trong cách chuyển hóa AR(1) không có tự

tương quan: giá trị Chi bình phương của kiểm định BG cho một độ trễ của phần

dư là 0.0094, với xác suất khoảng 92%.

Bảng 6.5: Hàm tiêu dùng được chuyển hóa với �̂� = 0.3246.

Nếu bạn so sánh các kết quả trong bảng này với các kết quả trong Bảng 6.2,

bạn sẽ thấy các sai số chuẩn của các hệ số trong hai bảng khác nhau một cách

đáng kể, nhưng nhớ rằng Bảng 6.2 chưa có điều chỉnh tự tương quan, trong khi

Bảng 6.5 có điều chỉnh tự tương quan. Độ lớn của các hệ số co giãn theo thu

nhập và tài sản gần như giống nhau trong hai bảng, mặc dù các sai số chuẩn,

và vì thế các giá trị t, là khác nhau.

Các giá trị tuyệt đối của t thấp hơn trong Bảng 6.5 cho chúng ta thấy rằng các

sai số chuẩn OLS ban đầu được ước lượng thấp, đúng như thảo luận của chúng

ta về các hậu quả của ước lượng OLS khi có hiện diện tự tương quan.

Page 28: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

28

Hệ số của biến lãi suất trong mô hình chuyển hóa có dấu đúng, nhưng nó vẫn

không có ý nghĩa thống kê. Một lần nữa, điều này có thể là vì các lý do vừa

được thảo luận ở trên.

Các giá trị R2 trong hai bảng gần giống nhau, nhưng chúng ta không thể so

sánh chúng một cách trực tiếp vì các lý do đã được thảo luận trước đây.

Trước khi tiếp tục phân tích sâu hơn, chúng ta cần lưu ý rằng chuyển hóa dạng

AR(1) là một trường hợp cụ thể của một dạng chuyển hóa tổng quát hơn, như

dạng AR(p) đã được trình bày ở phương trình (6.4). Ví dụ, nếu hạng nhiễu theo

cơ chế AR(2).

thì

Ở đây vt theo các giả định chuẩn của OLS. Trong trường hợp này, chúng ta sẽ

chuyển hóa biến phụ thuộc và các biến giải thích bằng cách lấy giá trị hiện tại

của mỗi biến trừ cho hai giá trị trước đó của chúng, mỗi giá trị đó lần lượt được

nhân với các hệ số tự tương quan 1, và 2.

Trong thức tế, dĩ nhiên chúng ta thay thế các ut không thể quan sát được bằng

các ước lượng của chúng, tức là các et. Nhưng chúng ta không cần phải thực

hiện bằng tay. Ví dụ, trong eviews, nếu bạn đưa thêm các số hạng AR(1) và

AR(2) khi chạy hồi quy PLS, vì mỗi số hạng AR được đưa vào mô hình sẽ tiêu

hao một bậc tự do.

Page 29: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

29

Phương pháp Newey-West để điều chỉnh các số chuẩn của OLS.

Tất cả các phương pháp tìm kiếm các hệ số tự tương quan đã được thảo luận

về cơ bản là các phương pháp thử và sai. Các phương này sẽ thành công như

thế nào trong một ứng dụng thực tế sẽ tùy thuộc vào bản chất của vấn đề và

cở mẫu.

Nhưng nếu cỡ mẫu lớn, thì bạn có thể ước lượng hồi quy OLS theo cách thông

thường, nhưng điều chỉnh các sai số chuẩn của các hệ số hồi quy, theo một

phương pháp được đề xuất bời Newey và West. Các sai số chuẩn được điều

chỉnh theo thủ tục của họ cũng được biết với tên gọi các sai số chuẩn HAC

(heteroscedasticity and autocorrelation consistent)14. Nói chung, nếu có tự

tương quan, các sai số theo phương pháp HAC được tìm thấy lớn hơn các sai

số chuẩn theo phương pháp OLS thông thường.

Thủ tục HAC bây giờ được đưa vào trong nhiều phần mềm. Chúng ta minh họa

thủ tục này cho hàm tiêu dùng. Sử dụng Eviews, chúng ta thu được kết quả như

trong Bảng 6.6.

