CROBM-1992-Mellonig-333-52

Embed Size (px)

Citation preview

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    1/40

    Critical Reviews in Oral Biology & Medicinehttp://cro.sagepub.com/

    Autogenous and Allogeneic Bone Grafts in Periodontal Therapy

    James T. MellonigCROBM1992 3: 333DOI: 10.1177/10454411920030040201

    The online version of this article can be found at:http://cro.sagepub.com/content/3/4/333

    Published by:

    http://www.sagepublications.com

    On behalf of:International and American Associations for Dental Research

    Additional services and information forCritical Reviews in Oral Biology & Medicine can be found at:

    Email Alerts: http://cro.sagepub.com/cgi/alerts

    Subscriptions: http://cro.sagepub.com/subscriptions

    Reprints:http://www.sagepub.com/journalsReprints.nav

    Permissions:http://www.sagepub.com/journalsPermissions.nav

    >> Version of Record - Jan 1, 1992

    What is This?

    CriticalReviews inOralBiologyandMedicine, 3(4):333-352 (1992)

    AutogenousandAllogeneic BoneGrafts in

    Periodontal TherapyJames T.Mellonig, D.D.S., M.S.

    DepartmentofPeriodontics,TheUniversityofTexas,HealthScienceCenter,SanAntonio,TX 78284

    ABSTRACT: This article is limited to a review ofbone autografts and allografts, as used inperiodontaltherapy. The various graft materials are discussed with respect to case reports, controlled clinical trials,

    and human histology.Otherreviewedareasarewoundhealingwithperiodontalbonegrafts, tissuebankingand

    freeze-dried boneallografts, and theuseofbonegrafts inguided tissue regeneration.

    KEY WORDS:Periodontal,boneautograft,bone allograft, tissuebanking, guided tissue regeneration.

    http://cro.sagepub.com/http://cro.sagepub.com/content/3/4/333http://www.sagepublications.com/http://cro.sagepub.com/cgi/alertshttp://cro.sagepub.com/subscriptionshttp://www.sagepub.com/journalsReprints.navhttp://www.sagepub.com/journalsReprints.navhttp://www.sagepub.com/journalsPermissions.navhttp://www.sagepub.com/journalsPermissions.navhttp://cro.sagepub.com/content/3/4/333.full.pdfhttp://cro.sagepub.com/content/3/4/333.full.pdfhttp://cro.sagepub.com/content/3/4/333.full.pdfhttp://cro.sagepub.com/content/3/4/333http://www.sagepublications.com/http://cro.sagepub.com/cgi/alertshttp://cro.sagepub.com/subscriptionshttp://www.sagepub.com/journalsReprints.navhttp://www.sagepub.com/journalsPermissions.navhttp://cro.sagepub.com/content/3/4/333.full.pdfhttp://cro.sagepub.com/
  • 8/22/2019 CROBM-1992-Mellonig-333-52

    2/40

    I. INTRODUCTION

    Bacterially inducedperiodontitis leads to the destruction of tooth-supporting tissues, culmi-

    nating in tooth loss. Disease reversal with re- generation of new bone, cementum, and perio-dontal ligament about a root surfacepreviously contaminatedbybacterialplaque istheultimate goalofperiodontal therapy.

    Bonegrafts,bothautogenousandallogeneic, are feltby some tobeessential if restoration of lostbone accompaniedby a functional attach- mentapparatusistobeachieved. "Bone grafting materials

    will enhance regeneration of anew at- tachment apparatus" (Bowers et aL, 1989c). "Osseousgrafting therapyhasbeenshowntobe clinically successful fortimeintervalsexceeding

    20yearswhenencompassed inacomprehensive careprogrambasedoneffectivedailyplaquecon- trolbythepatientandaprofessionally supervised periodontal maintenanceprogram" (Schallhorn,1980).

    Othersbelieve that the use ofbone grafts to enhance regeneration of theperiodontium is un-

    acceptable. ''Notoneofthehumanimplantstud- ieshasprovided the typeofexperimental model thatclearly demonstrates new attachment for-

    mation. Manyof theinvestigatorshavefailed toprovide controls, and none haveprovided the unequivocal histologic evidence of new attach- mentto previously diseased roots" (Gara and Adams, 1981). "From the standpoint of scien- tificdocumentation, the value (of regenerative procedures) is not clear. Spectacular results of "bonefill" in intrabonypockets havebeen re- ported with or without bone implantation" (Ramfjord,1984).

    Stillothersareconvinced thatbonegrafts are detrimental. "Ignorance of the contribution of thevarious tissue components in periodontal wound healing may explain the widespread use ofbonetransplants in the treatmentof intrabony pockets" (Karing et aL, 1984). "Since granu- lation tissuederived from bone has thepotential to induce root resorption and ankylosis, the ra- tionale offavoringbone growth with theuseof bonetransplantsishighlyquestionable" (Karring etaL, 1980).

    Clinicalcasereports,controlledclinicaltrials, andhumanhistologydocumenting theresultswith bonegrafts havebeen reviewedpreviously (Pfei- fer, 1969; Groff, 1976a and b; Ellegaard, 1976;Schallhorn, 1977; Schallhorn, 1980; Mellonig,1980; Wirthlin, 1981;Gara and Adams, 1981;

    1045-4411/92/$.50

    1992byCRCPress, Inc.

    333

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    3/40

    Bowers et ai, 1982; Pierce, 1982; Diaz-Arnold andZach, 1985;Gonsalez, 1986;Mellonig, 1986;Yazdi and Schonfeld, 1987; Egelberg, 1987; Krejci and Farah, 1987; Wiseman and Tene-

    baum, 1988;Hancock, 1989;Mellonig andBow- ers, 1990; Mellonig, 1991). Thepurpose of this

    article is to evaluate the literature in an attempt to clarify the current state of the art of regener-

    ation withperiodontalbonegraft therapy.

    II. TERMINOLOGY

    The definitions provided here are adapted from theAmerican Academy of Periodontology'sGlossary ofPeriodontic Terms.

    Regeneration is the reproduction or recon- stitution of a lost or injured part. As applied toperiodontics, itmeans the formation ofnewbone, cementum, and periodontal ligament on a pre-

    viously diseased root surface.

    At one time the terms regeneration and new attachment were synonymous. Today, new at-tachment means the reunion of connective tissue with a root surface that hasbeen deprived of itsperiodontal ligament. This reunion occursby the formation of new cementum with inserting col-

    lagen fibers. The formation of new bone is not necessarily a condition of new attachment. In

    addition, new attachment to a root surface may be mediated through epithelial adhesion (junc-

    tionalepithelium)orconnective tissueadhesion.

    Likewise, in thepast, the terms newattach- ment and reattachment were often used inter-changeably.Reattachmentmeanstoattachagain, thereunion ofconnective tissuewitharoot sur- faceonwhichviableperiodontal tissue ispresent. The area of reattachment is not affected bybac- terial

    contamination.

    Attachment apparatus refers to the cemen- tum, the alveolar bone, and the periodontalligament.

    Repair is the healing of a wound by tissue thatdoesnotfully restorethearchitectureorfunc-tionof thepart.

    Bonefill is thepresence of hard tissue in a periodontal osseous defect, as determined byclinical re-entry of the original defect site. This termdoesnot indicate thenatureofthehistologic

    attachment tothetooth. Theamountofbone fill

    is usually determined by surgical reentry procedures.

    Intraosseous (intrabony) refers to aperio- dontal defect withinbone.An autograft is a tissue graft (bone) trans- ferred from oneposition toanewposition in the

    same individual.

    An allograft (homograft) is a tissue graft (bone)between individuals of the same species butwith nonidentical genetic composition.

    Axenograft (heterograft) isatissuegraftbe- tween members of different species.

    III.PERIODONTAL BONEGRAFTS: HISTORICAL PERSPECTIVE

    The use ofbone grafts inperiodontal therapy canbe traced to the work of Hegedus (1923). He

    reported success in six casesby transplanting au- togenous bone from the tibia to thejaws to treat

    "advancedpyorrhea". Subsequent tothis report and for the next several decades, the evaluation of

    xenografts of various typesbecame themain focus of attention.

    Buebe and Silvers (1936) usedboiled cow bonepowder tosuccessfully repairintrabonyde- fects

    in humans. Studies in dogs (Beube, 1934 and 1942) suggested that surgically createdper- iodontal

    defects hadanaccelerated rateofhealing afterplacement ofboiled cowbonepowder, with boneand

    cementumbeingdepositedmorerapidly ingrafted defects.

    Ospurum is oxbone that is soaked inpo- tassiumhydroxidetoremovecollagen,inacetone to

    remove lipid,and inasaltsolution toremove proteins. Forsberg (1956) used this material in

    11human intrabonydefects. Oneshowedexcel- lent results, seven were satisfactory, and three were

    unsatisfactory.

    Anorganic bone is bovine bone from which the organic material is extracted by means of

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    4/40

    ethylenediamine and autoclaved. Melcher (1962) grafted 187bone defects in 163patients with a

    minimum follow-up of3years.Hefelt thatpro- tracted sequestration and slow resorbtion miti- gated

    against the use of anorganicbone. Patur andGlickman (1962) found similar results.

    Boplant isbovinebone that ispreparedby detergent extraction, chloroform methanol ex-

    334

    traction to reduce lipid content, sterilization in propiolactone, and freeze drying. In 77 intraos-

    seous defects in 56patients, Scopp etal (1966) reported pocket depth reduction of 3 mm at 6monthsandanadditionalmillimeterafter 1year. Older (1967) reportedgood results infour cases, fairresults in three, and unsuccessful results in two, as measuredbyprobing depth reduction and

    increasing radiographic density. The widespread clinical use that followed these reports resulted in

    routinerejection andfailure (Emmings,1974). Boplant was subsequently withdrawn from the market

    (Emmings, 1974).

    IV. CASE REPORTS AND CONTROLLED CLINICAL TRIALS WITH AUTOGENOUS AND

    ALLOGENEIC BONEGRAFTS

    Case reports document the clinical success or failure of a therapeuticprocedure,provide in-

    formationontechniquesensitivity,andmaystim- ulate research intothevalidity of theprocedure. They

    have scientific value only when a large number of cases are reported andbecome anec- dotalwhen published as isolated procedures. In addition, the repeatability of results, as reported by a

    significant number of investigators, lends credence toclinicalpredictability. Becauseearly bonegraft

    literature wasconcerned mainly with clinical feasibility and technique, comparisons withprocedures

    that have the same or similar objectives were not accomplished. It was only later that controlled

    clinical trials were felt tobe necessary, as several authors speculated that an equivalent amount of

    bonefill couldbeachieved irrespective of whether theprocedure included a bonegraft (Roslingetal.,1976;Ellegaardetal.,1971; Poison and Heijle, 1978). In addition, as judged by present-day standards, many of the

    early controlled studies were inadequately de- signedbecause thepatient did not serve as the unit

    ofcontrol(Hujoeletal., 1990).Yetacritical analysis of these studies revealed that in no in- stancewas the controlprocedure (open flap de- bridement)tobesuperiortothebonegraft (Table1).

    A.Autogenous BoneGrafts

    There are several types of autogenousbone

    grafts thathavebeenor arebeingused clinically. They include cortical bone chips, osseous coa-

    gulum,boneblend, intraoral and extraoral can- cellousbone, and marrow.

    1.CorticalBoneChips

    The impetus for the modern-day use ofper- iodontalbone grafts canbe traced to the workof

    Nabers and O'Leary (1965). They reported that shavingsofcorticalbone removedbyhandchis- els

    during osteoplasty and ostectomy from sites within the surgical area couldbe used success- fully to

    effect acoronal increase inboneheight. The intraosseousdefects sotreatedwereprimar- ily one- and

    two-walled and not felt by the au- thors tobe amenable to other methods of treat- ment.

