ConfTokyo2014Mini PDE

Embed Size (px)

Citation preview

  • 8/17/2019 ConfTokyo2014Mini PDE

    1/26

    © Copyright 2014 COMSOL. Any of the images, text, and equations here may be

    copied and modified for your own internal use. All trademarks are the property of

    their respective owners. See www.comsol.com/trademarks.

    Equation-Based Modeling:Building your Equations from scratch

     f  auuuuc

    ud 

    ue aa   =+∇⋅+−+∇⋅∇−

    ∂+

    ∂ β γ  α    )(

    2

    2

  • 8/17/2019 ConfTokyo2014Mini PDE

    2/26

    Outline

    • Demo of using built-in physics interface

    • Demo of the same, using PDE interface

    • Adding other equation-based modeling features

  • 8/17/2019 ConfTokyo2014Mini PDE

    3/26

    A quick demo using the built-in HeatTransfer in Solids physics interface

    A spinning wafer gets heated up by a laser moving

    back and forth over the surface

    Radiation to ambient cools the wafer

  • 8/17/2019 ConfTokyo2014Mini PDE

    4/26

    Built-in functionality used:

    • Heat Transfer in Solids interface

    • Translational motion feature

    • Heat Flux boundary condition

    • Diffuse radiating surface boundary condition

    • Coupling operators are used to monitor the

    average, minimum & maximum temperature

  • 8/17/2019 ConfTokyo2014Mini PDE

    5/26

    Now we will implement the same modelusing the equation-based PDE interface

    • Coefficient Form/General Form/Weak Form

    • Manual boundary conditions

    • Couplings to domains we do not want to model

    • Couplings to implement a feedback control system

  • 8/17/2019 ConfTokyo2014Mini PDE

    6/26

    Let’s look at the Heat Transfer equation

    in a more general way

    0)(  =∇⋅∇−

      ucud  t a

    0)(   =∇⋅∇−∂

    ∂T k 

    T C  p ρ 

    Equation of Transient

    Heat Transfer in a Solid

    Generic Parabolic Equation

  • 8/17/2019 ConfTokyo2014Mini PDE

    7/26

    COMSOL provides a general coefficient form

    0======   f  aea   β 

     f  auuuuc

    ud 

    ue aa   =+∇⋅+−+∇⋅∇−

    ∂+

    ∂ β γ  α    )(

    2

    2

     f  auuuuct 

    ud 

    ue

    aa

      =+∇⋅+−+∇⋅∇−

    ∂+

    ∂ β γ  α    )(

    2

    2

    0)(  =∇⋅∇−

      ucud  t a

  • 8/17/2019 ConfTokyo2014Mini PDE

    8/26

    Where to get started with Equation-

    based modeling

  • 8/17/2019 ConfTokyo2014Mini PDE

    9/26

    Implementing Conductive Heat Transfer

    in the Coefficient Form Interface

  • 8/17/2019 ConfTokyo2014Mini PDE

    10/26

    Now lets add in the advective term

    T C T k t 

    T C 

     p p

      ∇⋅−=∇⋅∇−

    ∂u ρ  ρ    )(

     

      

     

    ∂+

    ∂=∇⋅

     y

    T u

     x

    T uT   y xu

    u: velocity vector

     

      

     

    ∂+

    ∂−=∇⋅∇−

     y

    T u

     x

    T uC T k 

    T C   y x p p   ρ  ρ    )(

    0)(   =∇⋅∇−∇⋅+∂

    T k T C t 

    C   p p   u ρ  ρ 

  • 8/17/2019 ConfTokyo2014Mini PDE

    11/26

    Implementing Advective Term, 1st way

  • 8/17/2019 ConfTokyo2014Mini PDE

    12/26

    How to evaluate derivatives?

    Solution field:u

    Spatial 1st derivatives: ux, uy, uz

    Spatial 2nd derivatives: uxx, uxy, …, uyz, uzz

    Time derivatives: ut, utt

    Mixed derivatives: uxt, uytt

    Derivatives tangent to surfaces: uTx, uTy, uTz

  • 8/17/2019 ConfTokyo2014Mini PDE

    13/26

    Implementing Advective Term, 2nd way

  • 8/17/2019 ConfTokyo2014Mini PDE

    14/26

    Implementing Conductive Heat Transfer

    in the General Form Interface

  • 8/17/2019 ConfTokyo2014Mini PDE

    15/26

    Implementing boundary conditions• All boundary conditions conditions are either:

    0

    0)(

    =−

    =−+−+∇⋅

    r u

     g huuucnMixed (or Robin) condition:

    Dirichelet condition:

    For Heat Transfer:   0==

    hu g uc   −=∇⋅   )(n

  • 8/17/2019 ConfTokyo2014Mini PDE

    16/26

    All Heat Transfer conditions can be

    represented with the same interface

    '')(   quc   =∇⋅−nHeat Flux into domain:

    Convective condition: )()(   T T huc air  −=∇⋅−n

    Radiative condition:   )()(  44

    T T uc amb  −=∇⋅−   εσ n

    0)(   =∇⋅−   ucnInsulation: Default (natural)boundary condition

    A fixed temperature (or Dirichelet) condition could also be used,

    but it is often more realistic to use a very high convection coefficient

  • 8/17/2019 ConfTokyo2014Mini PDE

    17/26

    Implementing a Heat Flux Condition

  • 8/17/2019 ConfTokyo2014Mini PDE

    18/26

    Implementing a Radiative Flux Condition

  • 8/17/2019 ConfTokyo2014Mini PDE

    19/26

    Now lets add:• Convective heat flux to ambient gas

     – A volume of air, that we do not want to model,

    gets heated up by the wafer

  • 8/17/2019 ConfTokyo2014Mini PDE

    20/26

    Considering a volume of gas

    Spinning wafer

    • Known volume (mass) of air

    • Assume that air is well-mixed

    • Assume a heat transfer coefficient

    between wafer and air

       ′′

    · 20   

    Temperature variation

    of a well-mixed volume

    of air of known mass is:

    Integral of heat flux

    out of the wafer

  • 8/17/2019 ConfTokyo2014Mini PDE

    21/26

    A Global Equation is used to add an

    additional degree of freedom to the model

    0),,,(   =t uuu f   tt t 

     

  • 8/17/2019 ConfTokyo2014Mini PDE

    22/26

    Implementing the air volume

  • 8/17/2019 ConfTokyo2014Mini PDE

    23/26

    Next lets add:• Convective heat flux to ambient gas

     – A volume of air, that we do not want to model,

    gets heated up by the wafer

    • A simpler temperature controller – Heat the wafer until the minimum temperature

    goes above 100°C

  • 8/17/2019 ConfTokyo2014Mini PDE

    24/26

    The minimum integration operator can

    control the heat flux

    If theminimum

    temperature

    goes above100°C then

    turn off theheat flux

  • 8/17/2019 ConfTokyo2014Mini PDE

    25/26

    Features covered…• Setting up an equation from the coefficient form

    • Adding additional terms

     – Multiple ways of addressing the same problem

    • Evaluation of derivatives

    • Implementing boundary conditions

    • Adding addition Global Equations

    • Using coupling variables for feedback control

  • 8/17/2019 ConfTokyo2014Mini PDE

    26/26

    Questions?