Nếu bạn so sánh các sai số chuẩn HAC với các sai số chuẩn OLS trong Bảng

6.2, bạn sẽ thấy rằng chúng không khác nhau đáng kể. Điều này cho thấy rằng

mặc dù có bằng chứng tự tương quan dựa trên nhiều kiểm định tự tương quan,

nhưng vấn đề tự tương quan dường như không quá nghiêm trọng. Điều này có

thể do sự thật rằng sự tương quan được phát hiện trong hạn nhiễu, khoảng 0.32

và 0.35, có thể là không quá cao. Dĩ nhiên, câu trả lời này là riêng biệt cho

trường hợp dữ liệu của chúng ta và không có sự đảm bảo rằng điều này sẽ xảy

ra trong mọi trường hợp.

14 Công thức toán học đằng sau phương pháp này khá phức tạp. Nếu bạn biết đại số ma trận, bạn có thể tham khảo William H. Greene, Econometric Analysis, 6th edn, Pearson/Prentice Hall, New Jersey, 2008.

Page 30: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

30

Bảng 6.6: Các sai số chuẩn HAC của hàm tiêu dùng.

[Diễn giải: Để hiểu cong thức toán, chúng ta có thể xem Wooldridge, 5th edn,

2013, Chapter 12, pp. 431 – 34].

Tình cờ, quan sát thấy rằng các giá trị hệ số ước lượng trong hai bảng là giống

nhau, cũng như các thống kê tóm tắt khác. Nói cách khác, thủ tục HAC chỉ thay

đổi các sai số chuẩn, và vì thế các thống kê t và các giá trị xác suất p. Điều này

tương tự như các sai số chuẩn điềi chỉnh phương sai thay đổi theo thủ tục của

White, nghĩa là, cũng không ảnh hưởng đến các hệ số hồi quy gốc và các thống

kê tóm tắt khác.

Nhưng hãy nhớ rằng thủ tục HAC chỉ có hiệu lực trong các mẫu lớn15.

15 Về các hạn chế của thủ tục HAC, xem Jeffrey M. Wooldridge, Introductory Econometrics, 4th edn, South-Western, Ohio, 2009, pp. 428-31.

Page 31: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

31

[Diễn giải: Phương pháp Newey-West trên Eviews và Stata]

Page 32: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

32

[Diễn giải: Mở rộng phương pháp FGLS bằng thủ tục lặp Cochrane-Orcutt và

thủ tục lặp Prais-Winsten]

Cochrane và Orcutt (1949) phát triển một thủ tục lặp vốn trở nên khá phổ biến

trong giới nghiên cứu kinh tế lượng. Thủ tục Cochrane-Orcutt được thực hiện

theo các bước sau đây:

Bước 1: Ước lượng phương trình sau đây theo OLS và lưu phần dư et.

Yt = b1 + b2Xt + et (*)

Bước 2: Ước lượng hệ số tương quan chuỗi bậc một, ̂ , theo OLS từ phương

trình sau đây:

et = ̂et-1 + vt

Bước 3: Chuyển hóa các biến gốc theo cách sau đây: 1tt*t YˆYY , b*

1 = b1(1

- ̂ ), và X*t = Xt - ̂Xt-1 cho các quan sát từ t = 2 trở đi; và 2

1*1

ˆ1YY

và 21i

*1i

ˆ1XX cho quan sát t = 1.

Bước 4: Hồi quy lại phương trình (*) với các biến chuyển hóa và lưu phần dư

của mô hình vừa được chuyển hóa này. Do chúng ta không biết có

phải ̂ từ Bước 2 là giá trị ước lượng “tốt nhất” của chưa, nên chúng

ta quay trở lại như Bước 2, tiếp tục thực hiện quy trình này từ Bước 2

đến Bước 4 (bước lặp) một số lần cho đến khi nào giá trị ước lượng

Page 33: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

33

của ở hai lần lặp liền kề khác nhau rất ít (ví dụ 0.001). Tuy nhiên,

nếu chúng ta thực hiện thủ tục lặp này một cách thủ công (ước lượng,

tính toán, rồi ước lượng lại, v.v.) sẽ tốn kém rất nhiều thời gian. Chính

vì thế, các thủ tục lặp này luôn được lập trình trong hầu hết các phần

mềm kinh tế lượng.