    Subsequently, Nabers reported long-term success with 18- to 24-monthposttreatment clin- ical

    documentation for sixcases (Nabers, 1984). Although there is apaucity of information with respect

    tocorticalbonechips, amore recentpub- lication suggests that this type of graft is still in use and

    may result inbone fill with decreased probing depth (Langer et al, 1986). Cortical chips, due totheir relatively largeparticle size

    1,559.6 x 183fxm(ZayerandYukna, 1983)andpotentialforsequestration,werereplaced byautogenousosseouscoagulumandboneblend.

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    5/40

    2.OsseousCoagulumandBoneBlend

    Intra-oralbone, when obtained with high- or low-speed roundburs and mixed withblood,be-

    comes a coagulum (Robinson, 1969;Jacobs and Rosenberg, 1984). The rationale for the use of

    osseous coagulum is the belief that the smaller the particle size of the donor bone, the more

    certain its resorption and replacement with host bone (Robinson, 1969). It was subsequently

    demonstrated in monkeys that small boneparti- cles of 100 |xm could provide for earlier and

    greaterosteogenicactivity thanparticlestentimes as large (Rivault etal, 1971).The bone blend technique was designed to overcome some of the disadvantages of osseouscoagulum, including inability to aspirate during the collection process, unknown quantity and

    335

    TABLE1HumanControlledStudieswithBoneAutograftsandAllografts inthe

    Treatment of Periodontal Osseous Defects

    Graft material

    Methodof evaluation

    GraftMean iesults

    Control

    Ref.

    ICBMProbingand

    radiographsEqualdegreeofsuccessEllegaardand

    Loe(1971)

    OC-BB ECBM

    ICBM ICMB ICBM

    Reentry

    Probing

    Probingand

    X-rays Probingbone level

    2.98mm

    (7 1%bonefill)4.36mm

    (6 1% fill)

    3.07 mm (2-wall)

    2.35mm (1-wall)

    3.2mmgain attachment

    1.2 mmgain (significantonly fordeepest defects)

    0.66mm

    (22%fill)

    2.15 mm(2-wall)

    2.25mm(1-wall)

    2.0mmgain attachment0.8mm

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    6/40

    Froumetal. (1976)

    Carraroetal. (1976)

    Movinetal. (1982) Renvertetal. (1985)

    ICBM ECBM

    Reentry

    Nosignificant difference

    Graft improved resultsof treatmentPatur(1974)

    ICBMECBM CBMA ICBM CBMA

    CBMA CBMA

    FDBAHistology

    Histology

    Reentry and probingbone Reentry

    ReentryRegeneration

    consistently found

    Newboneand cementum

    4.83mmfill

    1.6 mm

    (54%bonefill)

    60%defects

    >50% bonefillLackofcemento-

    genesisand bone formation Little ifanynew cementumor bone

    0.22 mmfill

    0.8mm

    (33%bonefill)

    60%defects

    >50% fillHiattetal.

    (1978)

    Listgartenand Rosenberg (1979)Hiattetal.

    (1986) Schradand Tussing (1985) Altiereetal. (1979)FDBA

    HistologyNewattachmentgreater ingrafted

    sitesMoomaw

    (1978)

    FDBA

    FDBA

    +

    TCN DFDBAReentry

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    7/40

    X-ray1.9 mm(39%fill)

    2.8mm(61%fill)

    1.38 mmfill1.0 mm(31%fill)

    1.4 mm(36%fill)

    0.3mmfillMabryetal.

    (1985)

    Pearsonetal. (1981)DFDBA

    HistologyNodifference inhealingDragooand

    Kaldahl

    (1983)DFDBA

    Reentry2.57mm

    (65%bonefill)

    1.26 mm

    (38%fill)Mellonig (1984)

    DFDBA DFDBA

    Reentry

    Histology

    Nodifference betweendefects treated withandwithoutIDonegrafts Regeneration inbothgraftedand

    nongraftedsites inthesubmerged

    environment;greaterandmorefre- quent regeneration ingraftedsitesSantesetal. (1988) Bowersetal.

    (1989b)

    336

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    8/40

    DFDBA DFDBA

    Histology

    Reentry

    New bone,ce- mentum, PDL

    2.60 mm bonefi

    No new attach- ment apparatus

    0.38 mm bone fill

    Bowers etal. (1989c) Blumenthal and Steinberg

    (1990)

    OC-BB ICBM ECBM CBMA FDBA FDBA+ TCN DFDBA= Osseous coagulum-bone-blend autograft.

    = Intraoral cancellous bone and marrow autograft.

    = Extraoral (iliac) cancellous bone and marrow autograft.

    = Cancellous bone and marrow allograft.

    = Freeze-dried bone allograft.

    = Freeze-dried bone allograft plus tetracycline.

    = Decalcified freeze-dried bone allograft.

    = Significant difference infavor of bone grafting.

    qualityofcollectedbonefragments, and fluidityof thematerial (Diemetal, 1972).Boneblend is cortical or cancellousbone that isprocured with

    a trephine or rongeurs,placed in anamal- gamcapsule,andtriturated totheconsistencyofaslushyosseousmass.Theresultantparticlesize is in the range of 210 x 105 |xm (Zayer andYukna, 1983).Casereportsindicatethatintraos- seousdefects canbe successfully managed with this

    graft material (Robinson, 1969). A mean bone fill of 73% was obtained in 25 defects (Froumet al, 1975). Froum et al (1976) re- ported the osseous coagulum-bone-blend typeof graftsprovided 2.98 mm coronal growth of al- veolar bone, compared with 0.66 mm obtained when

    open flap debridement alonewasused.

    3.IntraoralCancellousBoneand

    Marrow

    Healing bony wounds, healing extraction sockets, edentulous ridges, mandibular retro-molar areas, and the maxillary tuberosity have all been used as sources of intraoral cancellousbone and marrow (Hiatt and Schallhorn, 1973; RossandCohen, 1968;Soehren andVonSwol,1979; Halliday, 1969; Rosenberg, 1971). Bone fill in all types of intraosseous and furcation de-fects has been demonstrated with this material (Hiatt and Schallhorn, 1973; Soehren and Von

    Swol, 1979;Halliday, 1969;Rosenberg, 1971). Ameanbone fill of3.65 mm, withup to 12mm insome lesions, and >50%bone fill on apre- dictable basis have been achieved (Hiatt and

    Schallhorn, 1973;Rosenberg, 1971).Inaneval-

    uation of 191 defects in 91 subjects, Ellegaard and Loe (1971) reported that grafts of intraoral

    cancellousbone and marrow did not appear to influence the clinical outcome when compared withsurgical curettage. Likewise, Renvert et al. (1985) found limited differences between grafted andnongrafted sites. They did, however, note significant differences in favor of grafted sites whenonly the deepest defects were compared and suggested that intraoral grafts be limited to treatingdeep lesions. Asdeterminedbyprobing depthmeasurements,Carrraroetal.(1976)found nodifferencein the responsebetweengrafted and nongrafted one-walled defects. Two-walled de- fects respondedmore favorably whengrafted than ungrafted controls. Also, Movin et al. (1982) reported a3.2-mmgain inclinicalattachmentin grafteddefectsand2.0mminnongrafted defects.

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    9/40

    4.Extra-oralCancellousBoneandMarrow

    It is generally agreed that the extraoral can- cellous bone and marrow offer the greatest po-tential fornewbonegrowth (Cushing, 1969;Sot- tosanti and Bierly, 1975; Amler, 1984). Thismaterial is obtained from either the anterior or theposterior iliac crest (Schallhorn, 1968;Dra- gooand Irwin, 1972). Schallhorn's reports of complete eradication of furcation and interprox- imalcraterdefects spurredinterestinthismaterial (Schallhorn, 1967 and 1968). Subsequently, ad- ditionalcase reports attested to the efficacy of337

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    10/40

    this approach when used by different clinicians to successfully treat furcations, dehiscences, and

    defects of varying osseous morphology (Schal- lhorn et al, 1970; Haggerty and Maeda, 1971;Patur, 1974;Seibert, 1970;Mattout andRoche,

    1984).Meanclinicalbonefillof3.33mmin182 defects and 4.36 mm in 7 defects has been re-

    ported (Froum et al, 1975; Schallhorn et al.,1970). Patur (1974) indicated that grafting im- proved the results of treatment. In addition, amean bone apposition of 2.54 mm in crestal or zero-wall defects has been documented (Schal-

    lhorn etal., 1970).

    B.BoneAllografts

    The need for an allogeneic source ofbone arosefrom theneedfor increaseddonormaterial and

    theproblemsassociatedwithautogenousbone procurement, namely, the morbidity accomp- anying a

    second surgical site and the need for a sufficient quantity of material to fill multiple de- fects

    (Mellonig, 1980 and 1991). Three typesof bone allografts are used clinically. Underminer- alized

    (mineralized), freeze-dried bone allograft (FDBA) and demineralized (decalcified), FDBA are used

    routinely; frozen iliac cancellousbone and marrow areused sparingly.

    1.IliacCancellousBoneandMarrowAllograft

    Theneed forextensivecross-matchingofdo- nor and recipient and the possibility of diseasetransfer restrict the use of iliac cancellous bone andmarrow allograft (Hiatt andSchallhorn, 1971;Schallhorn, 1977).Ameancoronalgainofbone amounting to 3.07 mm in26patients at reentry hasbeen reported (Schallhorn andHiatt, 1972). When compared with open flap debridement of osseousdefects, allogeneic grafts of cancellous bone and marrow resulted in greater defect fill,1.6 mm (54% defect fill) for grafted sites and0.8 mm (33% defect fill) for nongraft sites (Scharad and Tussing, 1985). When comparedwith tricalciumphosphate, frozen allogeneicbone implants led to greater bone apposition and re-

    duction inprobing depth (Strub etal, 1979).2.Freeze-DriedBoneAllograft

    Undemineralized FDBA was introduced to periodontal therapy in 1976 (Mellonig et al.,1976). Freeze drying removes approximately95% of the water from bone by a process of subli-

    mationinavacuum.Althoughfreezedryingkills allcells, themorphology, solubility, and chem- ical

    integrity of the original specimen are main- tained relatively intact (Friedlaender, 1988;Mel- lonig,

    1980 and 1991). Freeze drying also markedly reduces the antigenicity of aperiodon- tal bone

    allograft (Turner and Mellonig, 1981; Quattlebaum etal, 1988).Atnotimecouldany donor-specificanti-HLA antibodies be detected in any human recipient who received several FDBA grafts

    (Quattlebaum etal, 1988).FDBA is the only graft material that has undergoneextensivefield testing inthetreatment of

    adultperiodontitis(Mellonigetal, 1976;Sepe et al, 1978; Sanders et al, 1983; Mellonig,1991). Field test studiesprovide information as toefficacy andfeasibilitybutsuffer from lackof

    project control, erratic documentation, and equivocal investigator compliance. Eighty-nine

    clinicians implanted a total of 997 sites with FDBA alone and 524 sites with FDBAplusau-

    togenousbone(FDBA + A),(Mellonig, 1991). Sufficient data,asdeterminedbysurgicalreentry at 6

    months, were collected to determinepre- dictability in 329 sites treated with FDBA and

    176sites treated withFDBA + A. Completeor

    >50%bonefill wasobtained in220(67%)sites treated with FDBA and 137 (78%) of the sites

    treated with FDBA -I- A. Significant probing depth reduction occurred in 69 and 79% of the

    sites, respectively (Mellonig, 1991). It canbe concludedfrom thisandotherstudiesthatFDBA in

    combination with autogenousbone is more efficacious than FDBA alone, especially in the treatment

    of furcation invasion defects (Pearson andFreeman, 1980;Sandersetal, 1983).Altiere etal (1979)

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    11/40

    investigated FDBA sterilized with threeMradsof7-irradiation, whencomparedwith

    anongraftprocedurefordebridement intenpaired sites.Bothgraft andnongraft sitesdemonstrated>50%bone fill in60%of the sites.

