100
Maureen Heraty WOOD Ana Lisa VETERE ARELLANO Lorenzo VAN WIJK 2013 EUR 26331 EN CorrosionRelated Accidents in Petroleum Refineries Lessons learned from accidents in EU and OECD countries

Corr_Acc

Embed Size (px)

DESCRIPTION

Accidents at sites due to Corrosion

Citation preview

  • MaureenHeratyWOOD

    AnaLisaVETEREARELLANO

    LorenzoVANWIJK

    2013

    EUR26331EN

    CorrosionRelatedAccidentsinPetroleumRefineries

    LessonslearnedfromaccidentsinEUandOECDcountries

  • European Commission Joint Research Centre Institute for the Protection and Security of the Citizen ContactinformationMaureenHeratyWOODAddress:JointResearch Centre, Via Enrico Fermi 2749, TP 720, 21027 Ispra (VA), Italy E-mail: [email protected] Tel.: +39 0332 78 9140 http://ipsc.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ LegalNoticeNeither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European UnionFreephone number (*): 00 800 6 7 8 9 10 11 (*)Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/. JRC84661 EUR 26331 EN ISBN 978-92-79-34652-1 (pdf)ISBN 978-92-79-34653-8 (print) ISSN 1831-9424 (online)ISNN 1018-5593 (print) doi: 10.2788/37909 Luxembourg: Publications Office of the European Union, 2013 European Union, 2013 Reproductionisauthorizedprovidedthesourceisacknowledged Printed in Italy .

  • iii

    Table of contents

    EXECUTIVESUMMARY.......................................................................................................................... 1

    CHAPTER1 INTRODUCTIONANDBACKGROUND...........................................................................8

    1.1 Background........................................................................................................................ 12

    1.2 AimsoftheStudy............................................................................................................... 14

    1.3 Corrosionasamajorhazardconcernforthepetroleumrefineryindustry.........................15

    1.4 Descriptionofaccidentreportsourcesusedinthestudy...................................................17

    1.5 Typeofeventsandconsequencesofaccidents..................................................................22

    CHAPTER2 ANALYSISOFTHEPOTENTIALCONTRIBUTIONOFPROCESSANDEQUIPMENTCONDITIONS 30

    2.1 Processconditionscontributingtocorrosioninstudycases..............................................31

    2.2 Analysisofcasesinassociationwithspecificprocessconditions.......................................34

    2.3 Corrosionriskassociatedwithchemicalrefiningprocesses...............................................39

    2.4 Involvementofrefineryequipmentincorrosionrelatedaccidents...................................44

    2.5 Frequencythatvariousequipmentvulnerabilitieswerecitedintheaccidentsstudied.....50

    CHAPTER3 ANALYSISOFTHEPOTENTIALCONTRIBUTIONOFRISKMANAGEMENTFAILURES.....57

    3.1 Inadequateawarenessoforattentiontoknowncorrosionhazards..................................58

    3.2 Failuretoconductanadequatehazardidentificationorriskassessmentforlifecycleplanningandevents........................................................................................................................ 61

    3.3 Inadequateriskanalysisatdesignandconstructionstage.................................................64

    3.4 Inadequateriskanalysispriortoachange.........................................................................68

    3.5 Inadequateriskanalysisforplanninginspections..............................................................71

    3.6 Inadequateidentificationofhazardsandrisksforotherpurposes.....................................74

    CHAPTER4 CONCLUSIONS........................................................................................................... 77

    APPENDIX1:LISTOFACCIDENTSSTUDIED.........................................................................................80

    APPENDIX2:REFERENCES.................................................................................................................. 88

    TABLE OF FIGURES

  • iv

    Figure1.Totalcasedistributionbycountry........................................................................................17

    Figure2.Accidentsbyyearofoccurrence...........................................................................................18

    Figure3.Percentageofcasesinwhichsomelessonslearnedinformationcouldbeextracted...........21

    Figure4.Accidentsclassifiedbytypeofevent....................................................................................22

    Figure5.Substancesreleasedinrefineryaccidentsinvolvingcorrosionbynumberofaccidents........23

    Figure6.Distributionofeventtypeforeachtypeoffailure................................................................24

    Figure7.Severityofaccidentconsequencespreandpost2000........................................................25

    Figure8.Distributionofeventtypeforeachtypeoffailure................................................................26

    Figure9.Levelofconsequencevs.typeofconsequence....................................................................27

    Figure10.Processconditionscitedascontributingtocorrosiveconditionsaccidentsstudied...........31

    Figure11.Processrelatedsubstancescitedascontributingtocorrosionfailures...............................36

    Figure12.Processsubstancescontributingtocorrosionfailureinassociationwiththeprocessunitoforigin...................................................................................................................................................37

    Figure13.Observationsonprocessconditionsrelatedtoaccidentoccurrence..................................38

    Figure14.Simplifieddiagramofarefineryprocess.............................................................................39

    Figure15.Unitofaccidentbyoriginofcasesstudied.........................................................................42

    Figure16.Severityofconsequencesassociatedwithunitoforiginofaccidentsstudied....................43

    Figure17.Accidentoriginbyequipmentcomponent..........................................................................46

    Figure18.Descriptionsfromcasestudiesofcorrosionfailuresinstoragetanks................................49

    Figure19.Typesofvulnerabilitiessitedforpipeworkandpipelinescontributingtocorrosionaccelerationofequipmentinvolved....................................................................................................51

    Figure20.Observationsfromcasesonrelatedequipmentconditions................................................52

    Figure21.Observationsfromcasesoninadequateanticorrosionprotection....................................55

    Figure22.Percentageofaccidentswhereaninadequateawarenessorattentionconcerningaknowncorrosionhazardwasindicated........................................................................................................... 58

    Figure23.Indicationsofamanagementfailureincasesstudied........................................................59

    Figure24.Observationsfromcasesstudiedindicatingpotentialinadequateawarenessoforattentiontoknowncorrosionhazards............................................................................................................... 60

    Figure25.Exampleofconsequenceeventtree...................................................................................62

    Figure26.Illustrationofbarriersinfluencingaprocessincident.........................................................63

    Figure27.BasicSafetyBarrierDiagram...............................................................................................63

  • v

    Figure28.Percentageofaccidentswhereriskanalysispriortodesignandconstructionwascitedaspotentiallyinadequate........................................................................................................................ 66

    Figure29.Observationsfromcasesoninadequateriskassessmentpriortodesignandconstruction66

    Figure30.Percentageofaccidentswhereriskanalysispriortoadesignorprocesschangewascitedaspotentiallyinadequate........................................................................................................................ 69

    Figure31.Observationsfromcasesoninadequateriskassessmentpriortoachange........................70

    Figure32.Percentageofaccidentswhereriskanalysisforplanninginspectionswascitedaspotentiallyinadequate..........................................................................................................................................71

    Figure33.Observationsfromcasesoninspectiondeficiencies...........................................................73

    Figure34.Observationsfromcasesoninadequatehazardevaluationpriortorepairwork................74

    Figure35.Observationsfromcasesontheabsenceofadequatedetectionandmitigationsystems..75

  • vi

    TABLE OF TABLES

    Table1.TotalOilSupply....................................................................................................................... 9

    Table2.NumberofOperatingRefineriesinOECDandEUMemberCountries....................................11

    Table3.Typicalrefineryelementscontributingtoelevatedcorrosionrates.......................................16

    Table4.Primarysourcesofaccidentreportsanalysedinthisstudy....................................................19

    Table5.ConsequenceRankingCriteria...............................................................................................25

    Table6.Cumulativetotalsofconsequencefiguresforallaccidents....................................................29

    Table7.ExamplesofstresscorrosioncrackingdamagemechanismsproposedbyAPI571...............32

    Table8.Typicalprocesssubstancesassociatedwithrefinerycorrosion..............................................35

    Table9.Typicalrefineryprocesses...................................................................................................... 40

    Table10.Classificationoftypeofdamagevs.systems/componentsinprocessplantsfromtheRIMAPproject................................................................................................................................................45

    Table11.Factorscontributingtocorrosionandagingequipmentfailuresidentifiedinvariousstudies............................................................................................................................................................47

    Table12.Corrosionandagingfailuresassociatedwithpipework.......................................................47

    Table13.Factorscontributingtocorrosionandagingfailuresassociatedwithatmosphericstoragetanks...................................................................................................................................................49

    Table14.Pressurevesselssubjecttopotentiallyrapiddeterioration..................................................50

    Table15.Exampleofguidancefordesigningtominimizecorrosionandchallengesinmonitoringandmaintainingcorrosionvulnerableareas..............................................................................................65

    Table16.ExamplesofcriteriausedtodetermineinspectionfrequencyforpressureandpipeequipmentinvariousRBImethodologies............................................................................................72

  • 1

    EXECUTIVE SUMMARY

    Petroleumrefiningindustrycontinuestobeofcentralimportancetotheglobaleconomy.Refinedpetroleumproductsarenotonlyaprimarysourceofenergyforhomesandbusinessesbutalsoarefundamentaltoathrivingtransportindustry.Refineryoilproductsandbyproductsoftheproductionprocesssuchasammoniaandsulphur,alsoformthebasicingredientsforavastrangeofproductssuchasplasticsandothermaterialsforconsumerandindustrialproducts,clothandindustrialfabric,paintsanddyes,pharmaceuticals,fertilizers,andnumerousothermanufacturedgoods.Thepresenceofthissectorinanycountryisconsideredtobeasignificantadvantagenotonlytothecountrybutalsotothesurroundingregion.

    Petroleumrefiningisalsoahighhazardindustrywithmostsitesprocessingthousandsoftonnesofoilintovariousproductlineseachyearmanyofwhichareflammable,toxictohumanhealthortoxictotheenvironment.Atthesametimerefineriesarealsolarge,complexsiteswithmanyprocesses,severalofwhichoperateatveryhighlevelsofpressureandtemperature,andavastpipelinetotransportprocessfluidsthroughoutthesiteandeventuallytoexternalmodesoftransport.Thiscombinationoffactorsmakerefinerysitesveryvulnerabletoavarietyofcorrosionphenomenathatcaneventuallycausealossofcontainmentofprocessfluids,sometimesleadingtoaseriousaccidentaffectingworkers,theenvironment,thesurroundingeconomyandevenonoccasionthelargereconomy.

    ThemajorityofEUandOECDcountriesarehosttoatleastonepetroleumrefinery,ifnotseveral,andthosecountrieswithoutrefineriesallhavepetroleumstoragedepotswhosharesomeofthesamestorageandhandlingissuesasrefineries.OECDcountriesrepresentanestimated49.2%[1]ofglobalrefiningcapacity,andalltogetherEUcountries(includingnonOECDmembers)representanapproximate18%ofglobalrefiningcapacity.[2]Ithasbeennotedbyanumberofexpertsovertheyearsthatmechanicalintegrityconsistentlyremainsacontributortomajoraccidentsinthesecountriesdespitenumerousgainsinknowledgeaboutvulnerabilitiesofrefineriesandhowtheycanbemanaged.Notably,ofthe137majorrefineryaccidentsreportedbyEUcountriestotheEUseMARSdatabasesince1984,around20%indicatedcorrosionfailureasanimportantcontributingfactor.ThisproportionofrefineryaccidentsineMARSwiththisprofilehasremainedconstantwellintothe21stcentury.

    ThisreportfocusesoncorrosionrisksinrefineriesinEUandOECDcountries,lookingatlessonslearnedfrompastcorrosionrelatedaccidentsatthesesites.TheanalysiswasconductedaspartofthelongstandingcollaborationonlessonslearnedbetweentheEuropeanUnionandOECDcountriesintheOECDWorkingGrouponChemicalAccidents.Theaimofthestudywastoanalysethereportsintermsofknowncorrosionrisksassociatedwithoilrefineriesanddeterminetowhatextentafailuretorecognizeorcontrolvariousknownfactors,technicaland/ormanagerial,mayhavecontributedtotheaccident.Thestudyisaimedmanagersandinspectorsofvariousexpertisewhoarechargedwithoverseeingormonitoringaspectsofriskmanagementatrefinerysites.Fortheseprofessionals,itishopedthattheanalysismayprovidesomeinsightintospecifictypesofvulnerabilitiesandpotentialrisksthatonoccasionmaybeoverlookedandleadtoaseriousevent.

    Thisstudyofcorrosionrelatedaccidentsinrefineriesisbasedon99reportsofimportantrefineryaccidentsinwhichcorrosionofanequipmentpartwasidentifiedorsuspectedasbeingthekeyfailureleadingtotheaccidentevent.Onlyreportslistedinopensourcesandproducedbyorwiththecollaborationofpartiesdirectlyinvolvedintheaccidentinvestigationwereused.Therefore,witha

  • 2

    fewexceptions,onlinegovernmentdatabasesofaccidentreportswerethemainsourceofaccidentreports.Moreover,sincethestudywasconductedonrefineriesinaspecificgeographicarea,reportsthatdidnotspecifygeographiclocationoftherefinerycouldnotbeused.