Trên thực tế, thủ tục này trở nên rất đơn giản với Eviews. Giả sử lúc đầu ta có

phương trình:

ls lnconsump c lndpi lnwealth interest [như Bảng 6.2]

Thì thủ tục lặp của Cochrane-Orcutt trên Eviews chỉ đơn giản là ước lượng

phương trình sau đây:

ls lnconsump c lndpi lnwealth interest AR(1)

Trong kết quả hồi quy, hệ số ứng với AR(1) chính là giá trị ̂ tối ưu sau một số

bước lặp. Lưu ý rằng, nếu mô hình hồi quy có hiện tượng tự tương quan bậc 2,

thì thủ tục lặp của Cochrane – Orcutt trên Eviews sẽ như sau:

ls lnconsump c lndpi lnwealth interest AR(1) AR(2)

Page 34: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

34

Như vậy, giá trị ̂ tối ưu theo thủ tục lặp Cochrane-Orcutt là 0.61. Bây giờ, thống

kê d Durbin-Watson gần bằng 2, chứng tỏ không còn tự tương quan với FGLS

với giá trị ̂ = 0.61.

Trên Stata:

Page 35: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

35

Thủ tục lặp Prais-Winsten cũng tương tự, nhưng khác ở cách xử lý quan sát đầu

tiên như sau:

Y*t = √(1 − ρ̂2)Yt và X*

t = √(1 − ρ̂2)Xt

Trong Eviews không có sẵn thủ tục này, nhưng Stata thì ta sử dụng lệnh sau:

Page 36: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

36

6.4 Đánh giá mô hình

Một giả định quan trọng của mô hình hồi quy tuyến tính cổ điển là mô hình được

sử dụng trong phân tích là mô hình được xác định đúng (correctly specified

model). Đây là một yêu cầu cao, vì tìm một mô hình đúng giống như tìm Holy

Grail (tức Chén Thánh). Trong thực tế, chúng ta sử dụng các nghiên cứu thực

nghiệm trước đây đã được công bố trong cùng lĩnh vực nghiên cứu như một

hướng dẫn, thu thập dữ liệu có sẵn tốt nhất, và sử dụng phương pháp ước lượng

tốt nhất có thể.

Mặc dù thế, việc xây dựng mô hình là một nghệ thuật. Trong ngữ cảnh của

chương này, tự tương quan có thể xảy ra vì nhiều lý do, chẳng hạn như tính trì

trệ, lỗi dạng mô hình, và hiện tượng Cobweb (mạng nhện), thao tác dữ liệu, và

tính không dừng16.

Để minh họa, chúng ta sẽ xem xét trường hợp lỗi dạng mô hình. Bây giờ, xem

xét một xác định lại của mô hình (6.1):

Mô hình này khác mô hình (6.1) ở chổ chúng ta đưa thêm biến log của chi tiêu

cho tiêu dùng trễ một giai đoạn như một biến giải thích và thay ký hiệu hệ số từ

B sang A để xem liệu có bất kỳ khác biệt nào giữa chúng.

Mô hình (6.15) được gọi là mô hình tự hồi quy (autoregressive model) bởi vì một

trong số biến giải thích là giá trị trễ của biến phụ thuộc. Lý do đưa thêm giá trị

trễ của biến tiêu dùng vào mô hình là để xem liệu chi tiêu cho tiêu dùng trong

quá khứ có ảnh hưởng chi tiêu cho tiêu dùng ở hiện tại. Nếu có, thì đó sẽ là yếu

tố trì trệ (hoặc quán tính) được đề cập ở trên.