    Acomposite graft ofFDBA and tetracycline in a 4:1 volume ratio has shown promise in the

    treatment of theosseous defects associated with338

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    12/40

    localizedjuvenileperiodontitis(YuknaandSepe,

    1981;Evans etal, 1989).Astudy that compared FDBAwith andwithout tetracycline toa nongraftprocedure in 12 juvenile periodontitis patients demonstrated significantly greater bone fill and

    resolution of osseous defects in grafted as op- posed tocontrol sites (Mabry etal, 1985).

    3.Decalcified Freeze-DriedBoneAllograft

    Urist and co-workers showed through nu- merousanimalexperimentsthatdemineralization of acortical bone graft induces new bone for- mation and greatly enhances its osteogenic po- tential

    (Urist, 1965;Urist etal, 1967;Urist and Dowell, 1968;Urist etal, 1968and 1975).The workofUristhasbeenconfirmedbyothers(Ko- skinen et al, 1972;Chalmers et al., 1975;Oi- karien andKorhonen, 1979; Mellonig et al.,1981a andb). Demineralization with hydrochlo- ric acid exposes the bone inductive proteins lo-

    cated in thebone matrix (Urist and Strates, 1970). Theseproteins are collectively calledbone mor-

    phogenetic protein (BMP) (Urist and Strates,

    1971). They are composed of agroup of acidic polypeptides that have been cloned and se-

    quenced (Urist et al., 1983a and b;Wozney et al., 1988). In addition, there appears to beho-mology among bone inductiveproteins between mammalian species (Sampath and Reddi, 1987).

    BMP stimulates the formation of new bone by osteoinduction (Urist et al, 1970). That is, thedemineralized graft induces host cells to differ- entiate intoosteoblasts (Harakas, 1984),whereas an

    undemineralized allograft is felt to function by osteoconduction as it affords a scaffold for new

    bone formation (Goldberg and Stevenson,

    1987). The sequence of bone induction with a demineralized bone graft isbelieved to follow a

    boneinductioncascade (Reddietal, 1987;Bow- ers and Reddi, 1991). At day 1, there is chem-otaxis of fibroblasts and cell attachment to the implanted demineralized bone matrix. Atday 5,

    there is continued cell proliferation and differ- entiation of chrondroblasts. At day 7, chrondro-

    cytes synthesize and secrete matrix. From days

    10to 12, there isvascular invasion, differentia- tion of osteoblasts andbone formation, andmi-

    neralization. By day 21 , there is bone marrow differentiation. This cascade for the induction of

    endochondral bone has been shown to occur in heterotopic sites of animals grafted with demi-

    neralizedbonematrix (Reddi etal., 1987). Ithas not been demonstrated to occur following im-plantation of this material in a periodontal os- seous defect. Amore likely scenario for theper-

    iodontal defect is the induction of new bone through the intermembranous route (Melloniget al,

    1981b).

    Libin et al (1975) were the first to report the use of cortical and cancellous decalcifiedFDBA (DFDBA) in humans. The three grafted sites responded with 4 to 10 mm of new bone

    formation. CorticalDFDBAwasevaluated in27 intraosseous periodontal defects and yielded a mean

    of 2.4 mm ofbone fill (Quintero et al,1982).Insixcases,Werbitt(1987)showedbone fillrangingfrom75to95%oftheoriginaldefect.

    Theresultsofaradiographicanalysisofcan- cellous DFDBA in 16patients demonstrated a mean

    bone fill of 1.38 mm, whereas sixcontrol sites showed 0.33 mm (Pearson et al, 1981). Thereasonfor thismeagerbone fill after agraft ofcancellousDFDBAmaylieinthefact thatthe bone inductive

    proteins are located in the bone matrix(UristandIwata, 1973).Becausethemass ofbone matrix is

    lower in cancellous bone than that incorticalbone, theyieldofnewbonecould be expected to be

    lower with cancellous than cortical bone (Urist et al, 1970). Another con- trolled study in 47periodontal osseous defects demonstrated a meanbone fill of 2.6 mm (65% defect fill) in sites

    treated with cortical DFDBA in comparison with 1.3 mm (38%defect fill) in sites treated without

    DFDBA.

    Rummelhart et al (1989) clinically com- pared DFDBA and FDBA in 11paired sites.Nostatistical difference inprobing depth reduction, clinical attachment gain, or bone fill was re-

    ported, which might havebeen reflective of in- sufficient inductiveboneprotein in DFDBA or the

    types and depths of thegrafted lesions. Ad- ditional factors might also have influenced the decisionto use a mineralized or demineralized preparation. Theprocessing ofbothpreparations included

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    13/40

    multiple immersions in absolute ethanol. The DFDBA underwent further processing that included

    immersion in 0.6N HC1 (Mellonig,

    339

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    14/40

    1991). Each of these chemical processes was thought to inactivate HIV (Martin et al, 1985;Resnick etal, 1986;Quinnan etal, 1986).

    4.Allografts ComparedwithAlloplasts

    Both FDBA and DFDBA havebeen com- paredtoporousparticulatehydroxyapatite, asyn- thetic

    or alloplastic bone graft material. Studies byBurnettetal. (1989)andBowenetal (1989) suggestthat there is little difference inposttreat- ment clinical parameters between allograft and the

    hydroxyapatite graft sites. Another study sug- gests a slight difference in favor of the alloplast(Oreamuno et al, 1990). Histologically, grafts of DFDBA heal with regeneration of theperio-dontium (Bowers etal., 1989c), whereas grafts of syntheticbonehealbyrepair (Baldocket al.,1985; Froum et al, 1982; Stahl et al, 1986; Kenney et al, 1986; Carranza et al, 1987).Therefore, thechoiceofmaterial willdepend in part on theobjectives of the clinician.

    V.WOUNDHEALINGWITH PERIODONTAL BONEGRAFTS

    The objectives of the clinician who usesbone grafts are (1)probing depth reduction; (2) clinical

    attachment gain; (3)bone fill of the osseous de- fect; and (4) regeneration of new bone, cemen-

    tum, andperiodontal ligament (Schallhorn, 1977). Case reports and controlled clinical trialsprovidevaluable information with respect to the first three objectives. They do not reveal the type of wound

    healing adjacent to thepostgrafting root surface. Therefore, histologic analysis of thenatureof theattachmentapparatus isneeded todetermine true regeneration of theperiodontium.

    A.Animal Studies

    Histologic evaluations in animals are of in- terestbecause they indicate thepotentialofagraftmaterial toproduce favorable results. Ina review of the studies performed over the past severaldecadescomparinggraftandnongraftprocedures inartificially created defects inanimals,75%of

    the studies indicated that more favorable results mightbe obtained following theplacement of abonegraft(Table2).Noneofthenongraftcontrol sites were found tobe superior tografted sites. Theresults of animal experimentation mustbe viewed with caution, and the tendency to ex- trapolate

    this information directly to the human situation shouldbeduly tempered.

    B.Human Studies

    Only in clinical trials can the true potential of any graft material to regenerate theperiodon-tium be analyzed. To date, approximately 159 human periodontal bone grafts have been re-moved enbloc andprocessed for histologic eval- uation (Dragoo and Sullivan, 1973; Ross and

    Cohen, 1968; Nabers et al, 1972; (Hiatt and Schallhorn, 1973; Hawley and Miller, 1973;Froumetal., 1975;Moomaw, 1978;Hiattet al,1978;Listgarten and Rosenberg, 1979;Moskow et al, 1979; Langer et al, 1981;Evans, 1981;Froum et al, 1983;Dragoo and Kaldahl, 1983; Bowers et al, 1982;Bowers, 1989a, b, and c).Most human histologic evaluations have been criticizedbecause they failed to adequately dem-onstrate that the adjacent root surface wasbio- logicallycontaminated anddevoidof itsconnec- tivetissueattachment.Forexample,biopsieswere commonly evaluated from the most apical level of rootplaning (Hawley and Miller, 1975;Hiatt etal, 1978;Moskow etal, 1978),from anotch placed incementum withaburatthebaseofthe defect (Nabers et al, 1972; Moomaw, 1978; Listgarten andRosenberg, 1979), from anotch placed in cementum at the level of the alveolar crest (Dragoo andSullivan, 1973), or from a naturally occurring notch in the root surface (Ross and Cohen, 1968;

    Evans, 1981). All of these histologic reference points, although highly suggestive of a rootexposed to theoralbacterial contamination, didnotprove thattheroot surface had lost its connective

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    15/40

    tissue attachment (perio- dontal ligament). Therefore, reattachment rather than regeneration mighthavebeentheresult.Us- ing the above cited examples for a histologic reference point, new bonecementum and per- iodontal ligament havebeen observed following grafts of corticalbone chips(Nabersetal, 1972),

    340

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    16/40

    TABLE2

    AnimalControlled HistologicStudieswithBoneAutograftsand

    Allografts intheTreatmentofPeriodontalOsseous Defects

    Graft

    material

    OC

    oc

    ICBM

    ICBM

    ICBM ECBM

    ICBM ECBM

    ICBM

    ICBM ICBM

    ICBM ICBM

    Defecttype

    Animal created

    4M Intraosseous

    4M 2-and3-Wall

    10D Intraosseous

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    17/40

    10D Furcation

    6M Furcation

    12M 3-Wall

    19M Furcation

    6D Furcation

    8M Intraosseous

    10D Furcation

    6D Furcation

    Results

    Asoonerandgreater osteogenic activity withsmallparticle bonegraft than controls

    Inearlystages,grafted defects demonstrated amoreadvanced

    levelof regeneration thancontrolsGrafteddefectsmaybe eliminatedby induc- tionofbone;control defectshealbyadap- tationofepithelial

    attachment

    Acoronal increaseof2 to3mmofbonewith graft

    Nonewbonewith control

    ICBMandfrozen ECBMyieldeda higherfrequencyof regenerationthan freshECBMand controls Regeneration

    isob-

    tainedwithequalsuc-

    cesswithandwithout graft

    Newbone indeepest portionofdefectwith graft

    Nonewbonewithout graft

    Osseousgraftsdidnot improve results

    Bothgraftandcontrol healedwithanepithe- lialliningalongthe

    rootsurfacewithno newconnective tissue Flapsupportbythe bonegraftmayfacili- tate regeneration Abundantnewbone, newcementum,and noankylosiswith

    graft;controldefects

    filledwithconnective tissueandnew cementum

    Ref.