    Theaccidentscannotbeusedforcomputingstatisticaltrendseitherbyyearoronageographicbasis.ThevastmajorityofEUandOECDcountrieshavenotconsistentlycollecteddataorreportsonmajorchemicalaccidentsovertheperiodbythisstudyorinsomecasesthedataarenoteasilyavailable.ThereisasignificantoverrepresentationofaccidentsoccurringinJapan,FranceandtheotherEuropeancountrieswhowerepartoftheEuropeanUnionpriorto2004.However,acollectiveanalysisoftheseaccidentscanhelptoidentifyareasofongoingconcerngenerallyforrefineries.Theyalsocanprovideinsightastowhethertheprofileofcorrosionrelatedaccidentsoccurringinrefineriesafewdecadesagohasevolvedorhasstayedrelativelythesame.

    Consequences of corrosion-related accidents in refineries Uncontrolledcorrosioncancausereleaseofhazardoussubstancesandcomponentsorcanreduceboththeperformanceandreliabilityofequipmentuntiltheirfailure.Assuch,corrosionhazardscanputatriskthesafetyandwellbeingofbothplantemployeesandthegeneralpublicaswellasleadtoseveredamageofprocessunits,andinsomecasesshutdownofrefineryoperations.Agoodportionoftheaccidentsstudiedappearedtobefairlyrepresentativeofthetypesofhighriskscenariosassociatedwithpetroleumrefineries.Manyoftheseeventswerenotifiedtothedatasourcesusedbythestudyonthebasisofhighimpactsintermsofeffectsonhumanhealthortheenvironmentorsignificantcosteithertotheoperatororintermsofoffsitepropertydamageordisruption.Asevidence,itisobservedthatnearly50%ofthereportsstudiedbothpreandpost2000werehighorveryhighconsequences[seeFigure7].Accidentswithlowconsequencesrepresentaboutathirdoftheaccidentsstudiedandalsotheratiooflowimpactaccidentstototalaccidentsremainedvirtuallyunchangedforpreandpost2000accidentsstudied.Manyoftheselatteraccidentscontributedimportantinsightstothestudyonconditionsthatcontinuetoplayaroleinelevationofcorrosionriskonrefinerysites.

    Publicserviceinterruptionandpropertydamagewerethedominantconsequencesoverall.Takingintoaccountproductionlossaswell,55%oftheaccidentsstudiedwereprojectedtohaveaveryhigheconomicimpact.Significantenvironmentaldamagewasreportedfornearlyathirdofaccidentsandmainlyassociatedwithtoxicreleasestowater.Althoughtherehavebeennodeathsandonly17injuriesrecordedincorrosionrelatedaccidentsinrefineriessince2000,potentialforcatastrophichumanhealtheffectsfromanytypeofchemicalaccidentinarefinerycannotbediscounted.Therehavebeenseveralfatalaccidents(relatedtoothercausesthancorrosion)occurringinrefineriesintheEUandOECDinthelast10years(andeveninthelasttwo),manyoftheminplantsseveraldecadesold.Thepotentialforacorrosionfailuretocauseahumandisasterdoesnotappeartohavegreatlydiminished.

    Process conditions contributing to corrosion in study cases Refineriesaremostvulnerabletocorrosionduetointernalprocessconditions.Thestudyanalysedthecasestoidentifywhattypesofsubstancesandprocessunitswereassociatedwiththeaccidents.In53casesprocessconditionswereidentifiedascontributingtothecorrosiveconditionsprecedingtheaccident.Themostcommonlycitedcontributorwasthesubstance(cited46times).Flow(eitherhigh,low,turbulentorunequal)wascitedin10cases,andtemperature(mostlyhigh,butinafewcases,low)andpressure(mostlyhigh)werecitedascontributorsin11and7casesrespectively.In8casesotherexacerbatingprocessconditionswerepresent,includingoperationoutsidedesignparametersandvariationacrossprocesscycles.

  • 3

    Refineryprocessesgenerallyconsistofeitherrefiningortreatmentprocesses.Refiningprocesses,suchasdistillationandthermalcracking,breakdownandmanipulatethemoleculesinthecrudeoilfeedstocktoconvertitintomarketableproducts.Treatmentprocessesremoveimpuritiesandbyproductsfromthefeedstockandrefiningoutput.Asmuchaspossibletheseunwantedsubstancesareeitherrecycledintotherefiningortreatmentprocess(e.g.,hydrogen)orsoldasproductsintheirownright(e.g.,sulphur).

    Outof99cases,thehighestpercentage(23%)startedinthedistillationunit,followedcloselybyhydrotreatmentunits(20%).Inthecasesstudiedthereweresubstantiallyfewercasesinvolvingsuchunitsafter2000comparedtoprioryears.Conversely,thenumberofcasesinvolvingthepipelinetransfernetworkisproportionallysomewhathigherafter2000.TheOthercategoryincludesunitsforsulphurrecovery,solventextraction,saturatedgas,olefinmanufacturingandoilgasification.Thestudydoesnotshowanypatternlinkingspecificunitswithaccidentconsequencesofaparticularlevelofseverity.

    Involvement of refinery equipment in corrosion-related accidents Themagnitudeofapetroleumrefineryunitandthecomplexoftheprocessesissuchthatawidevarietyofequipmenttypescanbesubjecttocorrosiondependingontheprocess.Ingeneral,thepipelineinfrastructureandthepipeworkassociatedwithinaparticularunitand/orpieceofequipmentarequitevulnerable.Storagetankfailurescanalsooccurduetocorrosionandgenerallyhavehighriskprofilesduetothevolumesthattheymaycontain.Corrosioncanalsooccurinotherequipmentcomponentssuchastrays,drums,andtowers.Someequipmenttypesaremorevulnerabletocorrosion,ortocertaintypesofcorrosion,thanothersusuallyduetotheirroleintheprocess,thedesignofthepipework,orphysicallocationonthesite.Sometimesfaultyrepairsorprocessredesigncanincreasecorrosionvulnerability.Hence,equipmentdesignandmaintenancepracticesarecriticaltocontrollingrefinerycorrosion.Afewtypesofequipment,notablytheheatexchanger(anecessarycomponentofmanyprocessunits)andthestoragetank,arealsohighlycorrelatedwithelevatedcorrosionrisk.

    Ofthecasesstudied,corrosionfailureoriginatedpredominantlyinpipeworks,causing71%oftheaccidentsstudied.Fiftypercentofaccidentsinvolvedtheinternalpipeworkoftheequipment.Asnotedintheprevioussection,17%oftheoriginalfailurestookplaceinthepipelineinfrastructureoftheplantfortransferbetweenunitsandtoandfromtransportmodes,and4%tookplaceintubesassociatedwithheatexchangeandcoolingunits.FIfteenpercentoftheaccidentsoccurredinstoragetanks.

    Variousfactorsmakesomeequipmentcomponentsmorevulnerabletotheaccelerationofthecorrosionratethanothers.Configurationanddesignofequipmentplayaparticularroleincreatingopportunityforcorrosivedepositstoaccumulate.Functionandlocationcanalsodeterminethelevelofexposuretocorrodingagents.Integrityofcorrosionprotectionandrepairareapplicationsthatcanalterthecharacteroftheequipmentwithanimpactonitsvulnerabilitytocorrosivefactors.Moreover,inanyrefinery,therewillusuallybepointsatwhichthepipeworkfailstomeetthenecessarydesignstandardsforanumberofreasons.Thesereasonsincludeage,processchange,designchange,riskassessmenterrors,andpoorrepairandmaintenance.Thesevulnerabilitiesarecommoncausalfactorsforothertypesofmechanicalintegrityfailuresbesidescorrosion.

    Thestudyhighlightedthefollowingvulnerabilitiesthatwerecitedinnumerousreports,individuallyorincombinationwithotherfactors,ascontributingtoanaccidentevent.

    Materialcompositionofthecomponent

  • 4

    Configuration Function Location Adequacyofanticorrosionprotection WeldedpartsThestudyrevealedthatinninecases,theinadequacyofthematerialcompositionindesignorrepairofthepipecomponentwasconsideredacontributorfactortothecorrosionfailure.Sixcasesindicatedthatinfrequentusemayhaveresultedinareductioninthefrequencyofmonitoringandmaintenanceofanequipmentcomponent.Overallfailureoftheanticorrosionprotectionwascitedin16oftheaccidentsstudied.Corrosionfailurewasattributedtopotentialweldingerrorinnineofthecasesstudied.Onlyfourcasesmentionedtheageoftheequipmentasacontributingfactor,althoughinseveralreportstherewerealsoreferencestotheadvancedageoftheequipmentinvolvedintheaccidentwithoutindicatingitasacausalelement.

    Inparticular,configurationofthepipeworkplaysastrongroleinthecorrosionprocess.Somedesignfeaturescreateweakpointsinthesystemthatareparticularlyvulnerablepotentialstresses,includingcorrosion.Theelbowjointisthemostcommongeometricconfigurationinvolvedinacorrosionrelatedfailureinthestudy,notedin18%ofallcasesastheoriginalsiteofcorrosion.Elbowjointshavepracticalandengineeringadvantagesbuttheyalsoarevulnerabletocertaintypesofstresses,particularlyerosion/corrosion,lowofunevenflow,vibration,andexternalpressurefromnaturalforcessuchaswindandfloods.Aslightlyhigherproportionofthepre2000casescitedanelbowjointastheoriginofthecorrosionfailure.

    Intotal8differentcasesreferredtovalvesorbranchedpipingastheoriginallocationofthecorrosionfailure.Valves,nozzlesandbranchedpipeworkallrepresentpipeintersectionsthatarejoinedtothesystembyvariousmechanisms,includingwelding.Whiletheconstructionanddesignofthesecomponentsvariesconsiderably,itcangenerallybesaidthattheprocessofmakinganintersectioncreatesaweakpointinthepipesystem.

    Asidefromprocesslocation,otherlocationfactorsalsomayaffectcorrosionvulnerability.Inthisstudytwoadditionallocationissueswerehighlightedin13separatecases:exposuretotheexternalenvironmentandaccessibility.Inonecaseasectionofequipmentpipeworkwaspoorlyaccessibleforroutineinspection.Sevencasesconcernedpipesthatwereonthegroundorunderground,4ofwhichwereconsideredalsofairlyinaccessibleforroutineinspection.Pipelinestandardsgenerallyrecommendthatburiedandsubmergedmetallicequipmentshouldhaveadequateprotectivecoating.Fivecasesconcernedpipessubmergedinwater.

    Potential contribution of risk management failures Everyrefineryisexpectedtohaveanappropriateriskmanagementstrategytominimizetheriskswithadequatelayersofprotectionsupportedbyaneffectivesafetymanagementsystem.Fromthereports,therewasanindicationthatafailureinriskmanagementwasacontributingcausetothevastmajorityofaccidentsstudied.

    Duetothevariationinreportingdetailandstyle,itwasnotpossibletoanalysetheriskmanagementfailuresassociatedwiththeseaccidentsinasystematicway.Nonetheless,thestudywasabletosummarizepotentialriskmanagementfailuresintermsoffivegeneraldeficiencies:

    Inadequateawarenessorattentiontoknowncorrosionhazards

  • 5

    Inadequateriskanalysisatdesignandconstructionstage

    Inadequateriskanalysispriortochange,whichisessentiallyalackoforfailureinthemanagementofchangeprocess

    Failuretoidentifyoraddressprocessrisksinplanninginspections

    Inadequateidentificationofhazardsandrisksforotherpurposes,suchassafeperformanceofrepairsandestablishmentofdetectionandmitigationsystems

    Accordingtothestudy,aninadequateawarenessorattentionofmanagementtoknowncorrosionhazardscouldwasimpliedasacontributingfactorin23%ofthecasesstudied.Thisincidencewasflaggedincaseswhereoneormoreofthefollowingconditionsappearedtoexistaccordingtotheobservationsfoundintheaccidentreport:

    Generallackofmanagementattentiontocorrosionissues

    Lackofawarenessintheprocessunitofpotentiallyunsafeconditionsandpotentialaccidenttriggers

    Inadequatecorrosionmonitoringandfeedbackmechanismsforknownareasofelevatedcorrosionrisk.

    Theremainingfourcategoriesofriskmanagementfailureidentifiedinthestudycanbetracedtoafailureassociatedwithhazardidentificationorriskassessmentatanimportantstageinthelifeoftheequipment.Mostmajoraccidentsimplyatleastapartialfailureintheidentificationandriskassessmentofamajorhazardresultinginaninadequateevaluationofthehazardandassociatedrisk.Forcorrosionhazards,riskisnormallyexpressedastheproductoftheprobabilityofacorrosionrelatedfailureandtheconsequencesofsuchafailure.Theoutcomeoftheassessmenthasimplicationsfordownstreamdecisionsassociatedwithdesign,operationandmaintenanceoftheprocess.