16 Một thảo luận vắn tắt về vấn đề này, xem Gujarati/Porter, trang 414-18.

Page 37: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

37

Từ bảng này chúng ta thấy rõ ràng rằng độ trễ của tiêu dùng có ảnh hưởng chi

tiêu cho tiêu dùng hiện tại, khi giữ nguyên các biến khác không đổi. Điều này

có thể do tính trì trệ. Các hệ số trong Bảng 6.2 và 6.7 thoạt nhìn thì khác nhau,

nhưng thực sự không phải thế, vì nếu bạn chia cả hai vế cho (1 – 0.2765) =

0.7235, thì bạn sẽ có các giá trị của hệ số gần như giống với Bảng 6.217.

Bảng 6.7: Hàm tiêu dùng tự hồi quy.

Liệu chúng ta có gặp vấn đề tự tương quan trong mô hình được chỉnh sửa lại

này hay không? Ở đây, chúng ta không thể sử dụng kiểm định d Durbin-Watson

bởi vì, như đã được lưu ý trước đây, kiểm định này không thể áp dụng nếu mô

hình có các giá trị trễ của biến phụ thuộc, tức như trường hợp ở đây.

Giả định có tự tương quan bậc một, Durbin đã phát triển một kiểm định khác

thay thế cho các mô hình như thế, gọi là thống kê h Durbin18.

17 Trong dài hạn, khi chi tiêu cho tiêu dùng ổn định, LCt = LCt-1. Vì thế, nếu bạn chuyển 0.2765LCt sang vế trái, bạn sẽ có 0.7235LCt. Sau khi chia cả hai vế cho 0.7235 bạn sẽ có các kết quả có thể so sánh với Bảng 6.2. 18 Để biết một thảo luận về kiểm định này, xem Gujarati/Porter, trang 465.

Page 38: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

38

Dưới giả thuyết H0 rằng = 0, trong các mẫu lớn, thống kê h theo phân phối

chuẩn chuẩn hóa, nghĩa là, h ~ N(0,1). Bây giờ, từ các tính chất của phân phối

chuẩn chúng ta biết rằng xác suất để |h| > 1.96 là khoảng 5%, trong đó |h| có

nghĩa là giá trị tuyệt đối của h. Đối với ví dụ của chúng ta, giá trị h khoảng 5.43,

lớn hơn giá trị h phê phán ở mức ý nghĩa 5%, nên chúng ta có kết luận rằng mô

hình (6.15) cũng gặp vấn đề tự tương quan bậc một.

[Diễn giải: Kết quả trên Stata sử dụng thống kê Chi bình phương chứ không

phải phân phối chuẩn chuẩn hóa, và kết luận vẫn không thay đổi].

Thay vì sử dụng kiểm định này, chúng ta sẽ sử dụng kiểm định BG, vì nó cho

phép các giá trị trễ của biến phụ thuộc như các biến giải thích. Sử dụng kiểm

định BG, và sử dụng hai giá trị trễ của phần dư, vẫn có bằng chứng về tự tương

Page 39: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

39

quan; các giá trị xác suất p là 0.09 (kiểm định F) và 0.07 (kiểm định Chi bình

phương) (Bảng 6.8).

Bảng 6.8: Kiểm định BG về tự hồi quy của hàm tiêu dùng tự hồi quy.

Dù sử dụng mô hình nào, (6.1) hay (6.15), thì dường như chúng ta đều gặp vấn

đề tương quan chuỗi trong dữ liệu của chúng ta.

Một lưu ý kỹ thuật: Vì chúng ta có một biến trễ của biến phụ thuộc như một

trong những biến giải thích và tương quan chuỗi, các hệ số hồi quy ước lượng

trong phương trình (6.15) có thể bị chệch cũng như không nhất quán. Một giải

pháp của vấn đề này là sử dụng một biến công cụ (IV, instrumental variable

hoặc instrument), cho biến trễ của biến phụ thuộc theo một cách mà biến công

cụ được chọn có tương quan (có thể là cao) với biến phụ thuộc nhưng không

tương quan với hạng nhiễu. Chủ đề này tương đối phức tạp và chúng ta sẽ dành

Page 40: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

40

một chương cho ước lượng biến công cụ (Chương 19). Mộ giải pháp được đề

nghị là sử dụng giá trị trễ của biến thu nhập như một biến công cụ thay vì giá trị

trễ của biến chi tiêu cho tiêu dùng. Nhưng chúng ta sẽ nói nhiều hơn về vấn đề

này ở chương 19.