    Rivaultetal. (1971)

    Coverlyetal. (1975)

    Yuktanandana

    (1959)

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    18/40

    Pattersonetal. (1967)

    Ellegaardetal. (1973)

    Elegaardetal. (1974)

    Ellegaardetal. (1975)

    Nilveusetal. (1978) Catonetal. (1980)

    Klingeetal. (1985)

    Passaneziet al. (1989)

    341

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    19/40

    TABLE2 (continued)AnimalControlled HistologicStudieswithBoneAutograftsand

    Allografts intheTreatment of PeriodontalOsseous Defects

    Graft

    material

    CBMA

    CBMA FDBA

    FDBA DFDBA

    DBP

    DFDBA

    DFDD

    ICBM DFDBA

    Animal

    12D

    4M

    4D

    4M

    27D

    8D

    4D

    6D

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    20/40

    3DDefect type

    created

    Intraosseous

    2-Wall

    2-Wall

    Intraosseous

    Intraosseous

    Intraosseous

    Furcation

    2-Wall

    3-Wall

    Furcation

    Results

    Nosignificant differ- ence inhealingbe- tweengraftand controlAllograft induceda

    morerapidosseous repairthancontrols Convincingevidenceof acceptabilityofgraft; noadvantageordis-

    advantage inusing graft

    Significantly morere-

    generationwithgraft thancontrolGraftwas replacedby

    newboneandmar- row;lessnewboneat controlsites

    DBPsuccessfullyin-

    ducednewbone;no differenceswereseen betweentestand control

    Grafthealedbyregen- eration;controlhealed bya longjunctional epitheliumComplete regeneration

    of lostattachmentap- paratuswithgraft;

    longjunctionalepithe- liumtobaseofdefect withcontrols

    Graftsshowedmore pronounced regenera- tionandhigherperio- dontalattachment

    thandidcontrols

    Ref.

    Hiatt(1970)

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    21/40

    Poulsometal. (1976)

    Hurt (1969)

    Mellonig

    (1981)

    Narangand

    Wells (1972)

    Sonisetal. (1985)

    Blumenthalet al. (1986)

    Waaletal. (1988)

    Wadaetal. (1989)

    OC = Osseouscoagulum autograft.

    ICBM = Intraoralcancellousboneandmarrowautograft.

    ECBM = Extraoral (iliac)cancellous boneandmarrow autograft.

    CBMA = Cancellous boneandmarrow allograft.

    FDBA = Freeze-driedboneallograft.

    DFDBA = Decalcified freeze-dried bone allograft.

    DFDDA = Decalcifiedfreeze-drieddentinallograft.

    DBP = Demineralizedbonepowder.

    D = Dog.M = Monkey.

    342

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    22/40

    osseous coagulum (Evans, 1981),bone blend (Froum et al, 1975), intraoral cancellousbone andmarrow (Ross and Cohen, 1968; Hiatt and Schallhorn, 1973;Hawley andMiller, 1975;Hiatt et al.,1978; Listgarten and Rosenberg, 1979; Langer et al., 1981), iliac cancellous bone and marrowautograft (Dragoo and Sullivan, 1973; Hiatt et al., 1978), iliac cancellous bone and marrowallograft (Hiatt et al., 1979; Listgarten and Rosenberg, 1981), and undemineralized FDBA(Moomaw, 1978).

    Currently, only a notch placed in the most apical level of calculus on the root surface is

    considered scientifically validproof of regener- ation of an attachment apparatus (Cole et al.,1980;Froum etal, 1983;Dragoo and Kaldahl,1983;Bowers etal., 1989a,b, and c). Using this criterion, newbone, cementum, andperiodontalligamenthavebeen identified followinggraftsof osseous coagulum-bone blend (Froum et al.,1983)andDFDBA(Bowersetal, 1989a,b,and c).

    C.Bone Induction

    It hasbeen stated that there is "little indi- cation that (periodontalbone) grafts of cortical or

    cancellousbone haveany inductive effect on the formation of newbone. Also, there is little reason

    tobelieve that suchbone grafts would stimulateconnectivetissueattachmenttotheroot surface"

    (Egelberg, 1987). This concept was evaluated in a studyby Bowers etal. (1989b). They comparedthe healing of intraosseous de- fects withandwithout theplacementofDFDBA in defects about teeth

    that received coronalec- tomyandwerecompletelycoveredbysofttissue. The most apical level of

    calculus on the root servedasahistologic referencepointtomeasure periodontal regeneration in 30

    grafted and 19 nongrafted defects. Results indicated that in the submerged environment, regeneration

    waspos- sible with and without theplacement of abone graft. However, morenewattachment

    apparatus formed in grafted than nongrafted sites. In ad- dition,newbone,newcementum,and

    periodon- tal ligament occurred more frequently in grafted thannongrafted sites.Theseresultsstrongly

    sug-

    gest thatbonegrafts dohavean inductive effect on theperiodontium.

    D.Healing Sequence

    The healing sequence of an autogenous per- iodontal bone graft has been identified as initi-

    ation of newbone formation at 7 d, cemento- genesisat21d, andanewperiodontal ligament at 3

    months (Dragoo, 1972). By 8 months, the graft shouldbe incorporated into hostbone with

    functionally orientedfiberscoursingbetweenbone and cementum. Maturation may take as longas

    2 years (Dragoo, 1972; Dragoo and Sullivan,

    1973).

    E.RootResorptionandAnkylosis

    Becausegranulation tissuederived frombone may induce root resorption andankylosis, theuse of

    bone grafts hasbeen questioned (Karring et al., 1980). Root resorption is reported as a se- quela

    of osseous grafting in humansbut appears to be a significant disadvantage only with fresh iliac

    cancellousbone and marrow (Schallhorn et al., 1970; Schallhorn, 1972; Dragoo and Sulli- van,

    1973;Hoffman and Flanagan, 1974;Hiatt etal., 1978).Clinicalevidenceofrootresorption wasnotedin 7of 250 sites (3%inone reported series (DragooandSullivan, 1973)and 16of275 sites (5%) in

    another (Hiattetal., 1978).Freez- ingseemstoattenuate thisproblem (Schallhorn,1972). Recently, Bowers and co-workers re- portedonaseriesof62casesgraftedwithDFDBA and

    removed enbloc at6months for histologic observations (Bowers etal., 1989b and c). Ex- tensiveroot resorption was not observed. Be- cause this phenomenon has been observed only withfresh

    material,viablemarrowcellsmayplay an etiologic role (Ellegaard, 1976). The most probable causeof root resorption is poor post- surgical plaque control with subsequent chronic gingival

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    23/40

    inflammation (Dragoo and Sullivan,

    1973). This hypothesis hasbeen strengthenedby histologic findings that connective tissue in re-

    sorptivedefects alwayscontainedaninfiltrateof inflammatory cells (Ellegaard, 1976). Root re-

    343

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    24/40

    sorption andankylosis followingbonegrafts are moreprevalent in animal models (Ellegaard et al.,

    1973 and 1976; Karring et al, 1980 and1984;Nyman et al, 1980) than they are in hu- mans and maybe a function of the healingpo-tential animalmodel (Sonisetal, 1985;Aukhil etal, 1990).

    Apical migration ofjunction epithelium be- tween the alveolarbone and the root surface hasbeen offered as anexplanation of why resorption only infrequently takes place after regeneration

    attemptswithbonegrafts (ListgartenandRosen- berg, 1979;Karringetal, 1980;CatonandZan- der,1976;Moskow etal, 1979).Thejunctional epithelium was specifically located in74human biopsieswhere bone grafting was performed (Bowersetal, 1982).Thejunctional epithelium was locatedapical to the alveolar crest in 14 (19%)sites.Inanadditional32graft sites,Bow- ersetal (1989c)showed that grafted sites con- sistentlyformedanewattachmentapparatus.The junctional epithelium

    proliferated apically, but the epithelium was rarely observed apical to the level of active bone

    formation. Junctional epi- thelium was never observed beyond the levelof newcementumformation(Bowersetal, 1989c). Authors reporting epithelial migration between the grafted site and the rootsurface also report chronic inflammatory cells adjacent to the epi- thelium (Hiatt etal, 1978)orextending into the marrow spaces (Moskow et al, 1979). Poor plaque control is therefore alikely explanation asproliferation of epithelium is more extensive and rapid in surgical sites with

    no postoperative plaque control than in areas where bacterial de- posits have been removed(Yumet and Poison,1985).

    VI.TISSUE BANKINGANDFDBA

    Thepossibility ofdisease transfer withbone allografts is unlikely if the material isprocured andprocessedbyusingestablished tissuebanking protocols (Friedlaender, 1987; American Asso- ciationof Tissue Banks, 1984). If exclusionary techniques such asmedical and social screening, antibodytesting, direct antigen tests, other ser- ologic tests,bacterial culturing, autopsy, and fol- low-upstudiesofgrafts from thesamedonorare

    used, the possibility of disease transfer are ap- proximately one in2million (Bucketal, 1989).Freezing thebone allograft reduces the risk to onein8million(Bucketal, 1990).Anestimated40,000periodontal grafts of mineralized andde- mineralized bone are performed annually (Mel-lonig, 1991).There areno reported casesofdis- ease transfer with processed (treatment withvirucidal agents and demineralization in hydro- chloric acid) FDBA.

    Concernswithdisease transfer have led some tissue banks to sterilize the bone allograft with

    irradiation or ethylene oxide. Irradiation of abone allograft is reported both to markedly attenuate(Buring, 1967;Towle et al, 1987;Munting et al., 1988) and not to affect (Wientroub et al,1988)boneinduction.Furthermore,thecurrently useddoseof 1.5Mradwillnotreliably inactivate HIV

    inboneallografts withanacceptable safety margin (Conway et al, 1990). There is little questionthatethyleneoxide sterilization renders

    abone allograft noninfectious (Eastlund et al,1989).However, likeirradiation,ethyleneoxide may interfere withbone induction (Zislis et al,1989). Residual levels of ethylene oxide in the graft have been shown tobe toxic to fibroblastsand cause morphologic changes that may ormay not be reversible (Kudryk, 1990). Others have

    found ethylene oxide sterilization tobe accept- ableand safe (Proloetal, 1980).Theprocessing of abone allograft for dental usewill usually include the following steps (Mel-

    lonig, 1991):

    1. Corticalbone is harvested in a sterile man- nerwithin 12hof death of thedonor. Cor- ticalbone is less antigenic than cancellous bone (Friedlaender et al, 1976) and has a higherconcentrationofbone-inductivepro- teins (UristandDowell, 1968;Uristet al,1970).

    2. The bone is rough cut to 0.5 to 5 cm and immersed in 100% ethanol for 1h. Viral

    infectivity is undetectable within 1min of treatment (Resnick et al, 1986), and the ethanolcompletelypenetrates through the corticalbone (Prewitt etal, 1991).

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    25/40

    3. Thebone isfrozen. Freezingdecreases the riskofdiseasetransfer (Bucketal, 1990).4. The corticalbone isground toafinalpar-

    344

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    26/40

    tide sizeofapproximately 250to800

    Particle sizes within this range havebeen shown topromote osteogenesis, whereasa particle

    sizebelow 125 |xminducesamac- rophage response (Mellonig and Levey,

    1984).

    5. The graft isagain immersed inethanol.

    6. Thebonemayormaynotbedimineralized.

    7. The allograft is freeze dried. Freeze drying permits long-term storage and reduces an-

    tigenicity (Turner and Mellonig, 1981; Quattlebaum etal, 1988).

    VII.GUIDEDTISSUE REGENERATION AND BONE GRAFTS

    Case reports and controlled clinical trials have indicated that theplacement of aphysicalbarrier

    between the gingival flap and the root surface enhancesthepotentialforwoundhealing(Nyman et

    al, 1982;Beckeretal, 1987and 1988;Pon- toriero et al, 1988 and 1989; Lekovic et al,1989;Caffesse etal, 1990;Gagerand Schultz,1991). Thisprocedure retards apical migration of epithelium, excludes gingival connective tis- sue

    cells from the wound, and favors healing from the periodontal ligament cells (Gottlow et al.,

    1986). The histologic result is new attach- ment (Gottlow etal, 1986;Beckeretal, 1987; Nymanetal, 1987).