    Itcouldbededucedfromnumerousaccidentreportsstudiedinthisanalysisthataninadequateriskassessmentoftheprocessatacriticaloperationalphasewasacontributingcauseoftheaccident.Usuallytheriskassessmentwasinadequateforanumberofreasons,including:

    Thehazardwasnotidentifiedandariskassessmentforthathazardwasneverperformedatacriticalpointinthesafetylifecycle

    Criticalinformationaboutthehazardandpotentialriskwasavailablebutomittedfromtheriskassessment.

    Criticalinformationaboutthehazardandpotentialwasnotfullyavailablefortheriskassessment

    Thisstudyfoundthattheseinadequaciesintofourdifferentcategoriesaccordingtotheiroccurrenceinthesafetymanagementprocess,asfollows:

    Inadequateriskanalysisatdesignandconstructionstage

    Inadequateriskanalysispriortochange,whichisessentiallyalackoforfailureinthemanagementofchangeprocess

    Failuretoidentifyoraddressprocessrisksinplanninginspections

  • 6

    Inadequateidentificationofhazardsandrisksforotherpurposes,suchassafeperformanceofrepairsandestablishmentofdetectionandmitigationsystems

    Accordingtothestudy,theriskassessmentpriortooriginaldesignoralaterequipmentdesignchangewasnotadequateoverathirdofallaccidents.Someofthereportswerenotentirelyclearastowhetheradesignerrorwastheresultofadecisionintheoriginaldesignoftheprocessorwaspartofachangetoprocessequipmentatalaterstage.Asapracticalmatter,thestudyassumedthat,ifchangewasnotmentioned,theerrorwaspartoftheoriginaldesign;however,thischoicecouldnotbefullyverified.

    Changesandmodificationstoprocessesandprocessequipmentareanaturalpartofarefineryplantlifecycle.Acoreelementofanysafetymanagementsystemisaproperlyfunctioningmanagementofchangeprocess.The1974Flixboroughexplosionisperhapsthemostwellknowncatastropheassociatedwithafailureinthemanagementofchangeprocess.Eightoutof60accidentsinvestigatedbytheU.S.ChemicalSafetyBoardbetween1998and2012alsowereassociatedwithfailuretomanageaprocessorequipmentchange.Inthisstudy10%ofaccidentswerecitedaspotentiallyresultingfromafailureinthemanagementofchangeprocess.

    Theestimatedcorrosionriskassociatedwithaprocessorpieceofequipmentshouldbealeadingfactorinschedulingroutineinspectionsofequipmentintegrity.Amoredetailedriskassessmentmayalsobewarrantedtoidentifyspecificdegradationthreats,theremaininglifeoftheequipmentandtofeedbackinformationintotheoverallriskassessmentandcontrolsystem.Theinitialcorrosionriskassessmentshouldidentifyalsopointsinthelifecyclewhenthecorrosionriskassessmentshouldbeupgraded.Accordingtothereportsstudied,athirdoftheaccidentsmighthavebeenavoidedwithappropriateplanningofinspectionsonthebasisofknownriskcriteria.

    Severalreportsalsohighlightedothersituationswhereariskanalysismighthavebeenusedtoavoidapotentialaccident.Insixcasesitwasreportedthatadequateassessmentofconditionswasnotconductedpriortorepairwork.Ingeneralthistypeoffailureisprimarilyassociatedwithneglectingtofollowgoodpracticeforperforminghotwork.

    Insevencasestherewereobservationsintheassociatedreport(s)concerningdetectionandmitigationmechanismsthatcouldhavepreventedareleasefrombecomingaseriousaccidentiftheyhadbeeninplace.Aneffectiveriskmanagementapproachreliesonassigningappropriatetechnicalmeasurestoreduceandeliminatetherisks.Theseverityofconsequencesassociatedwithsomecases,forexample,anaccidentoccurringduringaloadingoperationinwhich478tonnesoffuelwerespilled,suggestedthat,inadditiontomeasurestopreventlossofcontainmentprevention,secondorderprotection,suchassensors,alarms,automaticshutoffcontrolsand/orotherpossiblemeasures,couldhavesignificantlyreducedtheimpactoftheevent.

    Conclusions Corrosioncontrolremainsaparticularlychallengingphenomenonintheefforttoreducerefineryaccidentrisks,furtherelevatedinmanyEUandOECDcountriesbytheaginginfrastructureandvariationincrudeoilsupplyandmarketconditions.Thestudyidentified40accidentsoccurringsince2000,manyofthemserious,indicatingthatmajoraccidentsatrefineriesinvolvingcorrosionfailurecontinuebeaparticularcauseofconcerninthe21stcentury.

    Generally,significantcorrosionfailuresoccureitherbecausethehazardwasnotproperlyidentifiedorthehazardwassubstantiallyignored.Itappearedfromthestudiesthatexpertssometimesoverlookedhowthevariouselementsofaprocesscouldcombinetocreatetheconditionsforacceleratedcorrosion.Thereisalsoaquestionabouthowmuchexperiencespecificallyinmechanicalintegritydisciplinesisavailableatsomerefineriestodiagnosetheseproperly.However,there

  • 7

    appearedtobeanumberofcasesstudiedinwhichthecorrosionriskwasquiteobvious,andyetthemanagementchosetoignoreorunderestimateit.

    Thestudyseemstoindicatethatoneofthemostimportantchallengesinmanagingrefinerycorrosionisalsotheelementofchange.Alreadychangestoprocessdesignandequipmentposeachallengeandneedacertaincompetencytoidentifyifanewcorrosionriskhasbeenintroduced.However,otherchangesthatcanaffectcorrosionratesmaygounrecognizedandthusnotbeevaluatedforanelevatedrisk.Inconspicuouschanges,suchaslossofexperiencedpersonnel,lackofknowledgeoftheoriginalprocessandequipmentdesign,andagingequipment,canalsocreateriskandinthisregard,therefinerysgreatestriskmaybechangeovertime.

    Neglectingtoidentifyormanagecorrosionhazardsalsocontinuestobeaproblemonsomerefinerysites.Someaccidentreportsarequiteclearthatthelessonlearnedwaslessaboutthetechnicalchallengeofmanagingcorrosionbutsimplyabouthavinganeffectiveriskmanagementprogram.Theworkofinspectionauthoritiesismostcertainlychallenginginthesesituations.

    Inessencethisstudyprovidessomeevidencetoconfirmconcernsamongexpertsinbothgovernmentandindustrythattheriskofcorrosionfailurescausingmajoraccidentsremainsastrongareaofconcern.Inillustratingthekindsofdecisionsthatmayhaveledtocertainaccident,ortheseverityoftheirconsequences,itishopedthatinspectorsandrefineryengineerswhoarelookingtoimprovetheirawarenessofcorrosionriskswillhavegainedsomeknowledgethatwillhelpthemintheirwork.Inaddition,itispossiblethatthefindingscanalsohelpkeyleadersingovernmentandindustrypointoutthatcorrosionremainsasignificantrefineryhazarddeservingseriousandsustainedmanagementattention.

  • 8

    CHAPTER 1 INTRODUCTION AND BACKGROUND

    Petroleumrefineriesaregenerallyacknowledgedtobehighhazardsitesduetothenatureofpetroleumproductsandtheprocessingtechnologiesthatproducetheminthecurrentera.Forthemostpart,however,therisksarewellknownandrefineryoperatorshaveappliedconsiderableknowledgeandresourcesoverthepastdecadestocontrolandminimizeriskpotential.Nonetheless,majoraccidentsinrefineriestendtoregularlyoccurwithimpactsnotonlyonhumanhealthandtheenvironment,butalsoinmanycasesonsocialandeconomicwellbeing.Arecurringcauseofaccidentsinpetroleumrefineriesiswellknowntobecorrosion.ThisreportstudiescorrosionrelatedaccidentsinrefinerieswithintheEuropeanUnion(EU)andtheOrganizationforEconomicCooperationandDevelopment(OECD),comparingaccidentoccurringbeforeandafter2000andwiththeviewtoprovidinginsightsintorecentcausaltrendsandidentifyinglessonslearnedthatcouldinfluencepreventionstrategiesinfuture.

    ThisreportwasdevelopedonbehalfoftheEUCommitteeofCompetentAuthoritiesfortheSevesoDirective(CCASeveso)1andOECDsWorkingGroupofChemicalAccidents(WGCA)whichmanagestheOECDProgrammeonChemicalAccidentsandconsistsofrepresentativesofOECDmembercountriesaswellasexpertsfromobservercountries,internationalorganizations,industry,labour,andenvironmentalorganizations.TheEuropeanCommissionisrepresentedontheWGCAbyDGENVandtheJointResearchCentresMajorAccidentHazardsBureau(MAHB).Inaddition,OECDmemberscontributeaccidentreportsonavoluntarybasistotheeMARSdatabaseofchemicalaccidentsmanagedbyMAHB.AlistofOECDMemberCountries,indicatingthosethatarealsoEUMembers,isprovidedinTable2onpage12.

    ThemajorityofEUandOECDcountriesarehosttoatleastonepetroleumrefinery,ifnotseveral,andthosecountrieswithoutrefineriesallhavepetroleumstoragedepotswhosharesomeofthesamestorageandhandlingissuesasrefineries.OECDcountriesrepresentanestimated49.2%Error!Referencesourcenotfound.ofglobalrefiningcapacity,andalltogetherEUcountries(includingnonOECDmembers)representanapproximate18%ofglobalrefiningcapacity.[2]Studiesaboutcausesassociatedwithrefineryproductionandstorageremainhighlyrelevant.Moreover,itcanbeassumedthatmostorallrefineriesinEU/OECDcountriesstrivetofollowcommoninternationalstandardsofgoodpracticeformanagingrefineryrisks.

    1Directive2012/18/EUoftheEuropeanParliamentandoftheCouncilof4July2012onthecontrolofmajoraccidenthazardsinvolvingdangeroussubstances.AllEUMemberStatesareobligedtoimplementtheSevesoDirectiveintheirnationallegislation.

  • 9

    TABLE1.TOTALOILSUPPLY(THOUSANDBARRELSPERDAY)[1]

    2008 2009 2010 2011 2012

    EU-27 2647.227 2542.01 2413.188 2162.712 1992.969 Austria 27.35455 28.19153 28.71441 30.39195 29.48281 Belgium 8.5207 12.60347 12.70007 10.53035 10.53035 Bulgaria 3.51701 3.3409 3.58363 3.38363 3.38363 Cyprus 0.2 0.2 0.1 0.1 0.00847 Czech Republic 10.90856 10.38968 10.28301 13.01232 10.00915 Denmark 290.3941 264.3081 249.4648 226.2842 207.3841 Estonia 7.6 9 10 11 11 Finland 8.53291 9.54122 15.30335 14.2309 13.5309 Former Czechoslovakia -- -- -- -- -- France 73.07799 76.31161 76.5425 75.88213 72.30336 Germany 124.8994 133.0608 125.0016 141.0002 144.5077 Germany (Offshore) 20.81967 23.72877 20.88219 24.08767 25 Germany, East -- -- -- -- -- Germany, West -- -- -- -- -- Greece 6.00839 6.41675 8.47986 7.57805 7.49677 Hungary 36.9994 35.36659 34.45847 27.64039 27.9886 Ireland -0.45946 -0.2957 1.07504 0.72561 0.72561 Italy 160.7857 145.5256 156.1428 152.7214 154.5105 Latvia 0.9 1.2 1.1 1 1 Lithuania 10.04207 9.45376 9.71077 9.11077 9.11077 Luxembourg 0 0 0 0 0 Malta 0.02 0.02 0 0 0 Netherlands 31.47712 37.83117 34.84203 40.98095 54.7248 Netherlands (Offshore) 34.07377 25.56438 20.30137 17.5863 16.99727 Poland 35.27595 34.24601 28.65921 28.33946 27.68447 Portugal 6.96014 5.41664 5.57404 5.17594 5.24991 Romania 116.9844 112.6989 107.1448 105.3409 101.6478 Slovakia 10.30085 7.53781 7.68135 9.85793 9.27711 Slovenia 0.165 0.145 0.405 0.305 0.305 Spain 25.3903 29.48995 28.75125 28.45621 29.29182 Sweden 8.4702 11.19146 10.41947 11.26664 11.26664 United Kingdom 85.14396 87.38141 87.13009 82.65457 86.17039 United Kingdom (Offshore) 1502.864 1422.145 1318.737 1084.068 922.3808 OECD 20968.22 21160.93 21505.25 21623.91 22571.73 Australia 587.717 592.4863 604.1056 530.5067 519.065 Austria 27.35455 28.19153 28.71441 30.39195 29.48281 Belgium 8.5207 12.60347 12.70007 10.53035 10.53035 Canada 3343.577 3318.829 3441.73 3597.333 3868.956 Chile 12.12632 12.97693 18.42176 18.36149 17.33709