Để giải quyết vấn đề tự tương quan trong hạng nhiễu, chúng ta có thể sử dụng

một hoặc nhiều phương pháp khắc phục đã được đề cập ở trên, hoặc có thể sử

dụng phương pháp Newey – West và thu được các sai số chuẩn HAC hoặc các

sai số chuẩn mạnh. Kết quả này được trình bày trong Bảng 6.9.

Bảng 6.9: Các sai số chuẩn HAC của hàm tiêu dùng tự hồi quy.

So sánh các kết quả trong Bảng 6.6 và 6.9, rõ ràng rằng các sai số chuẩn của

các hệ số trong Bảng 6.6 bị ước lượng thấp. Một lần nữa hãy nhớ rằng thủ tục

điều chỉnh HAC chỉ có hiệu lực trong các mẫu lớn.

Mô hình (6.15) không phải là cách duy nhất trong đó mô hình gốc có thể được

xác định lại. Thay vì đưa giá trị trễ của biến phụ thuộc giữa các biến giải thích,

Page 41: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

41

chúng ta có thể đưa các giá trị trễ của các biến giải thích, ví dụ LDPI. Hoặc

chúng ta có thể đưa cả hai19.

6.5 Tóm tắt và kết luận

Trong chương này, chúng ta đã khảo sát hơi sâu chủ đề tự tương quan. Dữ liệu

chuỗi thời gian thường gặp phải vấn đề tự tương quan. Trước hết chúng ta thảo

luận bản chất và các hậu quả của tự tương quan, sau đó chúng ta thảo luận

các phương pháp phát hiện tự tương quan, và rồi chúng ta xem xét các cách

trong đó vấn đề tự tương quan có thể được giải quyết.

Vì nói chung chúng ta không biết các hạng nhiễu thực trong một mô hình hồi

quy, trong thực tế chúng ta phải suy đoán bản chất của tự tương quan trong

một ứng dụng cụ thể bằng cách phân tích phần dư, đó là các đại diện tốt của

hạng nhiễu thực nếu cỡ mẫu là tương đối lớn. Chúng ta có thể vẽ đồ thị phần

dư, hoặc sử dụng các kiểm định Durbin-Watson, hoặc Breusch-Godfrey.

Nếu các kiểm định tự tương quan cho thấy rằng tự tương quan tồn tại trong một

trường hợp cụ thể, chúng ta có thể chuyển hóa mô hình gốc sao cho trong mô

hình được chuyển hóa chúng ta không còn gặp vấn đề tự tương quan. Nhưng

nói dễ hơn làm, vì chúng ta không biến cấu trúc thực của tự tương quan trong

tổng thể mà mẫu được rút ra. Vì thế chúng ta cố gắng thử nhiều cách chuyển

hóa, chẳng hạn như chuyển hóa dạng sai phân bậc một và sai phân tổng quát.

Thông thường thì đây là một quá trình thử và sai.

Nếu cỡ mẫu tương đối lớn, chúng ta có thể sử dụng các sai số chuẩn mạnh

hoặc các sai số chuẩn theo phương pháp HAC, cách này không đòi hỏi bất kỳ

kiến thức đặc biệt nào về bản chất của tự tương quan. Thủ tục HAC đơn giản

là điều chỉnh các sai số chuẩn của OLS, mà không làm thay đổi các giá trị của

các hệ số hồi quy.

19 Để biết chi tiết, xem Gujarati/Porter, Chương 17.

Page 42: Chương 6 Chẩn đoán hồi quy: Tự tương quan · Một vấn đề phổ biến trong phân tích hồi quy liên quan đến chuỗi thời gian là hiện tượng tự

42

Vì các ước lượng OLS vẫn nhất quán mặc dù có tự tương quan, nên sự đột phá

của các phương pháp điều chỉnh được thảo luận trong chương này là ước lượng

các sai số chuẩn của các hệ số hồi quy càng hiệu quả càng tốt sao cho chúng

ta không rút ra các kết luận sai lầm về ý nghĩa thống kê của một hoặc nhiều hệ

số hồi quy./.