    Arecent study indicates that theperiodontal ligamentcellsmigrateonlyashortdistanceand, atthesamerate,withandwithouttheplacement ofaphysicalbarrier (AukhilandIglhaut, 1988). Therefore,

    the critical role of aphysicalbarrier maybe thatof spacecreation toallow migrating cells sufficienttime to undergo amplifying cell divisionandpopulate therootsurface (Aukhilet al., 1990). In

    addition, cellsfrom thebonemay play a role in guided tissue regeneration. Cells from the endostealspaces of alveolarbone can synthesizecementumlike tissueandmaymigrate fromboneintothe

    periodontalligament(Melcheretal, 1986).

    A number of case reports suggest that the combination of anosseous graft and thephysicalbarrier enhances bone fill and promotes more favorable results (Schallhorn and McClain, 1988).Anderegg et al (1991) compared 15pairs of

    furcation defects in15patientstreatedbyDFDBA plusanexpandedpolytetrafluoroethylene (Gore- Tex

    Periodontal Material, W. L. Gore &Asso- ciates, Flagstaff, AZ)physicalbarrier orby a physical

    barrieralone.Theyfoundbothhorizon- tal and verticalbone fill tobe more favorable with theuse

    of thegraft plusbarrier. However, Garrett et al. (1988), using a graft of DFDBA andduramatersheetsbetween the replaced sur- gical flaps and the tooth surfaces, found limited improvementofthe

    treated defects overpretreat- ment levels. Stahl and Froum (1991) have most recently shown

    cementogenesis on teeth treated by osseous allograft and an expanded polytetra- fluoroethylene

    membrane. Osseous remodeling and crestal osteogenesis were seen in association with

    cementogenesis. New attachment was his- tologically present within two of four calculus notches

    in this sample.

    VIII.FUTURE DIRECTIONS

    Althoughbone grafts havebeen shown tobe efficacious for the treatment of periodontal os-seous lesions, the reconstruction appears tobe limited toameanbonefill ofapproximately 3.0 mm

    irrespectiveofthetypeofbonegraft material (Table 1). Because the ultimate goal of perio- dontal

    therapy is to reverse the disease process and completely regenerate theperiodontium, ad- ditional

    stimuli toenhance theregenerativepro- cessclearlyareneeded. Polypeptidegrowth fac- tors, apotent

    class of natural biologic response modifiers, may be the answer. Factors such as osteogenin

    (BowersandReddi,1991)orthecom- bination ofplatelet-derived growth factor (PDGF) andinsulinlike

    growthfactor(IGF)(Lynchet al,1989) may havepotential. Other growth factors such as transforming growth factor- (3 and basic

    fibroblast growth factor may also have aplace (Graves and Cochran, 1990). However, the use of

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    27/40

    growth factors (GFs) toaugmentperiodontal regeneration alsoposesmanyquestions, suchas

    1. What is theproper doseof GFs?2. WhatisthebestbiologiccarrierfortheGF?3. When should the GFbe released into the healing cascade?

    345

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    28/40

    4. What are thepossible local and systemic sideeffects of GFs?

    5. Cantheeffects oftheGFsbelimited tothe local environment?

    6. Can results obtained with GFs in animal model systemsbeextrapolated tohumans?

    7. What isthemechanismofactionofGFsin theperiodontal environment?

    8. What is the most effective GF in theper- iodontal environment?

    IX. CONCLUSIONS

    1. Numerouscasereportsandcontrolledclin- ical studies indicate that autogenousbone grafts canbe used successfully inperio- dontal therapy.

    2. Multiple histologic reports suggest that re- generation of a new attachment apparatus ispossible withdifferent typesof autogen- ousbone grafts.

    3. Root resorption and ankylosis may be ob- served only following grafts of fresh iliaccancellousbone and marrow.

    4. Iliaccancellousboneandmarrowareagraft of high osteogenicpotential.

    5. BothFDBA andDFDBAhavebeen shown tobe clinically effective in the reconstruc- tion ofperiodontalbone defects.

    6. Sites implanted with DFDBA demonstrate moreprobing depth reduction, clinical at- tachmentgain, andbone fill than similar defects that arenot grafted.

    7. Regeneration of newbone, cementum, and periodontal ligament is a frequent finding withgrafts of DFDBA.

    8. Boneformation maybeenhanced ifguided tissueregeneration attemptsareaugmented withbonegrafts.

    9. Bone allografts and alloplasts offer similar advantages with respect tobone fill. Re- generationisgenerally theresultafter grafts ofDFDBA,whereasrepairistheresult after grafts of syntheticbone.

    10. Dental bone allografts are safe for human use if proper exclusionary techniques andprocessing are employed.

    REFERENCES

    Altiere, E., C. Reeve, and P. Sheridan: Lyophilized Bone Allografts inPeriodontal Osseous Defects.J.Periodon- toL50:510-519(1979).

    AmericanAssociationofTissueBanks:StandardsforTissue Banking. Arlington, Virginia, American Association of Tissue

    Banks (1984).

    Amler, M. H.: The Effectiveness of Regenerating Versus Mature Marrow in Physiologic Autogenous Transplants. J.

    PeriodontoL 55:268-272 (1984).Anderegg, C. R., S. J. Martin, J. L. Gray, J. T. Mellonig, and M. E. Gher: Clinical Evaluation of The Use of

    Decalcified Freeze-Dried Bone Allograft with Guided Tissue Regeneration in the Treatment of Molar Furcation

    Invasions.J.PeriodontoL 62:264-268 (1991).Aukhil, I. andJ. Iglhaut:PeriodontalLigamentCellKinetics Following Experimental Regenerative Procedures. J. Clin.

    PeriodontoL 15:374-382 (1988).Aukhil, I., K. Nishimura, and W. Fernyhough: Experi- mental Regeneration of the Periodontium. OralBiol. OralMed.1:101-115 (1990).

    Baldock, W., L. Hutchens, W. McFall, and D. Simpson: AnEvaluation ofTricalcium Phosphate Implants inHu- man

    Periodontal Osseous Defects in Two Patients.J. PeriodontoL 56:1-7 (1985).Barnett,J., J.Mellonig,H.Towle,andJ.Gran:Comparison of Freeze-Dried Bone Allograft and Porous Hydroxy- apatite in

    Human Periodontal Defects.J.PeriodontoL60:231-237(1989).

    Becker,W., B.Becker,C.Berg,J.Prichard,R. Caffessee, and E. Rosenberg:New Attachment After Treatment withRoot

    IsolationProcedures:Report forTreatedClass IIIandClassIIFurcationsandVerticalOsseousDefects.Int.J.PeriodonticsRestorativeDent. 8(3):9-24(1988).

    Becker, W., B. Becker, J. Prichard, R. Caffessee, E. Ro- senberg, and J. Gian-Grasso: Root Isolation for New

    Attachment Procedures A Surgical and Suturing Method: Three Case Reports.J.PeriodontoL 58:819-826 (1987).

    Beube, F. E.: Observations on the formation cementum, periodontal membrane and bone, 20 months postoper- tively,

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    29/40

    withtheuseofboiledcowbonepowder.J.Dent. Res. 21:298-299 (1942).Beube, F. E. and H. F. Silvers: Influence of Devitalized HeterogenousBone-PowderonRegenerationofAlveolar and

    Maxillary Bone of Dogs.J.Dent.Res. 14:15-19 (1934).Beube, F. E. and H. F. Silvers: Further Studies on Bone Regeneration with theUseofBoiled Heterogenous Bone. J.

    PeriodontoL 7:17-21 (1936).Blumenthal,N. , T. Sabe, and E. Barrington: Healing Re- sponses to Grafting of Combined Collagen-Decalcified Bone in

    Periodontal Defects in Dogs.J.PeriodontoL57:84-90 (1986).

    Blumenthal, N. and J. Steinberg: The Use of Collagen

    Membrane Barriers inConjunction with Combined De-

    346

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    30/40

    mineralized Bone-Collagen Gel Implants inHuman In- trabony Defects.J.Periodontol. 61:319-327 (1990). Bowen,J.,J.Mellonig,J.Gray,andH.Towle:Comparison of Decalcified Freeze-Dried BoneAllograft and Porous Particulate

    Hydroxyapatite in Human Periodontal Os- seous Defects.J.Periodontol. 60:647-654 (1989).Bowers, G., B. Chadroff, R. Carnevale, J. Mellonig, R.

    Corio, J. Emerson, M. Stevens, and E. Romberg: His- tologic Evaluation ofNew Human Attachment Apparatus

    Formation in Humans, Part I.J.Periodontol. 60:664-674 (1989a).

    Bowers, G., B. Chadroff, R. Carnevale, J. Mellonig, R.

    Corio, J. Emerson, J. Stevens, and E. Romberg: His- tologicEvaluation ofNewHumanAttachment Apparatus in

    Humans,PartII.J.Periodontol.60:675-682(1989b).Bowers, G., B. Chadroff, R. Carnevale, J. Mellonig, R.

    Corio, J. Emerson, M. Stevens, and E. Romberg: His- tologicEvaluationofNewHumanAttachment Apparatus in

    Humans,PartIII.J.Periodontol.60:683-693(1989c).Bowers, G. and H. Reddi:Regenerating the Periodontium in Advanced Periodontal Disease.J.Am.Dent.Assoc.

    122:45-48 (1991).

    Bowers, G. G., R. G. Schallhorn, and J. T. Mellonig: HistologicEvaluation ofNewAttachment inHuman In- trabony

    Defects: A Literature Review.J.Periodontol.53:509-514(1982).

    Buck, B.,T.Malinin, andM.Brown:BoneTransplantation and Human Immunodeficiency Virus: An Estimate of Risk

    Acquired Immunodeficiency Syndrome (AIDS). Clin. Orthop. 240:129-134 (1989).Buck, B., B. Resnick, S. Shah, and T. Malinin: Human Immunodeficiency Virus Cultured from Bone. Impli- cations

    forTransplantation. Clin. Orthop. 251:249-253 (1990).Buring, K. and M. Urist: Effects of Ionizing Radiation on theBoneInductionPrincipleinMatrixofBoneImplants. Clin.

    Orthop.

    55:225-234 (1967).Burwell, R.: The Function of Bone Marrow in the Incor- poration of a Bone Graft. Clin. Orthop. 200:125-141 (1985).Caffesse, R. G., B. Smith, B.Duff, E.Morrison, D.Mer- rill,andW.Becker:ClassIIFurcationsTreatedbyGuided Tissue

    Regeneration inHumans:Case Reports.J.Per- iodontol. 61:510-514 (1990).Carranza, F. , E. Kenney, V. Lekovic, E. Talamante, J.

    Valencia, andB.Dimitrijecic:HistologicStudyofHeal- ing of Human Periodontal Defects After Placement of Porous

    Hydroxyapatite Implants.J.Periodontol.58:682-688 (1987).

    Carraro, J. J., N. Sznajder, and C. A. Alonso: Intraoral Cancellous Bone Autografts in the Treatment of Intra- bony

    Pockets.J. Clin.Periodontol. 3:104-113 (1976).Caton, J., S. Nyman, and H. Zander: Histometric Evalu- ation of Periodontal Surgery. II. Connective Tissue At-

    tachmentLevelsAfter FourRegenerativeProcedures.J. Clin.Periodontol. 7:224-231 (1980).Caton, J. and H. Zander: Osseous Repair of an Intrabony PocketWithoutNewAttachmentofConnectiveTissue.J. Clin.

    Periodontol.

    3:54-58 (1976).Chalmers, J., D. Gray, and J. Rush: Observations on the

    Induction of Bone in Soft Tissue.J.BoneJt. Surg.57B:36-41 (1975).