  • 10

    2008 2009 2010 2011 2012

    Czech Republic 10.90856 10.38968 10.28301 13.01232 10.00915 Denmark 290.3941 264.3081 249.4648 226.2842 207.3841 Estonia 7.6 9 10 11 11 Finland 8.53291 9.54122 15.30335 14.2309 13.5309 Former Czechoslovakia -- -- -- -- -- France 73.07799 76.31161 76.5425 75.88213 72.30336 Germany 124.8994 133.0608 125.0016 141.0002 144.5077 Germany (Offshore) 20.81967 23.72877 20.88219 24.08767 25 Germany, East -- -- -- -- -- Germany, West -- -- -- -- -- Greece 6.00839 6.41675 8.47986 7.57805 7.49677 Guam 0 0 0 0 0 Hawaiian Trade Zone -- -- -- -- -- Hungary 36.9994 35.36659 34.45847 27.64039 27.9886 Iceland 0 0 0 0 0 Ireland -0.45946 -0.2957 1.07504 0.72561 0.72561 Israel 4.023 5.98119 5.839 5.839 5.839 Italy 160.7857 145.5256 156.1428 152.7214 154.5105 Japan 125.2716 137.6242 142.4722 136.257 135.5125 Korea, South 33.6573 54.65003 58.47474 59.78946 61.04358 Luxembourg 0 0 0 0 0 Mexico 3184.164 3000.791 2978.599 2959.989 2936.009 Netherlands 31.47712 37.83117 34.84203 40.98095 54.7248 Netherlands (Offshore) 34.07377 25.56438 20.30137 17.5863 16.99727 New Zealand 65.27087 61.02682 60.77085 52.17398 48.19111 Norway 2463.917 2352.555 2134.621 2007.35 1902.084 Poland 35.27595 34.24601 28.65921 28.33946 27.68447 Portugal 6.96014 5.41664 5.57404 5.17594 5.24991 Puerto Rico 0.66277 0.53813 0 0.8536 0.6737 Slovakia 10.30085 7.53781 7.68135 9.85793 9.27711 Slovenia 0.165 0.145 0.405 0.305 0.305 Spain 25.3903 29.48995 28.75125 28.45621 29.29182 Sweden 8.4702 11.19146 10.41947 11.26664 11.26664 Switzerland 3.65681 3.87793 3.60576 3.61281 3.61281 Turkey 47.73348 54.59644 57.75023 57.63345 56.65329 U.S. Territories NA NA NA NA NA United Kingdom 85.14396 87.38141 87.13009 82.65457 86.17039 United Kingdom (Offshore) 1502.864 1422.145 1318.737 1084.068 922.3808 United States 8564.232 9133.129 9692.433 10135.55 11124.05 Virgin Islands, U.S. 16.64497 16.76659 14.88036 14.88036 14.88036

  • 11

    OECDMembersOnly OECDandEUMembers

    Australia 7 Austria 1

    Canada 18 Belgium 4

    Israel 2 CzechRepublic 3

    Japan 30 Denmark 2

    Korea 6 Estonia 0

    Mexico 6 Finland 2

    Switzerland 2 France 12

    UnitedStates 144 Germany 13

    Norway* 2 Greece 4

    Turkey 6 Ireland 1

    Italy 16

    EUMembersOnly Luxembourg 0

    Bulgaria 1 Netherlands 7

    Cyprus 0 Poland 2

    Latvia 0 Portugal 2

    Lithuania 1 SlovakRepublic 1

    Malta 0 Slovenia 0

    Romania 6 Spain 9

    Sweden 5

    UnitedKingdom 11

    TotalEU&OECD 317

    *EuropeanEconomicArea(EEA)Member

    EUCandidateCountry

    .

    TABLE2.NUMBEROFOPERATINGREFINERIESINOECDANDEUMEMBERCOUNTRIES[3][4][5]

  • 12

    1.1 Background

    Chemical,refineryandpetrochemicalindustriesarecomplexlargeestablishmentsthatbynatureoftheiroperationsaresubjecttoanumberofhighriskfactors,amongthemthemaintenanceofthemechanicalintegrityofprocessandstorageequipment.Ithasbeennotedbyanumberofexpertsovertheyearsthatmechanicalintegrityconsistentlyremainsacontributortomajoraccidentsdespitenumerousgainsinknowledgeaboutvulnerabilitiesofrefineriesandhowtheycanbemanaged.Theseconcernshavebeendrivenbyrecentaccidents,observationsfromthefieldbynumerousgovernmentsafetyinspectors,andageneralawarenessofchangingconditionsinrefineriespotentiallyaffectingmechanicalintegritysuchasplantaging,thechemicalandphysicalpropertiesofcrudefeedstocksincurrentsupply,andothereconomicandmarketfactors.

    Toillustrate,ofthe137majorrefineryaccidentsreportedbyEUcountriestotheEMARSdatabase2since1984,around20%indicatedcorrosionfailureasanimportantcontributingfactor.ThisproportionofrefineryaccidentsineMARSwiththisprofilehasremainedconstantwellintothe21stcentury.Consideringgainsinknowledgeinregardtobothcontroltechnologiesandriskmanagementoverthepast30years,theunchanginginfluenceofcorrosiononrefineryaccidentratesintheEUcouldbeconsideredasevidencethattheseexpertsconcernsarenotmisplaced.

    Uncontrolledcorrosioncancausereleaseofhazardoussubstancesandcomponentsorcanreduceboththeperformanceandreliabilityofequipmentuntiltheirfailure.Corrosionhazardscanputatriskthesafetyandwellbeingofplantofbothplantemployeesandthegeneralpublicaswellasleadtoseveredamageofprocessunits,andinsomecasesshutdownofrefineryoperations.Thehumanimpact,fromdeath,injury,trauma,incomeorpropertylossresultingfromanaccidentcanbeparticularlydevastating.Thoughlessfrequent,theenvironmentalimpactswhentheyoccurtendtobesevereinanindustrywherehighvolumeproductionisthenorm.

    Inparticular,theeconomicimpactofcorrosionphenomenaanditsconsequencesonrefineriesissignificant,takingintoaccountmaintenanceandrepaircostsandproductionlossfromplannedandunplannedshutdowns.Assuch,indirectconsequencesassociatedwithshortandlongtermsocialandeconomicdisturbances(e.g.,infrastructureoutages,jobloss,fuelpriceincreases)fromarefineryaccidentmaybeparticularlysevere.

    Ofallpotentialimpacts,thefinancialimpactofcorrosionismostconsistentlyandalarminglyhigh.Corrosioninrefineriesalsocansignificantlydecreasethefinancialefficiencyofthedifferentrefineryprocessessincefailureofequipmentduetocorrosioncanresultinashutdownofallorpartofthefacility.AccordingtoRuschauetal.,yearlycostsrelatedtocorrosionintheoilindustryhavebeenestimatedintherangeof$3.7billionperyearintheU.S.Thisstudyalsoestimatedthattotalpropertydamagelossesfrommajorrefineryaccidentsbetween1972and2001equatedtoaround$5billion(January2002dollars).Arefineryoperationmayhaveinexcessof3,000processingvesselsofvarying

    2TheMajorAccidentReportingSystem(MARSandlaterrenamedeMARS)wasfirstestablishedbytheEUsSevesoDirective82/501/EECin1982andhasremainedinplacewithsubsequentrevisionstotheSevesoDirectiveineffecttoday.ReportinganeventintoeMARSiscompulsoryforEUMemberStateswhenaSevesoestablishmentisinvolvedandtheeventmeetsthecriteriaofamajoraccidentasdefinedbyAnnexVIoftheSevesoIIIDirective(2012/18/EU).FornonEUOECDandUNECEcountriesreportingaccidentstotheeMARSdatabaseisvoluntary.

  • 13

    size,shape,form,andfunction.Inaddition,atypicalrefineryhasabout3,200km(2,000mi)ofpipeline,muchofwhichisinaccessible.Someofthesepipelinesarehorizontal;somearevertical;someareupto61m(200ft)high;andsomeareburiedundercement,soil,mud,andwater.Thediametersrangefrom10cm(4in)upto76cm(30in).[6]

    SomecommongeneralconditionsassociatedwithrefineriesinEUandOECDcountriestodayarebelievedtobeleadingtoanelevationincorrosionrisks,notablyaging,changesintheoverallrefineryinfrastructure,andthequalityofcrudeoilavailableinthemarketplace.Forexample,in2003MarshPropertyRiskConsultingindicatedthatlossesintherefineryindustrywerecontinuingtoincreasemostnotablyduetoagingfacilitiesinthiscategory.[7]AgingwascitedasoneofthemostimportantfactorscreatingthepotentialforthedisasterthatoccurredattheBPTexasCityrefineryintheU.S.in2005.Recently,aspateofguidanceandexpertrecommendationshavebeenproducedbymajoroilrefiningcountries,notablytheUnitedKingdomandFrance,onmanagingagingplantsandrefineries.ThemajorityofrefineriesinOECDandEUcountriesareover20yearsold.

    Demandandsupplytrendsintheoilindustryinthesecountriesalsohavegivenrisetoaconcernregardingimpactsofreducedprofitmarginsonplantmaintenanceandnewinfrastructureinvestment.Refineryprofitabilityisparticularlyvulnerabletomarketfluctuationbecausetheoperatorhaslittleinfluenceoverthepricingofbothinput(crudeoilfeedstock)andoutputwhicharedrivenbyworldwide,andtosomeextentalsoregional,markets.In2009profitmarginsforEUrefinerieswerereportedasthelowestobservedinfifteenyears.[2]

    Thefallinprofitabilityhascausedseveralrefineriestoclose,acircumstancethatincreasesdemandonremainingrefineries,someofwhichmaybeoperatingnearcapacitylimits.Notably,theEU,theUSandJapanhaveexperiencedclosuresofmajoroilrefineriessince2008andmoreclosuresarepredictedinfuture.[8]Intheseregions,therefiningindustryhasmaintainedcapacitydemandslargelybyexpandingexistingfacilitycapacity,oftenbyincreasingthecapacityofindividualprocesses,particularlythecrudedistillationprocess,andstorageunitsandtankstomanagegreatervolumes.[1]Nonetheless,olderprocessunitsremaininuseoftenoperatingatanincreasedrateofproductionthaninpastyears.

    AtthesametimeintheEUregioninparticular,marketconditionshaveincreaseddependenceoncrudeoilfeedstocksthatareheavierandmoresulphurous,requiringmoreintenseprocessingwiththeaccompanyinghighercorrosionriskassociatedwithhigherproportionsofnapthenicacids.InEuropeNorthSeacrudeproduction(fromNorway,UK,Denmark)fellfrom6.4to4.3millionbarrelsperdaybetween2000and2008.Overthesameperiod,thesuppliestoEuropeofheavier,sourer/moresulphurous,crudesfromRussiaandAfricahavebeengrowing.TheresulthasbeenanincreaseintheproportionofheavyandsulphurouscrudespurchasedbyEUrefineriesandresultingheavierprocessingdemands.[2]3[2]

    AsnotedbyYeung,crudeselectionisthemostimportantdecisionrefinersmustmakeonadailybasis.Thecompositionofcrudevarieswiththesourceandcansignificantlyimpactonthecorrosionresistanceofrefineryequipment,andparticularlyinrefineriesthatweredesignedwithheavycrudesinmind.Theoperatorhastoevaluatemarketcostssuchasoilsourcereliabilityandtermdeals,deliveryadvantages,discountversusothercrudes,andproductdemandmixagainstthepotentialimpactonoperationalcostsrelatedtoplantoperationalflexibility,potentialprocessingproblemsand

    3Thecorrosionriskisnotnecessarilylessenedinproductionofbiofuelsandsyntheticgaseswherevariousconditionscanpresentpotentiallydifferentbutequallyseriouscorrosionrisks(e.g.,theuseofchloriderichbiomassforbiofuelproduction).[9]

  • 14

    risks,mitigationoptionsandcosts,andenvironmentalconcerns.[9]Heavycrudecanthereforebringchangesinotherindirecteconomicforces,suchasprofitmargins,maintenancepractices(e.g.,outsourcing),theavailability/relianceoninhouseexpertiseforcorrosionengineeringandtheincreasinglossofhistoricalknowledgeregardingthedesignandoperationalhistoryofolderequipment.[10]4

    AllthesefactorshaveraisedconcernsabouttheriskofaseriousaccidentduetotheelevatedpresenceofcorrosionriskinrefinerysitesinEUandOECDcountries.Aseriousrefineryaccidentcanhavegraveimpactsonproductionalonewhichthreatenstheeconomicviabilityoftherefineryitself.Moreover,numerouspastaccidentshavedemonstratedthepotentialforrefineryaccidentstocauseinjuryanddeathtoworkersonthesite,environmentaldamagetonaturalresourcescovering,onoccasion,vastgeographicregions,threatenthehealthandsafetyofthecommunity,andsignificantlydisruptitsqualityoflifefordaysorweeksatatime.Thisstudyofcorrosionrelatedaccidentsinrefineriesexploreslessonslearnedfrompastaccidentsisintendedtoprovideinsightsthatmayassistoperatorsandtheenforcementcommunityinevaluatingvulnerabilityofrefineriestocorrosionrelatedrisksinfuture.