    Cole,R., M. Crigger, G. Bogle,J. Elgelberg, andK. Sel- vig:AConnectiveTissueRegeneration toPeriodontally Diseased

    Teeth.J.Periodont.Res. 15:1-9 (1980).Conway, B. , W. Tomford, M. Hirsch, R. Schoolwy, and

    H. Mankin: Effects of Gamma Irradiation onHIV-1 in

    a Bone Allograft Model. 36th Annual Meeting, Ortho- paedic Research Society, February 5-8 , New Orleans,

    Lousiana (1990).

    Cushing,M.:AutogenousRedMarrowGrafts:Potentialfor Induction of Osteogenesis.J.Periodontol. 40:492-497 (1969).Diaz-Arnold, A. and G. A. Zach: Demineralized Freeze- DriedBoneAllografts. Gen.Dent. 33:446-447 (1985). Diem, C.

    R., G. M. Bowers, and W. C. Moffitt: Bone Blending: ATechnique for Bone Implantation.J.Per-iodontol. 43:295-297 (1972).

    Dragoo, M. and H. Sullivan: A Clinical and Histologic EvaluationofAutogenous IliacBoneGrafts inHumans. Part I.

    Periodontal Bone Grafting Materials. J. Perio- dontol. 55:406; Wound Healing 2 to 8 Months.J.Per- iodontol.44:599-613 (1973a).

    Dragoo, M. and H. Sullivan: A Clinical and Histologic Evaluation of Autogenous Iliac Bone Grafts inHumans. II.

    External Root Resorption.J.Periodontol. 44:614-625 (1973b).

    Dragoo,M.R.:ClinicalandHistologicEvaluationofAuto- genous BoneGrafts.J.Periodontol. 44:123 (1972). Dragoo, M.R. and R. K. Irwin: A Method of Procuring

    Cancellous Iliac Bone Utilizing aTrephineNeedle.J.

    Periodontol. 43:82-87 (1972).Dragoo, M. R. and W. B. Kaldahl: Clinical and Histological Evaluation of Alloplasts and Allografts in Regenerative

    PeriodontalSurgeryinHumans.Int.J.PeriodonticsRes- torativeDent. 3(2):9-29 (1983).Eastlund, T., B. Jackson, G. Havrilla, and K. Sonnerud: Preliminary StudyResultsUsingEthyleneOxide (ETO) orHeat

    toInactivateHIVinCorticalBone. 13thAnnual Meeting, American Association of Tissue Banks. Oct

    1-4, 1989.Baltimore, Maryland (1989).

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    31/40

    Egelberg, J.: Regeneration and Repair of Periodontal Tis- sues.J.Periodont.Res. 22:233-242 (1987).Ellegaard, B.: BoneGrafts inPeriodontal AttachmentPro- cedures.J. Clin.Periodontol. 3:1-54 (1976).Ellegaard, B. , T. Karring, R. Davies, and H. Loe: New Attachment After Treatment of Intrabony Defects in

    Monkeys.J.Periodontol. 45:368-376 (1974).Ellegaard, B., T. Karring, M. Listgarten, and H. Loe:New Attachment After Treatment of Interradicular Lesions. J.

    Periodontol. 44:209-217 (1973).Ellegaard, B., T. Karring, and H. Loe:The Fate of Vital andDevitalized BoneGrafts in theHealingof Interrad- icular

    Lesions.J.Periodont.Res. 10:88-97 (1975).Ellegaard, B.andH.Low:NewAttachmentofPeriodontal Tissues after Treatment of Intrabony Lesions.J.Per- iodontol.

    42:648-652 (1971).

    347

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    32/40

    Ellegaard, B. , I. M.Nielsen, and T. Karring: Composite Jaw and Iliac Cancellous BoneGrafts in Intrabony De- fects in

    Monkeys.J.Periodont.Res. 11:299-310(1976).Evans, G. H., R. A. Yukna, W. W. Sepe, T. W. Mabry, andE. T. Mayer: Effect of Various Graft Materials with

    Tetracycline inLocalizedJuvenilePeriodontitis.J.Per- iodontoi 60:491-497 (1989).Evans, R.: Histologic Evaluation of an Autogenous Bone Graft.J.Periodont.RestorativeDent.2(2):66-79(1981). Forsberg,

    H.:TransplantationofOsPurumandBoneChips in the Surgical Treatment of Periodontal Disease (Pre- liminary

    Report).Acta Odontol. Scand. 13:235-238(1956).

    Friedlaender, G., M. Strong, and K. Sell: Studies on the Antigenicity of Bone. I. Freeze-Dried and Deep Frozen

    Allografts in Rabbits.J.BoneJt. Surg. 58A:854-858 (1976).Friedlaender, G.: BoneBanking. Clin. Orthop. 225:17-21 (1987).Froum, S., L. Kushner, I. Scopp, and S. Stahl: Human Clinical andHistologicResponses toDurapatite Implants in

    Intraosseous Lesions. Case Reports.J. Periodontol.53:719-725 (1982).

    Froum, S., L. Kushner, and S. Stahl: Healing Responses of Human Intraosseous Lesions Following the Use of

    Debridement, grafting andcitric acid root treatment. I. Clinical and Histologic Observations Six Months Post- surgery.

    J.Periodontol. 54:67-76 (1983).Froum, S. J., M. Oritiz, R. T. Witkins, R. Thaler, I. W.

    Scopp, and S. S. Stahl: Osseous Autografts. III. Com- parisonofOsseousCoagulum-BoneBlendImplantswith Open

    Curettage.J.Periodontol. 47:287-294 (1976).Froum, S. J., R. Thaler, I. W. Scopp, and S. S. Stahl: OsseousAutografts. I.ClinicalResponsestoBoneBlend or Hip

    Marrow Grafts. J. Periodontol. 46:516-521 (1975).Gager, A. H. and A. J. Schultz: Treatment of Periodontal Defects withanAdsorbableMembrane(Polyglactin910) with

    and without Osseous Grafting: Case Reports. J. Periodontol. 62:276-283 (1991).Gantes, B. ,M. Martin, S. Garrett, andJ. Egelberg:Treat- mentofPeriodontal Furcation Defects (II)BoneRegen- eration

    in Mandibular Class IIDefects.J. Clin.Perio- dontol. 15:232-239 (1988).Gara, G. G. and D. F. Adams: Implant Therapy in Human Intrabony Pockets: AReview of the Literature.J. West Soc.

    Periodont.Abstr. 29:32-47 (1981).Garrett, S., B. Loos, D. Chamberlain, and J. Egelberg: Treatment of Intraosseous Periodontal Defects with a Combined

    Adjunctive Therapy of Citric Acid Condi- tioning, Bone Grafting, and Placement of Collagenous Membranes.J.

    Clin.Periodontol. 15:383-389 (1988).Goldberg,V.M. andS.Stevenson:NaturalHistoryofAu- tografts andAllografts. Clin.Orthop. 225:7-16(1987).Gonzales,J.G.:OsseousGraftingProceduresinPeriodontal

    Therapy.Rev. Odontol.PR 23:18-22 (1986).Gottlow,J., S.Nyman,J.Lindhe,T.Karring,andJ.Wen- nstrom:New Attachment Formation in theHuman Per-

    iodontiumbyGuidedTissueRegeneration.J. Clin.Per- iodontol. 13:604-616 (1986).Graves, D. and D. Cochran: Mesenchymal Cell Growth

    Factors. Crit.Rev. OralBioL 1:17-36(1990).Groff, G. B.: Treatment of Intrabony Osseous Defects by Grafting: AReview of the Literature. I:Early Research and

    Experimentation. USNavy Med. 67(10):9-23 (1976a).Groff, G. B.: Treatment of Infrabony Osseous Defects by Grafting: AReviewof theLiterature. II:RecentSuccess with

    Autografts and Homografts. USNavy Med.67(ll):8-24 (1976b).

    Haggerty, P. C. and I. Maeda: Autogenous Bone Grafts: A Revolution in the Treatment of Vertical Bone Defects. J.

    Periodontol. 42:626-641 (1971).Halliday,D.G.:ThegraftingofNewlyFormedAutogenous Bone in the Treatment of Osseous Defects. J. Perio- dontol.

    40:511-514(1969).

    Hancock, E. B.: Regeneration Procedures. Section VI. In Proceedings of the World Workshop in Clinical Perio- dontics.

    TheAmericanAcademyofPeriodontology,pp.

    1-19(1989).

    Harakas,N.: Demineralized Bone-Matrix-Induced Osteo- genesis. Clin. Orthop. 188:239-251 (1984).Hawley, C. and J. Miller: A Histologic Examination of a Free Osseous Autograft. J. Periodontol. 46:289-293 (1975).Hegedus, Z.: The Rebuilding of the Alveolar Processby BoneTransplantation.Dent.Cosmos.65:736-742(1923). Hiatt, R.

    G. andR. G. Schallhorn: IntraoralTransplantsof CancellousBoneandMarrow inPeriodontalLesions.J.

    Periodontol. 44:194-208 (1973).Hiatt, W., R. Schallhorn, and A. Aaronian: The Induction of New Bone and Cementum Formation. IV. Micro- scopic

    Examination of the Peridontium Following Hu- man Bone and Marrow Autograft, Allograft, and Non- graft

    Periodontal Regenerative Procedures. J. Periodontol. 49:495-512 (1978).Hiatt, W. H.: The Induction ofNew Bone and Cementum Formation. III. Utilizing Bone and Marrow Allografts in

    Dogs.J.Periodontol. 41:596-600 (1970).Hiatt, W. H., D. Larato, W. R. Hiatt, and K. Lindfors: The Induction ofNew Bone and Cementum Formation. V. A

    Comparison ofGraft andControl inSites inDeep IntrabonyPeriodontalLesions.Int.J.PeriodonticsRes- torativeDent.6(5):9-22 (1986).

    Hoffman, I. D. and P. Flanagan: Exophytic granulation reactionsassociatedwithautogenous iliacmarrowtrans- plantation

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    33/40

    into periodontal defects. J. Periodontol.45:586-594(1974).

    Hujoel, P. P. , W. J. Loesche, and T. A. Derouen: As- sessment of Relationship between Site-Specific Vari- ables.J.

    Periodontol. 61:368-372 (1990).Hurt,W.C: Freeze-Dried BoneHomografts inPeriodontal

    Lesions inDogs.J.Periodontol. 39:89-92 (1968). Jacobs, J. E. and E. S. Rosenberg: Management of anIntrabony Defect UsingOsseous Coagulum from aLin-

    gual Torus. Compend. Contin. Educ. Dent. 5:57-61 (1984).

    348

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    34/40

    Karring, T., S.Nyman, andJ. Lindhe:Healing Following Implantation of Periodontitis Affected Roots into Bone Tissue.

    J. Clin.Periodontol. 7:96-105 (1980).Karring, T., S. Nyman, and J. Lindhe, and M. Sirirat: PotentialsforRootResorptionDuringPeriodontalWound Healing.

    J. Clin.Periodontol. 11:41-52 (1984).Kenney, E., V. Lekovic, C. Ferreira, T. Han, B. Dimitri- jevic, and F. Carranca: Bone Formation within Porous

    HydroxyapatiteImplantsinHumanPeriodontalDefects.J.Periodontol. 57:76-83 (1986).Klinge, B. , R.Nilveus, G. Bogle, A. Badersten, and J.

    Egelberg:Effect ofImplantsonHealingofExperimental

    FurcationDefects inDogs.J. Clin.Periodontol.12:321326 (1985).

    Koskinen, E., S.Ryoppy, andT. Linkholm:Osteoinduction and Osteogenesis in Implants of Allogeneic Bone Ma- trix.Clin. Orthop. 87:116-131 (1972).

    Krejci, C. B. and C. F. Farah: Osseous Grafting in Per- iodontalTherapy,PartI:OsseousGraftMaterials.Com- pendium

    8:722-728 (1987).

    Kudryk, V.:ToxicEffect ofEthyleneOxideSterilizedFreeze- Dried Bone Allograft on Human Gingival Fibroblasts. J.

    Periodontol. 61:309 (1990).Langer, B. , D. Gelb, and D. Krutchkoff: Early reentry procedure. Part II. A five year histologic evaluation. J.

    Periodontol. 52:135-139 (1981).Langer, B., B. Wagengerg, and L. Langer: The use of frozen autogenous bone in grafting procedures. Int. J.

    PeriodonticsRestorativeDent. 6(2):68-77 (1986).Lekovic, V., E. Kenney, K. Kovacevic, and R. Carranza: Evaluation of Guided Tissue Regeneration in Class II

    Furcation Defects.J.Periodontol. 60:694-698 (1989).Libin, B. M., H. Ward, and L. Fishman: Decalcified Ly- ophilizedBoneAllografts forUseinHumanPeriodontal Defects.

    J.Periodontol. 45:51-56 (1975).Listgarten, M. and M. Rosenberg: Histological Study of Repair FollowingNew Attachment Procedures in Human

    Periodontal Lesions.J.Periodontol.50:333-344(1979).Lynch,S., R. Williams,A.Poison,T.Howell,M.Reddy, and U. Zappa: A Combination of Platelet-Derived and Insulin-

    Like Growth Factors Enhances Periodontal Re- generation.J. Clin.Periodontol. 16:545-548 (1989).Mabry, T., R. Yukna, and W. Sepe: Freeze-Dried Bone Allografts Combined with Tetracycline in the Treatment of

    Juvenile Periodontitis. /. Periodontol. 56:74-81 (1985).Martin, L., J. McDougal, and S. Loskoski: Disinfection and inactivation of the human T lymphocyte virus type

    III/lymphadenopathy-associated virus. J. Infec. Dis.152:400-403 (1985).

    Mattout, P. andM. Roche:Juvenile Periodontitis: Healing Following Autogenous Iliac Marrow Graft, Long-Term

    Evaluation.J. Clin.Periodontol. 11:274-279 (1984). Melcher, A., T. Cheong, andJ. Cox:SynthesisofCemen-tumlikeTissueIn VitrobyCellsCultured from Bone:ALight and Electron Microscopic Study.J. Periodont.Res. 21:592-612 (1986).

    Melcher,A.H.:TheUseofHeterogenousAnorganicBone as an Implant Material in Oral Procedures. OralSurg.15:996-1000 (1962).

    Mellonig, J., G. Bowers, andR. Baily:ComparisonofBone Graft Materials. I.New BoneFormation with Autografts and

    Allografts Determinedby Strontium-85.J.Perio- dontol. 52:291-296 (1981a).Mellonig,J.,G.Bowers,R.Bright,andJ.Lawrence:Clin- ical Evaluation of Freeze-Dried Bone Allograft in Per- iodontal

    Osseous Defects.J.Periodontol. 47:125-129 (1976).Mellonig, J., G. Bowers, and W. Cotton: Comparison of Bone Graft Materials. Part II.New Bone Formation with

    Autografts andAllografts:AHistologicalEvaluation.J. Periodontol. 52:297-302 (1981b).Mellonig, J. T.: Alveolar Bone Induction: Autografts and Allografts.Dent. Clin.NorthAm. 24:719-737 (1980). Mellonig,

    J.T.:HistologicEvaluationofFreeze-DriedBone Allografts inPeriodontalOsseousDefects.J.Dent.Res.60:388 (1981).

    Mellonig, J. T.: Decalcified Freeze-Dried Bone Allograft as an Implant Material in Human Periodontal Defects.Int.J.PeriodonticsRestorativeDent.4(6):41-55(1984).

    Mellonig, J. T.: Bone Grafts in Periodontal Therapy.NY StateDent.J. 52:27-29 (1986).Mellonig,J.T.:Freeze-DriedBoneAllografts inPeriodon- tal Reconstructive Surgery. Dent. Clin. North Am.

    35:505-520 (1991).

    Mellonig, J. T. and G. M. Bowers:Regenerating Bone in ClinicalPeriodontics.J.Am.Dent.Assoc. 121:497-502 (1990).Mellonig,J. T. andR. Levey:TheEffect ofDifferent Par- ticle Sizes of Freeze-Dried Bone Allograft on Bone Growth.

    J.Dent.Res. 63:222 (1984).Moomaw,R.:HistologicalEvaluationofFreeze-DriedBone Allografts in Humans. Graduate thesis, University of North

    Carolina, School of Dentistry (1978).

    Moscow, B., F. Karsh, S. Stein: Histological Assessment of Autogenous Bone Graft: A Case Report and Critical

    Evaluation.J.Periodontol. 50:291-300 (1979).Movin, S. and G. Borring-Moller: Regeneration of Infra- bony Periodontal Defects in Humans After Implantation of

    AllogeneicDemineralizedDentin.J. Clin.Periodon- tol. 9:141-146(1982).Munting, E., J. Wilmart, A. Wijne, P. Hennebert, andC.

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    35/40

    Delloye:Effect ofSterilizationonOsteoinduction.Acta

    Orthop. Scand.59:34-38 (1988).Nabers, C , O. Reed, and J. Hammer: Gross and Histologic Evaluation of an Autogenous Bone Graft 57 Months

    Postoperatively.J.Periodontol. 43:702-704 (1972).Nabers, C. L.: Long-Term Results of Autogenous Bone

    Grafts.Int.J.PeriodonticsRestorativeDent. 4(3):50-57 (1984).

    Nabers,C. L. andT. J. O'Leary: AutogenousBoneTrans- plants in the Treatment of Osseous Defects.J.Perio- dontol.36:5-14 (1965).

    Narang, R. andH. Wells:Bone Induction inExperimental

    Periodontal BoneDefects inDogs with Decalcified Al-

    349

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    36/40

    logeneic Bone Matrix Grafts. Oral Surg. 33:306-313 (1972).Niveus, R., D. Johansson, and J. Egelberg: The Effect of Autogenous Cancellous Bone Grafts on Healing of Ex-

    perimentalFurcationDefectsinDogs.J.Periodont.Res.13:532-537 (1978).

    Nyman, S., J. Gottlow, J. Lindhe, T. Karring, and J.

    Winnstrom:NewAttachmentFormationbyGuidedTis- sueRegeneration.J.Periodont.Res.22:252-254(1987). Nyman, S.,T.Karring,J.Lindhe,andS.Planten:Healing Following Implantation of Periodontitis Affected Roots

    into Gingival Connective Tissue.J. Clin.Periodontol.7:394-401 (1980).

    Nyman, S., J. Lindhe, T. Karring, and H. Rylander: New Attachment Following Surgical Treatment of Human

    Periodontal Disease.J. Clin.Periodontol. 9:290-297 (1982).Oikarien, J. and L. Korhonen: The Bone Inductive Capacity of Various Bone Transplanting Materials Used for the

    TreatmentofExperimentalBoneDefects.Clin.Orthop.140:208-215 (1979).

    Older, L. B.: The Use of Heterogenous Bovine Bone Im- plants in the Treatment of Periodontal Pockets.J. Per-iodontol. 38:359-549 (1967).

    Oreamuno, S., V. Lekovic, B. Kenney, F. Carranza, H.

    Takei, and B. Prokic: Comparative Clinical Study of Porous Hydroxyapatite and Decalcified Freeze-Dried Bone in

    Human Periodontal Defects.J. Periodontol.61:399-404 (1989).

    Passanezzi, E., W. A. Janson, D. Nahas, and J. Campos: Newly Forming Bone Autografts to Treat Periodontal

    Infrabony Pockets:ClinicalandHistologicalEvents.Int. J.PeriodonticsRestorativeDent. 9:140-153 (1989).Patterson, R. L., C. Collings, and E. Zimmermann: Au- togenous Implants in the Alveolar Process of the Dog with

    InducedPeriodontitis.Periodontics5:19-25 (1967).Patur, B.: Osseous Defects: Evaluation of Diagnostic and TreatmentMethods.J.Periodontol.45:523-541(1974). Patur, B.

    and I. Glickman: Clinical and Roentgenographic Evaluation of the Post-Treatment Healing of Infrabony

    Pockets.J.Periodontol. 33:164-171 (1962).Pearson, G. and E. Freeman: The Composite Graft: Au- togenousCancellous BoneandMarrow Combined with Freeze-

    Dried Bone Allograft in the Treatment of Per- iodontal Osseous Defects. Ont.Dent. 57:3-10 (1980). Pearson, G., S.Rosen, andD. Deporter: Preliminary Ob- servations on the Usefulness of a Decalcified Freeze- DriedCancellousBone

    AllograftMaterialinPeriodontal

    Surgery.J.Periodontol. 52:55-59 (1901).Peffier, J. E.: The Present Status of BoneGrafts inPerio- dontal Therapy. Dent. Clin. NorthAm. 13:193-202 (1969).Pierce, P. L.: Bone Induction in Periodontal Therapy: A Review.J.N. Z. Soc.Periodontol. 53:7-11 (1982). Poison, A.

    M. and L. D. Heijle: Osseous Repair in Infra-

    bony Periodontal Defects.J. Clin.Periodontol. 5:13-23(1978).

    Pontoriero, R., J. Lindhe, S.Nyman, T. Karring, E. Ro- senberg, andR. Sanavi:GuidedTissueRegeneration in

    DegreeIIFurcationInvolvedMandibularMolars.J.Clin. Periodontol. 15:247-254 (1988).Pontoriero, R., J. Lindhe, S. Nyman, T. Karring, E. Ro- senberg, and R. Sanavi: Guided Tissue Regeneration in the

    Treatment of Furcation Defects in Mandibular Mo- lars. A Clinical Study of Degree III Involvements. J. Clin.

    Periodontol. 16:170-178 (1989).Poulsom, R. C, A. Rubinstein, and A. W. Gargiulo:Al- logeneic Iliac Transplants in Rhesus Monkeys: A Se- quential

    Histologic Study.J.Periodontol. 47:187-195 (1976).Prewett, A., C.Damien, M.Te-HuaChu, andR. O'Leary: Investigation of the Effect of Low-Dose Gamma Irra- diation

    on the Collagenous and Non-Collagenous Pro- teins of Bone Matrix. 14th Annual Meeting, American Associationof

    TissueBanks.21-26September,Denver, Colorado.

    Prolo, D., P. Pedrotti, andD. White:Ethylene Oxide Ster- ilization of Bone, Dura Mater, and Fascia Lata for Hu- man

    Transplantation.Neurosurgery. 6:529-539 (1980).Quattlebaum, J., J. Mellonig, andN. Hansel:Antigenicity ofFreeze-Dried Cortical BoneAllograft inHumanPer- iodontalOsseous Defects.J.Periodontol 59:394-397 (1988).Quinnan, G., J. Wlees, and M. Wittek: Inactivation of Human T-Cell Lymphotropic Virus, Type III by Heat

    Chemicals and Irradiation. Transfusion 26:481-483 (1986).Quintero, G., J. Mellonig, and V. Gambill: ASix Month Clinical Evaluation of Decalcified Freeze-Dried Bone Allograft

    inHumanPeriodontalDefects.J.Periodontol.53:726-730 (1982).

    Ramfjord, S. P.: Changing Concepts in Periodontics.J.