    1.2 Aims of the Study

    Overthepastfewdecades,avastamountofscientificliteraturehasbeengeneratedonthesubjectofcorrosioninprocessingandstorageactivitiesassociatedwithindustrialactivity,asignificantportionofwhichisdevotedtocorrosionspecificallyintheenergysector.Fromthesepublications,itisevidentthatcorrosionsubdividesintoanumberofsubcategoriesofcorrosionphenomenawithvariedandcomplexprofilesdependentonproductandequipmentcompositionandinteractionsaswellassomefactorsindependentofoperationalactivity(e.g.,location,atmosphericconditions).Thecorrosionpotentialinpetroleumrefineriesismadeinfinitelymorevariedandcomplexduetotheadditionalsize,variationandcomplexityofactivityinmostrefineries.ForthisreasonthereisaconcernthatcorrosioncontrolinEUandOECDrefineriesmaybeinconsistentlyeffectiveacrosstheindustryandgeographiclocationsincurrenttimes.

    Asmallbutsignificantportionofcorrosionliteraturehasbeenaimedatsummarizingtheresearch,lessonslearnedandtrendstofacilitatepracticalapplicationofcorrosioncontrolmeasuresinawidevarietyofindustrialsectorsandeconomiccircumstances.Notably,variousindustryassociationsassociatedwiththeenergysectorhavemadesubstantialcontributionstothetheoreticalframeworkandgoodpracticerecommendationsavailableforcorrosioncontrolinrefineries.Moreover,alarmedbyrecentaccidentsinolderrefineries,anumberofEUandOECDnationalgovernmentauthoritieshaveinvestedeffortoverthelastseveralyears,conductingsubstantialscientificresearch,fieldstudiesandaccidentanalyses,inordertoassesstheextentandseverityoftheagingphenomenainrefineriesandhowtocontrolitsassociatedriskssuchascorrosion.

    4TheU.S.isanothersignificantOECDrefiningcountrythathasexperienceadowngradeinthequalityofcrudeoilsupplyoverthelasttwodecades,withanassociatedimpactontheintegrityofitsrefininginfrastructure.However,infuturetheU.Smayeventuallybenefitfromgreateravailabilityoflighter,lowersulphurfeedstocksasaproportionofitstotallysupplywiththeexploitationofshaleoilreservoirs.

  • 15

    ThisreportcitesparticularpublicationsproducedbytheAmericanPetroleumInstitute(API),theInstituteofChemicalEngineers(IChemE),theInstituteofEnergy(IE),theUnitedKingdomHealthandSafetyExecutive(UKHSE),theFrenchNationalInstituteofEnvironmentandIndustrialRisk(INERIS),theU.S.DepartmentofEnergy,theU.S.DepartmentofTransportation,theU.S.OccupationalSafetyandHealthAdministrationandNACEinternational.Whiletherearenodoubtothervalidpublicationsthatthisreportignores,thesereportswereconsideredtobesufficientlyexhaustiveandrecenttorepresentthestateofthearttheoryandpracticeinEUandOECDcountries.Moreover,language,accessibilityandprominenceofthesereportsasreferencesforrefineryoperatorsplayedaroleindefiningthescientificreferencesforthisstudy.

    Theseworksaddconsiderablevalueascataloguesofcorrosionandcorrosioninducingphenomenaandbyprovidinganincreasinglyrobustarsenalofeffectivecontrolstrategiesastimegoeson.However,thedauntingtaskofprioritizingandprocessingthisinformationtominimizerisknecessarilyremainswiththerefineryoperator.Likewise,enforcementagenciesmustsiftthroughthiswealthinformationandwithrelativelylittletimeorotherresources,trytofindaneffectivefocusandapproachthatcangivemeaningfuloversightandassistancetotheoperatorsownefforts.

    Withthisinmind,theauthorsofthisstudyaimedtoprovideinsightonthecollectiveknowledgebasefromanotherperspective,thatis,usingaccidentdatarelatedtooneparticular,corrosioninrefineries,tohelpoperatorsandinspectorstorefreshtheirknowledgeandperhapsalsofocustheirattentiononparticularaspectsassociatedwiththisphenomenon.Usingreportsfromanumberofopensourcesoverthelastfewdecades,theauthorsaimedtoidentifyrepeatedpatternsinaccidentoccurrencesbothintermsofspecificcausalfactorsandfailuresincontrolstrategies.

    Theintentionisnotsimplytoreemphasizethesignificanceofsomeknownchallenges,forexample,corrosionunderinsulationorthelackofsufficientprotectivecoating,butalsotoidentifypotentialfailuresandopportunitiesregardingstrategicapproachestocorrosioncontrolthatmayberelevantforfutureplanningofcontrolstrategies.Moreover,theanalysisalsocomparesfindingsbetweenaccidentspreandpost2000toidentifywhethercertaincausalandcontrolfailuresmayhavebecomemoreorlessrelevantinrecenttimes.Itishopedthatthisinformationisofparticularassistancetoinspectorsbyprovidingaconcisesummaryofrefinerycorrosionhazardsandexamplesofhowtheyhavebeenmanifestedinpastaccidents.Thefindingsmaybealsousefultooperatorsinrenewingaspectsoftheirriskmanagementstrategyortrainingpersonnelonhowtorecognizeandevaluatepotentialcorrosionrisks.

    1.3 Corrosion as a major hazard concern for the petroleum refinery industry

    Corrosiondoesnotstandforasinglephenomenonbutisageneralizedtermtocoveradestructiveattackonametalasaresultofeitherachemicalorelectrochemicalreactionbetweenthemetalandvariouselementspresentintheenvironment.Forinstance,ironisconvertedintovariousoxidesorhydroxideswhenreactingwiththeoxygenpresentinair/water,whenincontactwithamorenoblemetalsuchastinorwhenexposedtocertainbacteria.Theinternationalstandarddefinescorrosionmorespecificallyasaphysicochemicalinteractionbetweenametalanditsenvironmentwhichresultsinchangesofthepropertiesofthemetalandwhichmayoftenleadtoimpairmentofthefunctionofthemetal,theenvironment,orthetechnicalsystemofwhichtheseformapart.[11]Accordingtootherauthors,corrosionderivesfromthenaturaltendencyofmaterialstoreturnto

  • 16

    theirmostthermodynamicallystablestate.[12]Table3belowidentifiesfourbroadcategoriesofrefineryelementsthatcancontributetocorrosionrisk.

    Corrosionofametaloccurseitherbytheactionofspecificsubstancesorbytheconjointactionofspecificsubstancesandmechanicalstresses.Dependinguponenvironmentalconditions,corrosioncanoccurinvariousformssuchasstresscorrosion,pittingcorrosion,embrittlementandcracking.Theparticulartypeofcorrosionoccurringinaspecificcomponentcanoftenbedifficulttoclassify.Forexample,severalformsofcorrosion(e.g.,galvaniccorrosion,pittingcorrosion,hydrogenembrittlement,stresssulphidecorrosioncracking)arecharacterizedbythetypeofmechanicalforcetowhichthemetalcomponentisexposed.Itisnotwithinthescopeofthisworktoaddressindeptheithercorrosionelectrochemistryortheidentificationofdifferentformsofcorrosion.Thebasicsofcorrosionmechanismsaredescribedasabasisforunderstandingtheconditionsthatmakecorrosionriskshighlyrelevantforrefineryoperationsandmorespecificallytoprovidesomeinsightintotheunderlyingcausesofthecorrosioneventsleadingtotheaccidentsanalysedinthisreport.Also,corrosionofcertainmetals(e.g.aluminium)enhancestheircorrosionresistance,butinthisworkcorrosionisassumedtobesolelyanundesirablephenomenon.

    TABLE3.TYPICALREFINERYELEMENTSCONTRIBUTINGTOELEVATEDCORROSIONRATES

    Refineryelement Examples

    Corrosivesubstancesinfeedstockoraddedorproducedinprocess

    Hydrogenchloride,hydrofluoricacid,amines,sulphuricacid,polythionicacidsandothersulphurcompounds,oxygencompounds,nitrogencompounds,tracemetals,saltscarbondioxide,andnaphthenicacids

    Refineryprocessesinvolvingextremesoftemperatureorvelocity

    Distillation,desulphurization,catalyticreformers,fluidcatalyticcracker,hydrocracker,alkylation

    Localconditions Ageofequipment,volumeandrateofproduction,atmosphericconditions(e.g.,climate),plannedandunplannedshutdowns

    Riskmanagementmeasures Frequencyofinspection,riskassessmentandrankingpractices,equipmentinventorymanagement,maintenanceandrepairprocedures,auditingandimplementationoffeedback,useofsafetyperformanceindicators

  • 17

    1.4 Description of accident report sources used in the study

    Thisstudyofcorrosionrelatedaccidentsinrefineriesisbasedon99reportsofimportantrefineryaccidentsinwhichcorrosionofanequipmentpartwasidentifiedorsuspectedasbeingthekeyfailureleadingtotheaccidentevent.Onlyreportslistedinopensourcesandproducedbyorwiththecollaborationofpartiesdirectlyinvolvedintheaccidentinvestigationwereused.Therefore,withafewexceptions,onlinegovernmentdatabasesofaccidentreportswerethemainsourceofaccidentreports.Moreover,sincethestudywasconductedonrefineriesinaspecificgeographicarea,reportsthatdidnotspecifygeographiclocationoftherefinerycouldnotbeused.

    Table4providesadescriptionofalltheprimarysourcesofaccidentreportsusedinthisstudy.Whenavailable,officialinvestigationreports,orsummariesproducedbygovernmentorindustry,wereusedtosupplementinformationintheprimarysources.Mainstreammediareportscontaininginformationonanaccidentwerenotconsideredsufficientlyreliabletechnicalsourcesforthisstudyandtherefore,werenotused.

    Somereportswerelistedinmorethanonedatabaseandsometimesadditionalreportsonthesameaccidentfromothercrediblesourceswereusedtosupplementthefirstreport(e.g.,anindepthinvestigationreport,aworkshoppresentationoftheaccident).SincereportingaccidentswithsignificantconsequencestoeMARSiscompulsoryunderEUlaw,anyaccidentwithsignificantconsequencesrecordedintheFrenchnationaldatabase(ARIA)ortheGermannationaldatabase(ZEMA)willalsobereportedtotheeMARSdatabase.

    Theseparticularsourcesalsotendtocollectaccidentsbasedonreportingcriteriaorotherwisebasedonscreeningcriteriaappliedbythesource.Thisfactorwasconsideredtoprovidesomeadditionalweighttothelessonslearnedofferedbythecollectiveexperiencerepresentedbytheseaccidents.

    FIGURE1.TOTALCASEDISTRIBUTIONBYCOUNTRY

  • 18

    ThestudycoversaccidentsreportedinEUandOECDcountriesoveraspanofnearlyfiftyyears,from1965through2012.Thereisnoparticularstatisticalsignificanceintermsofvariationsinthefrequencyorlocationofaccidentsstudiedperyearorgeographic.Notably,severalsourcesusedforthisstudy,includingeMARS,ARIA,MHIDASandLeesLossPreventionintheProcessIndustrieswereallestablishedinthemid1980s.Fewerdatabasesrecordedsuchincidentspriortothisdateandinanycasemuchofthedataarenotavailableinelectronicformwhichwastheprinciplesourceofinformation.

    Theaccidentsreportedineachyeararenotinanywayrepresentativeofatrend.ThevastmajorityofEUandOECDcountrieshavenotconsistentlycollecteddataorreportsonmajorchemicalaccidentsovertheperiodbythisstudyorinsomecasesthedataarenoteasilyavailable.Insomecasesitispossiblealsothatreportsmaybeavailableelectronicallybutnotinlanguagesknowntothestudysauthors.Forallthesereasons,thestudywaslimitedtothesourcesidentifiedinTable4suchthatthereisasignificantoverrepresentationofaccidentsoccurringinJapan,FranceandtheotherEuropeancountrieswhowerepartoftheEuropeanUnionpriortoenlargementin2004(thesocalledEU15)5andasignificantunderrepresentationofpotentialimportantchemicalaccidentsoccurringinallotherEUandOECDcountries.WiththeexceptionoftheU.S.andJapan,findingasignificantcollectionofaccidentreportsfromOECDcountriesoutsidetheEUischallenging.