    Pros.Dent. 52:781-786 (1984).Reddi, A. H., S. Wientroub, and N. Muthukmuaran: Bi- ologicPrinciplesofBone Induction. Orthop. Clin.North Am.

    18:207-212 (1987).

    Renvert, S. T., S. Garrett, R. G. Schallhorn, and J. Egel- berg: Healing After Treatment of Periodontal Intraos- seous

    Defects. III.Effect ofOsseousGrafting andCitric Acid Conditioning. J. Clin. Periodontol. 6:441-445 (1985).Resnick, L., K. Veren, S. Salahuddin, S. Tondreau, and P. Markham: Stability and Inactivation of HTLV-III/ LAVUnderClinicalandLaboratoryEnvironments.JAMA

    255:1987-1991 (1986).

    Rivault, A. T., P. D. Toto, S. Levy, andA. W.Gargiulo: Autogenous Bone Grafts: Osseous Coagulum and Os- seous

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    37/40

    RetrogradProcedures inPrimates.J.Periodontol.42:787-796 (1971).

    Robinson, R. E.: Osseous Coagulum for Bone Induction.

    J.Periodontol. 40:503-510 (1969).Rosenberg, M. M.: Free Osseous Tissue Autografts as a Predictable Procedure. J. Periodontol. 42:195-209 (1971).Rosling, B. , S.Nyman, J. Lindhe, andB. Jern: The Healing Potential of the Periodontal Tissues Following Different

    TechniquesofPeriodontalSurgery.J.Clin.Periodontol.3:233-250 (1976).

    350

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    38/40

    Ross, S. E. and D. W. Cohen: The Fate of a Free Osseous TissueAutograft. AClinical andHistologicCaseReport.

    Periodontics 6:145-151 (1968).Rummelhardt, J., J. T. Mellonig, J. Gray, and H. Towle: Comparison of Freeze-Dried Bone Allograft in Human

    Periodontal Osseous Defects.J.Periodontol. 60:655-663 (1989).

    Sampath, T., M.Nathanson, andA. Reddi:InVitroTrans- formation of Mesenchymal Cells Derived from Embry- onic

    Muscle into Cartilage in Response to Extracellular Matrix Components of Bone. Proc. Natl. Acad. Sci. U.S.A.81:3419-3423 (1984).

    Sampath, T. and A. Reddi: Homology of Bone Inductive Proteins from Human,Monkey, Bovine,andRatExtra- cellular

    Matrix.Proc.Natl.Acad.Sci. U.S.A. 80:6591-6595 (1987).

    Sanders, J., W. Sepe, G. Bowers, R. Koch, J. Williams, J. Lekas,J. Mellonig,G. Pelleu, andB.Gambill:Clin- ical

    Evaluation of Freeze-Dried Bone Allograft in Per- iodontal Osseous Defects. III. Composite Freeze-Dried Bone

    Allografts with and Without Autogenous Bone

    Grafts.J.Periodontol. 1983:54:1-11 (1983).Schallhorn, R.: PostoperativeProblemsAssociatedwithIl- iacTransplants.J.Periodontol. 43:3-9 (1972).Schallhorn, R. and W. Hiatt: Human Allografts of Iliac Cancellous Bone and Marrow in Periodontal Osseous Defects,

    II.ClinicalObservations.J.Periodontol.43:67-81 (1972).

    Schallhorn, R. and P. McClain: Combined Osseous Com- posite Grafting, Root Conditioning, and Guided Tissue

    Regeneration. Int. J. Periodontics Restorative Dent.8(4):13-32 (1988).

    Schallhorn, R. G.: Eradication of Bifurcation Defects Uti- lizingFrozen AutogenousHipMarrow Implants.J. West. Soc.Periodont.Abstr. 15:101-105 (1967).

    Schallhorn, R. G.: The Use of Autogenous Hip Marrow Biopsy Implants for Bony Crater Defects. J. Periodon- tol.39:145-147 (1968).

    Schallhorn, R. G.: Present StatusofOsseousGrafting Pro- cedures.J.Periodontol. 48:570-576 (1977).Schallhorn,R.G.:Long-TermEvaluationofOsseousGrafts inPeriodontalTherapy.Int.Dent.J. 30:101-116(1980). Schallhorn,

    R. G., W. Hiatt, and W. Boyce: Iliac Trans- plants inPeriodontal Therapy.J.Periodontol. 41:566-580(1970).

    Schrad, S. andG.Tussing:HumanAllografts ofIliacBone and Marrow in Periodontal Osseous Defects.J.Perio- dontol.57:205-210 (1986).

    Scopp, I. W., F.H. Morgan, J. J. Dooner, H.J. Fredrics, andR. A.Heyman:BovineBone(Boplant)Implantsfor Infrabony

    OralLesions.Periodontics4:169-176(1966). Seibert, J. S.: Reconstructive Periodontal Surgery: CaseReport.J.Periodontol. 41:113-118 (1970).

    Sepe, W., G. Bowers, J. Lawrence, G. Friedlaender, and R. Koch:Clinical Evaluation ofFreeze-Dried BoneAl- lografts

    inPeriodontalOsseousDefects.J.Periodontol.49:9-14 (1978).

    Soehren, S. E. and R. L. Van Swol:TheHealing Extraction Site: A Donor Area for Periodontal Grafting Material. J.

    Periodontol. 50:128-133 (1979).Sonis, S. T., R. C. Williams, M. K. Jeffcoat, R. Black, andG. Schlar:Healingof SpontaneousPeriodontalDe- fects in

    Dogs Treated with Xenogeneic Demineralized Bone.J.Periodontol. 56:470-479 (1985).Sottosanti, J. S. and J. A. Bierly: The Storage of Marrow and its Relation to Periodontal Grafting Procedures. J.

    Periodontol. 46:162-170 (1975).Stahl, S. S. and S. Froum: Histological Evaluation of Hu- man Intraosseous Healing Responses to the Placement of

    Tricalcium Phosphate Ceramic Implants. I. Three to Eight Months.J.Periodontol. 57:211-217 (1986).Stahl, S. S. and S. Froum: Histologic Healing Responses in Human Vertical Lesions Following the Use ofOsseous

    Allografts andBarrierMembranes.J.Clin.Periodontol.18:149-152(1991).

    Strub, J. R., T. W. Gaberthuel, andA. R. Firestone:Com- parison of Tricalcium Phosphate and Frozen Allogeneic BoneImplants in Man. J. Periodontol. 50:624-629 (1979).

    Towle, H., P. Auclair, and B. Ragsdale: Sterilization and Bone Induction by Demineralized Bone Matrix.J.Per-iodontol. 58:129 (1987).

    Turner,D.andJ.T.Mellonig:AntigenicityofFreeze-Dried Bone Allograft inPeriodontal Osseous Defects. J. Per- iodont.Res. 16:89-99 (1981).

    Urist, M., R. Delange, and G. Finerman: Bone Cell Dif- ferentiation and Growth Factors. Science 220:680-686 (1983a).Urist, M. R.: Bone Formationby Autoinduction. Science

    150:893-899 (1965).

    Urist, M. R. and T. A. Dowell: Inductive Substratum for Osteogenesis inPelletsofPaniculateBoneMatrix.Clin. Orthop.

    61:61-78 (1968).

    Urist, M. R., T. A. Dowell, P. H. Hay, andB.S.Strates: InductiveSubstratesforBoneFormation. Clin.Orthop.59:59-96 (1968).

    Urist, M. R. and H. Iwata: Preservation and Biodegradation of theMorphogenetic PropertyofBoneMatrix.J. Theor. Biol.38:155-167(1973).Urist, M. R., J. Jurist, F. Dubuc, and B. Strates:Quanti- tationofNewBoneFormationinIntramuscularImplants of Bone

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    39/40

    Matrix in Rabbits. Clin. Orthop. 68:279-293 (1970).Urist, M. R., A. Mikulski, and S. D. Boyd: A Chemo- sterilized Antigen-Extracted Autodigested Alloimplant for Bone

    Banks.Arch. Surg. 110:416-428 (1975).Urist,M.R., K. Sato,A.Brownell,T.Malinin,A.Lietze, Y. Huo, D. Prolo, S. Oklund, G. Finerman, and R. Delange:

    HumanBoneMorphogeneticProtein(hBMP).Proc. Soc.Exp.Biol.Med. 173:194-199 (1983).Urist, M. R. and B. Strates: Bone Formation in Implants ofPartiallyandWhollyDemineralizedboneMatrix.Clin. Orthop.

    71:271-278 (1970).

    Urist, M. R. and B. Strates:BoneMorphogenetic Protein.

    J.Dent.Res. 50:1392-1406 (1971).Waal, H., M. P. Ruben, G. Castellucci, and A. Bloom: Histological Evaluation of Lyophilized Demineralized Dentinfor

    theTreatmentofPeriodontalOsseousDefects inDogs.Int.J.PeriodonticsRestorativeDent.8(1):49-63(1988).

    351

  • 8/22/2019 CROBM-1992-Mellonig-333-52

    40/40

    Wada,T., C. Wu, S. Hirozuki,N.Sugita,S.Katagiri, M.

    Shemizu, and H. Kohji: Autogenous, Allogeneic, and Beta TCP Grafts: Comparative Effectiveness in Exper- imental

    Bone Furcation Defects in Dogs.J. OralIm- plantol. 15:231-235 (1989).Weintroub,S.andA.Reddi:Influence ofIrradiationonthe Osteogenic Potential of Demineralized Bone Matrix. Calcif.

    TissueInt. 42:255-260 (1988).Werbitt, M.: Decalcified Freeze-Dried Bone Allografts: A Successful Procedure in the Reduction of Intrabony De- fects.

    Int.J.PeriodonticsRestorativeDent. 7(5):56-63 (1987).Wirthlin, M. R.: The Current Status ofNew Attachment

    Therapy.J.Periodontol. 52:529-544 (1981).Wiseman, L. andH. C. Tenebaum: BoneGrafting inPer- iodontalTherapy.AReviewofSelectedMaterials.Oral Health

    78:21-23 (1988).

    Wozney, J., V. Rosen, A. Celeste, L. Mitsock, M. Whit- ters, R. Kritz, R. Hewick, and E. Wang:Novel Regu- lators

    ofBoneFormation:Molecular ClonesandActiv- ities. Science 242:1528-1534 (1988).Yazdi, M. and S. E. Schonfeld: Demineralized BoneMatrix in Treatment of Periodontal Defects. A Review of the

    Literature.J. Western Soc. Periodont. 35:105-108 (1987).Yukna, R. and W. Sepe: Clinical Evaluation of Localized Periodontosis Defects Treated with Freeze-Dried Bone

    Allografts Combined with Local and Systemic Tetra- cyclines.Int.J.PeriodonticsRestorativeDent. 2(5):8-21 (1982).

    Yuktanandana,I.:BoneGrafts intheTreatmentofIntrabony Periodontal Pockets in Dogs. AHistological Investiga- tion.J.

    Periodontol. 30:17-26 (1959).Yumet, J. and A. Poison: Gingival Wound Healing in the Presence ofPlaque Induced Inflammation. J. Periodon- tol.

    56:107-119(1985).

    Zayner,D.J.andR.A.Yukna:ParticleSizeofPeriodontal Bone Grafting Materials.J.Periodontol. 55:406-409 (1984).Zislis, T., S. Mattin, E. Cerbas, J. Heath, J. Mansfield, andJ. Hollinger: A

    Scanning Electron Microscopic Study of In VitroToxicity of Ethylene-Oxide-Sterilized Bone Repair Materials.J. OralImplantol. 15:41-46 (1989).

    352