    FIGURE2.ACCIDENTSBYYEAROFOCCURRENCE

    5Austria,Belgium,Denmark,Finland,France,Germany,Greece,Ireland,Italy,theNetherlands,Luxembourg,Portugal,Spain,Sweden,andtheUnitedKingdom.

  • 19

    TABLE4.PRIMARYSOURCESOFACCIDENTREPORTSANALYSEDINTHISSTUDY6

    Source No. Timespan

    Geographicalcoverage

    Comments

    eMARShttps://emars.jrc.ec.europa.eu

    AccidentsreportedtotheEuropeanCommissionincompliancewithSevesoDirectiveAnnexVIcriteria.

    29 >1984;

    EU/OECD

    Completenessandprecisionofdescriptionsvariesconsiderably.Includesdetailsonsubstances,consequencesandcost.

    ARIA(France)http://www.aria.developpementdurable.gouv.fr/

    AdatabaseoperatedbytheFrenchMinistryofEcology,Energy,SustainableDevelopmentlistingtheaccidentaleventswhichhave,orcouldhavedamagedhealthorpublicsafety,agriculture,natureortheenvironment.Chemicalaccidentsarereportedthatmeetestablishedcriteria.

    47 >1970

    France,someGermany&UK/US

    Concise,comprehensivetechnicalsummaries.Reportsareverifiedbytechnicalexperts.

    JSTFailureKnowledgeDatabasehttp://www.sozogaku.com/fkd/en/index.html

    CreatedbytheJapanScienceandTechnologyAgency.AmainpurposeincreatingtheFailureKnowledgeDatabasewaspreciselytoprovideameansofcommunicatingfailureknowledge.

    18 >1970

    Japan

    Selectedmajoraccidentsanalysedbyexperts.Scenariodiagrammesinclude.

    LeesLossPreventionintheProcessIndustries,3rdedition[13]

    Firstpublishedin1980,thiscomprehensivesourceforprocesssafetymanagementintheprocesssafetyindustries.

    4 >1911 Wellknownoraccidentswithimportantlessonslearnedorsignificantimpactsonlifeand/orproperty

    6Thistableonlycountscasesinwhichthereferencewasusedastheoriginalsourceforcasesstudiedthoughinmanycasesitturnedoutthatitwasnottheprimarysourceoftheinformation.Whenavailable,originalinvestigationreportsorothermoredetailedsummarieswereusedwhenavailabletosupplementinformationonthesedatasources.Moreover,manyaccidentswererecordedinmorethanonesourceabovewithoftendifferentandcomplementaryinformationaboutthesameevent.

  • 20

    Source No. Timespan

    Geographicalcoverage

    Comments

    Marsh100LargestLosses,20thedition,19722001[7]

    Everyotheryearthisinsurancecompanypublishesareviewofthe100largestpropertydamagelossesthathaveoccurredinthehydrocarbonchemicalindustriessince1972.

    3 19722001

    World

    Lowlevelofdetail.Preciselossfigures.

    MHIDAS

    MHIDASwasestablishedbytheU.K.Health&SafetyExecutivein1986,andprovideskeyinformationonmajoraccidentsinvolvingchemicals.ItdoesnotappeartobeavailableanymoreontheInternetfordownloading.

    3 19592005

    World

    Mainlyasecondarysourceofinformationonaccidentsanalysedinthisstudy.

    ZEMA(Germany)http://www.infosis.uba.de/index.php/de/site/12981/zema/index.html

    DatabasemanagedbytheGermanFederalEnvironmentAgencyofhazardousincidentsandincidentsinprocessengineeringfacilities.

    5 >1980

    Germany

    Concisetechnicalsummariesofchemicalaccidents.

    U.S.ChemicalSafetyBoard(CSB)

    TheCSBisanindependentfederalagencyoftheUnitedStatesgovernmentchargedwithinvestigatingindustrialchemicalaccidents.www.csb.gov

    4 >1998

    USA

    Comprehensiveanalysisbyexperts.

    LouisianaDepartmentofEnvironmentalQuality(LDEQ)

    UnderU.S.law(EPCRAsection304),ifanaccidentalchemicalreleaseexceedstheapplicableminimalreportablequantity,thefacilitymustnotifystateauthoritiesandprovideadetailedwrittenfollowupassoonaspracticable.

    http://www.labucketbrigade.org/article.php?id=498

    3 20052008 AnadvocacygrouppostedanumberofofficialcompanyaccidentreportssubmittedtotheLDEQbetween20052008includingrefineryaccidentsinvolvingcorrosion.

  • 21

    FIGURE3.PERCENTAGEOFCASESINWHICHSOMELESSONSLEARNEDINFORMATIONCOULDBEEXTRACTED

    Alsoitshouldbenotedthatreportsvariedconsiderablyintheirdetail.Forexample,inmanycaseslessonslearnedpersefromanaccidentwerenotgiven(seeFigure3above)Inmostcasesthetypeofaccident(e.g.,toxicrelease,fire,explosion),location(pipeortank,processunit)andknownconsequenceswereprovided.IngeneraltheleastdetailwasprovidedinreportsfromtheMHIDASandMarshaccidentregisterswhiletheJapaneseFailureKnowledgeDatabaseandtheU.S.ChemicalSafetyBoardreportswereextremelydetailed.ARIA,ZEMAandeMARSweremoreuneveninthisregard,butforthemostpartcontainednumerousdetailedreportsaswellassomereportswithsparsedetail.Insomecasesalsomoredetailscouldbefoundforthesameaccidentinamoreextensiveinvestigationreportpublishedseparatelyonlineasanacademicstudyorbytheresponsiblecompetentauthorityitself.

    Intheinterestsofidentifyingdifferencesandsimilaritiesovertime,thestudylooksatfindingsfrompre2000accidentstothoseofaccidentsoccurringin2000orlater.Inparticular,onaqualitativebasis,itremainsinterestingastowhethervarioustypesoferrorsorfailuresarerepeated(andtowhatdegree)inaccidentsreportedbefore2000andin2000andafterwards.Thecomparisonmayalsorevealsomenewtypesoffailuresorerrorsbeingrecordedafter2000.Whileinitselfsuchfindingscouldnotbeconfirmedasatrendforexample,itcanbearguedthatinmanycasescertaindetailsarerecordedmorefrequentlyinrecentyearsduetobetterqualityreportingthecomparisonhelpsidentifywhattypesoferrorsandfailuresremainrelevanttotodaysrefineries.Moreover,ifsuchfindingsareanalysedincombinationwithexperienceandotherfindingsrelatedtosafetymanagementinrefineriestoday,itmaybepossibletohavemorepreciseinsightonthepatternsthataremostrelevantfromthisanalyses.

  • 22

    1.5 Type of events and consequences of accidents

    Becauseofthevolumeofflammableandexplosivesubstancestypicallypresentinrefineries,scenariostendtoincludefiresandexplosionswithpotentiallyhighconsequencesifnotadequatelycontrolled.Inparticular,productionofhydrocarbonproductsleadstoahighpresenceofflammablecompoundsonsite.Notsurprisingly,therefore,nearly80%oftheeventsstudiedinvolvedafireorexplosion(seeFigure4below).Inaddition,asignificantamountoftoxicsubstancesmaybepresentsuchthatrefineriesarealsoexposedtotheriskofpotentialtoxicreleases.Manycrudeoilscontainasignificantpercentageofhydrogensulphidethatiseventuallyseparatedfromthecrudeandusuallyprocessedtoproducesulphurforthemarketplace.Otherprocessesrequirethepresenceofsulphuricacidorhydrofluoricacid(foralkylation)orammonia(toremovenitrogenfromthecrudefeedstock).Infact,overonethirdoftherefineryaccidenteventsinvolvingcorrosionhavealsogeneratedtoxicreleases.Toxicreleasestothesoilwereslightlyhigherinrelationtotoxicreleasestowaterandair,probablyresultingfromanumberofaccidentsstemmingfromtankandundergroundpipefailuresincludedinthedatabase.

    Releasesweremostoftenhydrogenandhydrocarboncompoundsincludingprocessgases,naphtha,crudeoilandvarioustypesoffuels.(SeeFigure5onthenextpage).Thelargestreleasewasestimatedtobearound100,000tonnesofcrudeoilfollowedby50,000tonnesoffuel.Hydrogensulphidewasthetoxicgasreleasedmoreoftenthananyother(16cases).Fewerthan10%ofaccidentsinvolvedreleasesofothertoxicgasessuchashydrogenfluoride,carbonmonoxideandsulphurdioxide.Thehighest(known)releaseofasubstancetoxictohumanhealthwas15tonnesoffurfural,followedby1tonneofsulphurdioxide.

    FIGURE4.ACCIDENTSCLASSIFIEDBYTYPEOFEVENT7

    7Theremaybemorethanonetypeofeventperaccident.

  • 23

    FIGURE5.SUBSTANCESRELEASEDINREFINERYACCIDENTSINVOLVINGCORROSIONBYNUMBEROFACCIDENTS8

    AsshowninFigure6onthenextpage,mosteventswereinitiatedbyaleak,ruptureorstructuralcollapse.Aleakconsistsofareleasefromasmallopeningthatovertimefacilitatetheformationofapoolofdangeroussubstancesthatmayeventuallycatchfireorexplode.Arupturegenerallyresultsfromaleakthatreleasesaflammablesubstanceinternallywhichovertimeincreasespressureandexplodesinsideapipeortank,causingarupture.Structuralcollapseisdefinedasanaccidentinwhich,accordingtothereport,corrosionwasfirstmanifestedinthedestructionorcollapseoftheunit(e.g.,collapseofthedistillationtower)ratherthaninalocalizedleakorrupture.Intheaccidentsstudied,leakswerelesslikelytoleadtoexplosions(vapourclouds)thanrupturesandruptureswerelesslikelytoleadtotoxicreleases.However,bothscenariosseemedtobeequallycapableofresultinginafire.Twostructuralcollapseswererecorded.Oneoccurredafterthestartofthefireinwhichthedistillationtower,weakenedbycorrosion,collapsed.Intheotherthestructurecollapsedfirstandafirefollowed.

    8Anaccidentmayhaveinvolvedthereleaseofmorethanonesubstanceandtherefore,thetotalnumberofaccidentscountedinthefigureaboveexceedsthetotalnumberofaccidentsstudied.

  • 24

    EFFECT TOXIC RELEASE FIRE EXPLOSION UNDECLARED

    LEAK 28 24 10 0 RUPTURE 9 18 19 2 STRUCTURAL COLLAPSE 0 1 0 0 UNDECLARED 2 2 0 0 GRAND TOTAL 39 45 29 2

    FIGURE6.DISTRIBUTIONOFEVENTTYPEFOREACHTYPEOFFAILURE

    Toevaluateimpacts,theauthorsdevelopedasimplifiedmethodologybasedontheEuropeanGravityScale.(SeeTable5onthenextpage).Thesimplifiedversioncombinessomecategoriesandcriteriaofthegravityscaleforanalyticalpurposesandalsoinrecognitionofthesometimeslimitedconsequencedataprovidedinsomereports.Inthecaseofenvironmentalimpacts,additionalcalculationswerealsomadeonthedataprovidedtofacilitateaconsistentrankingofenvironmentalimpactsbasedonthescale.9Usingthisconsequencerankingmethodology,theaccidentsstudiedappeargenerallyrepresentativeofthetypesofhighriskscenariosthataretypicallyassociatedwithpetroleumrefineries.Mostoftheseeventswerenotifiedonthebasisofhighimpactsintermsofeffectsonhumanhealthortheenvironmentorsignificantcosteithertotheoperatororintermsofoffsitepropertydamageordisruption.Asevidence,itisobservedthatnearly50%ofthereportsstudiedbothpreandpost2000werehighorveryhighconsequences.[SeeFigure7onthenextpage).Accidentswithlowconsequencesrepresentmorethanathirdoftheaccidentsstudiedandalsotheratiooflowimpactaccidentstototalaccidentsremainedvirtuallyunchangedforpreandpost2000accidentsstudied.

    9Inparticularenvironmentalimpactsarenotrecordedinaconsistentmanner.Thereportsstudiedcitedenvironmentalimpactsoftenprovidedoneoracombinationofthefollowingasanindicatorofimpact:costofrestorationandcleanup,areaofcontamination,orvolumeormassoftherelease.Tofacilitatecomparisonofenvironmentalimpactsbetweenaccidents,thestudyusedinformationfromthescientificliteraturetoestimateenvironmentalcostsfrommassorvolumeofthereleasewhensuchcostswerenotavailable.ThepriceofcleanuppercubicmetreofcontaminatedsoilwasprovidedbyKhanetal.[15]andastudybyEtkinwasthesourceofalgorithmstoestimatecleanupofcontaminatedwaterbodiesindifferentworldregions.[16]

  • 25

    FIGURE7.SEVERITYOFACCIDENTCONSEQUENCESPREANDPOST2000

    TABLE5.CONSEQUENCERANKINGCRITERIA

    Forhumanconsequences,production lossandpublicdisruption, the scaleapproximates theEuropeangravityscale(condensed into5categories).[14]Formaterialandenvironmentaldamage, levelof impactwasassessedusingalogarithmicscalefromLowtoHighforcostsstartingwith100 >1000 >1,000,000 1,000,000 >1month

    High 11100 101 1000 100,0011,000,000

    100,0011,000,000

    1weekto1month

    Medium 010 11100 10,001100,000

    10,001100,000 1dayto1week

    Low 0 110 110,000 110,000 >1day

    None 0 0 0 0 0

  • 26

    SOURCE VERY HIGH HIGH MEDIUM LOW

    NONE/UNKNOWN

    GRAND TOTAL

    ARIA 17 1 3 21 5 47 CSB 3 0 1 0 0 4 EMARS 21 2 1 5 0 29 JST 6 2 1 8 1 18 LDEQ 0 0 0 2 1 3 LEES' 4 0 0 0 0 4 MARSH 3 0 0 0 0 3 MHIDAS 2 0 0 1 0 3 ZEMA 4 0 1 0 0 5 GRAND TOTAL 60 5 7 37 7 116

    FIGURE8.DISTRIBUTIONOFEVENTTYPEFOREACHTYPEOFFAILURE10

    FromFigure8above,itcanalsobeobservedthatsomesourcesfocusedmoreexclusivelyonhighimpactaccidents,inparticular,theMarshandCSBreports.Ontheotherhand,accidentsreportedwithinARIA,JSTandZEMAincludealsoaccidentswithlowerimpacts,basedoncriteriaotherthandamageseverity,e.g.,releasevolumeoreventduragion.EUMemberStatesmustreportmajoraccidentsatSevesosites(whichincludesallpetroleumrefineries)usingtheseveritycriteriainAnnexVIoftheDirective.Therefore,eMARSisgenerallyassociatedwithpredominantlyhigherconsequenceaccidentsreviewedinthisstudythatoccurredintheEU.11AccidentsineMARSoccurringinFranceandGermanywerealsorecordedinARIAandinZEMA(startingin1993),respectively.

    10Someaccidentswerereportedordescribedbymorethanonesourcesothenumberofsourcecitationsexceedsthenumberofaccidentsstudied.11SomeEUaccidentsreportedinotherdatabases(e.g.,ARIA,ZEMA)maybeassociatedwithhighimpactsinthisstudyeventhoughtheywerenotrequiredtobereportedtoeMARS.Thestudyusedanadditionalcriterion(productionloss)withrespecttoeMARStoevaluateseverity.Inaddition,thestudyusedcleanupandrestorationcostsratherthanareatoestimateenvironmentalimpacts.

  • 27

    Publicserviceinterruptionandpropertydamagewerethedominantconsequencesoverall.(SeeFigure9below.)Takingintoaccountproductionlossaswell,57%oftheaccidentsstudiedwereprojectedtohaveasignificant(veryhigh)economicimpact.Notably,sixteenOECD/EUaccidentsresultedinshutdownofentireproductionunitsorentirerefineriesforweeksormonths.Twelveaccidents(12%)reportedthattherefinerywaspartiallyorcompletelyshutdownforaperiod.(Notethatthisconsequenceislikelytobeunderreported.)AsnotedinTable6,estimatesofshutdowntimesrangedfrom10daystoapproximately240days.Inonereportashutdownofthehydrocracker,desulphurization,andhydrogenprocessingunitsforapproximately7months(~210days)resultedina30%reductioninproductiongeneratingabusinesslossestimatedatabout90,000,000fortherefinery[7].

    LEVEL OF IMPACT DEATH INJURY ENVIR

    PROP DAM

    PROD LOSS

    PUB SRVC

    VERY HIGH 5 4 8 32 13 41 HIGH 0 0 1 4 0 2 MEDIUM 2 0 1 3 2 5 LOW 0 2 16 13 6 31 NONE 0 0 0 1 0 8 Grand Total 7 6 26 53 21 87

    FIGURE9.LEVELOFCONSEQUENCEVS.TYPEOFCONSEQUENCE12

    12Theremaybemorethanonetypeofdominantconsequenceperevent.For8accidentsitappearedthatminimalornoconsequencesresulted.

  • 28

    Whilelessthanonethirdofaccidentsstudiedinvolveddeathandinjuries,potentialhealthimpactsremainhigh.Forexample,twoaccidentsaccountforthemajorityofdeathsandinjuriesrecordedfortheaccidentsstudied.AsshowninTable6onthenextpage,intotalthenumberofdeathsreported,onandoffsite,equals67,or0.68deathsperaccident.Thenumberofinjuriestotaled219or2.21peraccident.Evacuationnumberswerereportedlessfrequently,butintotal7500peoplewerereportedasevacuatedacrossthe99accidents.

    Althoughtherehavebeennodeathsandonly19injuriesrecordedincorrosionrelatedaccidentsinrefineriessince2000,potentialforcatastrophichumanhealtheffectsfromanytypeofchemicalaccidentinarefinerycannotbediscounted.Therehavebeenseveralfatalaccidents(relatedtoothercausesthancorrosion)occurringinrefineriesintheEUandOECDinthelast10years(andeveninthelasttwo),manyoftheminplantsseveraldecadesold.Thepotentialforacorrosionfailuretocauseahumandisasterappearstobeundiminished.

    Environmentaldamagewasreportedfornearlyathirdofaccidentsandmainlyassociatedwithtoxicreleasestowater.Sixoutof14accidentsinwhichcleanupandrestorationcostswereprovidedorcouldbecalculated,theenvironmentalcosts(usualsoilorsurfacewatercontamination)werefairlyhigh.Oneaccidentaloneaccountedforenvironmentalcleanupandrestorationcostsofapproximately624,000,000.Eightaccidentswereestimatedtocostunder50,000andthefiveremainingaccidentsrangedfrom300,000to32,000,000.(SeeTable6onthenextpage.)

  • 29

    TABLE6.CUMULATIVETOTALSOFCONSEQUENCEFIGURESFORALLACCIDENTS

    Category #ofaccidents Totalreported

    Totalfatalitiesreported 8 67

    Onsitefatalities 8 67

    Offsitefatalities 0 0

    Totalinjuriesreported 18 219

    Onsiteinjuries 16 193

    Offsiteinjuries 5 27

    Totalreportedpopulationevacuated 5 7450

    Totalmaterialcostsofaccidentsreported13 42 748,386,332

    Onsitepropertydamage 10 172,712,786

    Offsitepropertydamage 2 8,235,999

    Operatinglosses 6 165,164,253

    Estimatedenvironmentalrestorationandcleanupcosts 14 698,615,706

    Estimatedtimeoffullorpartialshutdown14 10 1036days

    13Thetotalmaterialcostsrepresentthesumofpropertydamage,onandoffsite,andoperatinglosses.Inmanycases,accidentreportsdidnotprovideabreakdownofthesecosts.Therefore,thetotalmaterialcostscategoryismuchgreaterthanifoneaddsupthetotalsofthesubcategories(e.g.,onsitepropertydamage).Thesubcategoriesrepresentonlythetotalfigureforcaseswherethisbreakdownwasprovided.

    14Temporaryshutdownwasmanagedasaconsequencein12casesbut2didnotspecifyatimeframe.

  • 30

    CHAPTER 2 ANALYSIS OF THE POTENTIAL CONTRIBUTION OF PROCESS AND EQUIPMENT CONDITIONS

    Corrosionrepresentsaparticularlyrelevantrisktopetroleumrefineriesbecauserefineriestypicallyhaveseveralhighriskfactorsbecauseofthetypeofsubstancesandprocessesinvolvedinrefineryoperations.Otherlocalconditionsmayalsocontributetoanaccelerationinthecorrosionrate,includingphysicallocationofequipmentandtheclimate.Moreover,certainoperatingconditionsinarefinery,bothnormalandabnormal,bytheirnatureareparticularlylikelytopresentfavourableopportunitiesforacorrosionfailuretoinitiateachainofeventsleadingtoamajoraccident.Theaccidentsreviewedinthisstudyconsistofseveralcaseswheretypicalconditionsconducivetoasignificantcorrosionfailureweresomehowoverlookedorifrecognized,sufficientmeasureswerenotappliedtoavoidanaccident.Thischaptersummarizesthestudyfindingsinthecontextoftheprocessandequipmentconditionswithknownriskpotential,highlightinginparticularthosewhichwereidentifiedasrelevantinanalysesofthecasesstudied.

    Corrosioncanappearaseitheruniformcorrosionorlocalizedcorrosion.Uniformcorrosionisalsoknownasgeneralcorrosionandistheclassicformofcorrosioninwhichtheentiresurfacearea,oralargefractionofthetotalarea,isaffectedbyageneralthinningofthemetal.Inchemicalprocessinguniformcorrosionisconsideredtheleastdangerousformofcorrosionbecauseitiseasilyvisiblelongbeforeitisdegradedenoughtofail.Nonetheless,uniformcorrosionmaysometimesbeacauseofaccidents,forexample,inpipelinesthatareinremotelocations,underground,orotherwise,notviewedfrequently,generalcorrosionmaycontinueforalongtimeundetected.

    Conversely,therearenumeroustypesoflocalizedcorrosionthatarefarmoredifficulttodetectwithouttargetedeffort.Thus,consequencesoflocalizedcorrosioncanbemoreseverethanuniformcorrosionasfailureoccurswithoutwarningandoftenafteronlyashortperiodofuseorexposure.Typically,localizedcorrosionoccursbetweenjoints(crevicecorrosion)orunderapaintcoatingorinsulation.Stresscorrosioncrackingandhydrogenassistedstresscorrosionarealsoformsoflocalizedcorrosion.Theyareoftengroupedtogetherwithhydrogenembrittlementandstressembrittlement,eventhoughthesearenotcorrosionphenomena,becausetheconditionsandtheresultingfailuremechanism(cracksinthemetal)areremarkablysimilar.Assuch,itisnotnecessarilyeasytodeterminewhichphenomenoncausedsuchafailurefollowinganaccident;hence,bynecessity,analysesofaccidentsinvolvingcorrosionrelatedfailuresgenerallyincludebothphenomena.

    Generallyspeakingrefineriesarevulnerabletocorrosionbothduetointernalprocessconditionsaswellasotherfactors.Inthemajorityofcasesstudiedforthisreport,itwaspossibletoidentifysomeofthecausalfactorsandhaveageneralknowledgeaboutwhichoneswerelikelytobedominant.Thefollowingsections,presenttheresultsoftheanalysisofcorrosionconditionsthatmayhavebeenresponsibleforequipmentfailureinthesecases.

  • 31

    2.1 Process conditions contributing to corrosion in study cases

    Refineriesaremostvulnerabletocorrosionduetointernalprocessconditions.Ironically,despitetheexistenceofseveralcorrosionreferencesandstandards,auniformapproachtodescribingandorganizingcorrosiontypesdoesnotexist.TheAmericanPetroleumInstituteRecommendedPractice571(API571)listsover25commoncorrosiondamagemechanismstoindustrialactivityplus11additiontypesthatarespecifictorefineries.[17]Inaddition,studiesofagingfacilitiesmayclassifycorrosioneffectsintodifferentgroupingsonthebasisofcharacteristicssuchasfailuremechanisms(e.g.,wallthinning,crackingandfracture,physicaldeformation),commoncausalfactors(e.g.,stressdrivendamage,metallurgical/environmentaldamage)orothercommonalities.Table7onpages33and34showsexamplesofsometypicalcorrosionphenomenainrefineriesasclassifiedinAPI571bydamagemechanism.15Thetableshowsonlyaportionofthevastnumberofcorrosionphenomenaidentified.

    In53casesprocessconditionswereidentifiedascontributingtothecorrosiveconditionsprecedingtheaccident.Themostcommonlycitedcontributorwasthesubstance(46).Flow(eitherhigh,low,turbulentorunequal)wascitedintencases,andtemperature(mostlyhigh,butinafewcases,low)andpressure(mostlyhigh)werecitedascontributorsin11and7casesrespectively.Ineightcasesotherexacerbatingprocessconditionswerepresent,includingoperationoutsidedesignparametersandvariationacrossprocesscycles.

    FIGURE10.PROCESSCONDITIONSCITEDASCONTRIBUTINGTOCORROSIVECONDITIONSACCIDENTSSTUDIED(53CASESINTOTAL)

    15Notethaterosion/corrosionisincludedbecauseitissostronglyassociatedwithcorrosion.However,severalothermechanicalandmetallurgicalfailuresnotlistedhereareacceleratedbycorrosionphenomena(e.g.,creepandstressrupture).

    N=99

  • 32

    TABLE7.EXAMPLESOFSTRESSCORROSIONCRACKINGDAMAGEMECHANISMSPROPOSEDBYAPI571[17]16

    DamageMechanism Velocity,TemperatureandpHInfluences

    SubstancesInvolved OtherInfluences ProcessesAffected

    MechanicalandMetallurgicalFailureMechanisms

    Erosioncorrosion Highvelocity,HighTemperature,High,LowpH

    Varied Particularlyoccursinpockets,elbowsandsimilarconfigurations.

    Affectsalltypesofequipmentexposedtomovingfluids,gasbornecatalyticparticles.

    UniformorLocalizedLossofThickness(Generic)

    Galvaniccorrosion Varied

    Atmosphericcorrosion Lowtemperature Cyclic:Fluctuationbetweenambientandtemperature.

    Coolingwatercorrosion Lowvelocity,Hightemperature

    Freshorsaltwater,potentialchlorides

    HighTemperatureCorrosion(Generic)

    Sulphidation Hightemperature Sulphurconcentration FCC,coker,vacuumdistillation,visbreakerandhydroprocessing

    HightemperatureH2/H2S Hightemperature H2 andH2S Desulphurizers,hydroprocessing,hydrotreaters,hydrocracking

    Nitriding Hightemperature Nitrogencompounds

    16Thistableisbynomeansacompletelist.ItonlyshowsanumberofexamplesofsometypicalrefinerycorrosionphenomenaclassifiedanddescribedinAPI571.Formoreinformationpleaseconsultthereferencedocument.

  • 33

    DamageMechanism Velocity,TemperatureandpHInfluences

    SubstancesInvolved Otherinfluences ProcessesAffected

    UniformorLocalizedThicknessPhenomena(RefinerySpecific)

    Aminecorrosion Highvelocity/temperature Ammonia,H2SandHCN Higherturbulence

    HCLcorrosion

    LowpH HCLwhenwaterisavailable(presenceofoxidizingagents)

    Crudeunit,hydroprocessingunit,catalyticreformingunits

    Hydrofluoricacidcorrosion

    Highvelocity/temperature HFconcentration+O2andsulphur,higherpresenceofwatertoHFconcentration

    Higherturbulence HFalykylation,deadlegs

    Naphthenicacidcorrosion Highvelocity/temperaturelowpH

    Naphthenicacid,sulphurcontent

    Twophaseflow(liquidandvapou),Highturbulence

    Crudeandvacuumheatertubesandlines,cokers,pipingsystems

    Phenolcarbolicacidcorrosion

    Hightemperature Sulphurandorganicacidsandverydilutephenolsolutions

    Sourwatercorrosion Hightemperature,lowpH HigherconcentrationsofH2S,Oxygen

    FCCandcokers

    Phosphoricacidcorrosion LowvelocityandpH Solidphosphoricacidcatalysts,freewater,contaminants

    Polymerizationunits

    EnvironmentallyAssisted(Refineries)

    Polythionicacidstresscorrosioncracking

    Sulphur acids&oxygen heatexchangertubes,hydroprocessing,crudeandcokerunits,FCCunits,boilers

    Chloridestresscorrosioncracking

    Hightemperature,pH>2 Chloridecontent,oxygen Cyclicfluxbetweenwetdryconditions,tensilestress

  • 34

    2.2 Analysis of cases in association with specific process conditions

    Thestudyalsoanalysedthecasestoidentifywhattypesofsubstances,processunitsandequipmentwereassociatedwiththeaccidents.AsnotedinSection2.1abovecertainsubstanceshavepropertiesthatmaycausethemtobecorrosiveagents.Table8onthenextpagehighlightssometypicalsubstancesthathavenotableinfluenceoncorrosionratesinvariousrefineriesdependingonthecrudeoilinputsandtypesofprocessespresentInaddition,differentprocessesandequipmenthavegreaterorlessertendenciestobeassociatedwithacorrosionrelatedincident.Forthesereasons,itwasconsideredinterestingtodeterminetheprevalenceofvariouscategoriesofsubstances,processesandequipmentinassociationwiththeaccidents.Althoughtrendsidentifiedcouldnotbeconsideredconclusive,becauseofthenonrepresentativenatureofthedata,itisstillworthnotinghowfrequentlysometypicalassociatedcausalfactorsappearinthedata.Afundamentalingredientofcorrosionisexposuretoacorrosiveagentviaarefineryprocess,thatis,asubstancethatundercertainprocessingconditionsactsuponthemetalandweakensit.Thesecorrosiveagentsareineffectoxidizingsubstances,whichmayincludewater,avarietyofacidcompoundsintroducedorgeneratedintheprocessaswellasthecrudeoilandfinalandinterimproducts,suchascokeandkerosene.AsnotedinTable7inthepreviouspages,somesubstanceshaveuniquecorrosionsignatures,thatis,thecorrosionproducedischaracterizedbyaparticularspecificvisualortexturalpattern,reactswithspecificmetalcompounds,andfrequentlyoccursinthesametypesoflocations.Figure11onpage36indicatesthefrequencywithwhichvarioustypesofsubstanceswerecitedintheaccidentreportsaspotentialagentswhichmayhaveacceleratedcorrosionratesultimatelyleadingtoequipmentfailure.Outof96cases,49(51%)identifiedtheprocesssubstancesthatweremostlikelytoberesponsibleforacceleratingthecorrosionrateoftheequipmentinvolved.

    Substancescitedmostcommonlyweresulphurandsulphurcompoundsandwater(14caseseach)followedbyhydrogensulphide(11cases),alongwithcrudeoil(8cases),asnotedinFigure11.ThesubstancesidentifiedinFigure11fromtheaccidentsstudiedarenormallypresentinthehighestvolumesandinavarietyofprocessesthroughoutarefinerysite.Carbonisanothercommoncorrosiveagentwithanimportantpresenceinrefineriesbutitwasnotmentionedasbeinginvolvedinanyoftheaccidentsstudiedforthisreport.

  • 35

    TABLE8.TYPICALPROCESSSUBSTANCESASSOCIATEDWITHREFINERYCORROSIONSubstance RoleandSignificance

    Crudeoil Crudeoilsconsistofmanydifferenthydrocarboncompoundsandvaryconsiderablydependingontheirsource.Crudeoilsrangeinconsistencyfromwatertotarlikesolids,andincolorfromcleartoblack.An"average"crudeoilcontainsabout84%carbon,14%hydrogen,1%3%sulphur,andlessthan1%eachofnitrogen,oxygen,metals,andsalts.[18]Therefiningindustrydifferentiatescrudeoilsinanumberofwaysinrelationtotheirpredominantproperties.Forexample,theycanbegenerallyclassifiedasparaffinic,naphthenic,oraromatic,basedonthepredominantproportionofsimilarhydrocarbonmolecules.Theyarealsooftenclassifiedassweetorsouronthebasisofsulphurcontent.Refinerycrudefeedstockoftenconsistsofmixturesoftwoormoredifferentcrudeoilsandthestockislargelyinfluencedbyregionaleconomics,inparticular,wheretheclosestsourcesofcrudeoilarelocated.

    Naphthenicacid

    Naphthenicacidisthegenericnameusedforalloftheorganicacidspresentincrudeoilsandthistypeofacidcanbehighlycorrosive.Naphthenicacidcorrosionoccursprimarilyinhighvelocityareasofcrudedistillationunitsinthe220Cto400C(430Fto750F)temperaturerange.Whencombinedwithhightemperatureandhighvelocity,evenverylowlevelsofnaphthenicacidmayresultinveryhighcorrosionrates.Thepresenceofnaphthenicacidandsulphurcompoundsconsiderablyincreasescorrosioninthehightemperaturepartsofthedistillationunits.[6]

    Sulphurcompounds

    Aftercarbonandhydrogen,sulphuristypicallythemostavailableelementonarefinerysite.Sulphursmaybepresentincrudeoilashydrogensulfide(H2S),assulphurcompounds,suchasmercaptans,sulphides,disulphides,thiophenes,andpolythionicacids,oraselementalsulphur.Infact,allhightemperaturesulphidationiscausedbyhydrogensulphurandtherateofcorrosionviasulphidationdependsonthedegreetowhichallthesulphurcompoundsinthecrudefeedstockdecomposetoH2S.OvertheyearstheaverageconcentrationofsulphurinthecrudefeedstockinOECDEUrefinerieshasbeenrisingforatleastadecadeandthistrendhascontributedtopotentialincreaseincorrosionrisk.Hence,regardlessofthetypesofprocesseshostedbytherefinery,mostrefineriesarevulnerableinvaryingdegreestooneormoreformofcorrosionassociatedwithsulphurthroughouttheplant.

    Hydrogen Hydrogenisplaysaparticularlyimportantroleintheremovalofimpurities,mostnotablyinthehydrotreatingandhydrocrackingprocesses.Theprocessingofheaviercrudeoilandstricterenvironmentalregulationshasincreasedtheuseofanddemandforhydrogeninrefineriesinrecentyears.Accordingtoonesource,asrecentlyas2008petroleumrefineriesaccountedforapproximately90%ofglobalhydrogenconsumption.[19]Atelevatedtemperaturesandpressures,hydrogencanhaveacorrosiveeffectoncarbonandlowalloysteels.Typicalcorrosionphenomenaresultingfrompipelineexposuretohydrogenunderintenseprocessconditionsincludesgalvaniccorrosion,hightemperaturehydrogenattack,chemicalreactionsofmetalwithacids,orwithotherchemicalsasinsulfidestresscracking.Althoughhydrogenembrittlementandblisteringarenotcorrosionmechanisms,theymaycreatesimilarweaknessesinthemetalleadingtomaterialfailure.Expertknowledgeisoftennecessarytodistinguishthespecifichydrogendamagemechanism(s)responsibleforaparticularequipmentfailure.

    Water Waterisassociatedwithcorrosionasaconductorofpotentiallycorrosiveagentsbutalsoasacatalystforgeneratingcorrosiveagents.Thepresenceofthechlorideioninthecrudeoil(frombrinywater),coolingwaterthathasbeenrecycledandpickedupvariousoxidizingagentsorthatthathasbeenpretreatedwithchlorine(e.g.,fromthepublicwatersupply).Thecorrosivityofthewaterthereforevariesgreatlydependingonitsorigin.Waterisalsoassociatedwiththeformationofcorrosiveagentssuchashydrochloricacidandacceleratingtheircorrosivebehavior.

    Hydrofluoricacid

    Theaqueoussolutionofhydrogenfluoride(hydrofluoricacid)isaweakacidasthehighstrengthofhydrogenfluorinebondsdonotallowcompletedissociationwithwater.Hydrofluoricacidisusedasthecatalystofrefineryalkylationwhichfacilitatesthereactionoflowolefins(typicallybutene)andisoparaffins(typicallyisobutane)toformhigherisoparaffins.

    Ammoniaandammoniacompounds

    Asmallpercentageofcrudeoilconsistsofnitrogencompoundsaswellasammoniachlorides.Theseproductsaregenerallyextractedandprocessedtoproduceammonia.Ammoniumchlorideandammoniumsulphatesarecorrosive,asgas,assolid,orinsolutionandareofparticularconcern(butnotlimitedto)distillation,hydrotreating,hydrocracking,catalyticreforming,andcatalyticcrackingprocesses.

    Carbonandcarbondioxide

    Carbondioxideisfoundintraceamountsincrudeoilandalsoincondensateandproducedwater.ItisreleasedfromcrudestypicallyproducedinCO2floodedfieldsandcrudesthatcontainahighcontentofnaphthenicacid.Whencombinedwithwater,carbondioxideproducescarbonicacid(H2CO2),whichishighlycorrosivewithsteelandothermetallurgies.Conditionsalsoexistinrefineries(hightemperatures,amplecarbonsources)thatareconducivetocarburizationanddecarburization.

  • 36

    FIGURE11.PROCESSRELATEDSUBSTANCESCITEDASCONTRIBUTINGTOCORROSIONFAILURES17

    Ammoniaandammoniacompounds,chlorineandchlorideions,andhydrogenwereeachcitedineightcasesasapotentiallydominantcorrosiveagentinfluencingtheequipmentfailure,mainlyinthedistillationandstorageunits.Hydrogenchloridewasreportedasthecorrosiveagentintwooftheaccidentsstudied.Onlyoneaccidentstudiedidentifiedhydrofluoricacidasacontributingfactor.Manyrefineriesdonotusehydrogenfluorideforalkylationandhence,thisriskisnotnecessarilypresentinallrefineries.Otherprocessrelatedsubstancescitedintheaccidentsincludedrecycledcontent,phosphoricacidandnitrogenandnitrogencompounds.

    17Oneaccidentcouldincludemorethanoneprocesssubstanceasacontributortocorrosion.Hence,thetotalfrequencyofallsubstancesaddedtogetherexceedsthenumberofcaseswherethisphenomenonwasnoted.Waterwasonlycitedasacontributingsubstanceifitwasintroducedintoorgeneratedbytheprocess.Wherewaterwasintroducedbyth