21
DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES Demuestre empleando la definición formal de derivada, cada una de las siguientes expresiones: D V N Ing. ELECTICA POTENCIA Página 1 13. )[ sen ( x )]'=cos ( x ). 14. )[ cos ( x )]'=−sen ( x ) . 15. )[ tg( x )] '=sec 2 ( x ) . 16. )[ ctg ( x )]'=−csc 2 ( x ) . 17. )[ sec ( x )]'=sec ( x )⋅ tg( x ) . 18. )[ csc ( x )]'=−csc ( x )⋅ ctg ( x ) . 19. )[ arcsen( x )] '= 1 1x 2 . (−1< x<1 ) . 20. )[ arccos( x )] '=− 1 1x 2 . (−1< x<1 ) . 21. )[ arctg ( x )] '= 1 1 +x 2 . 22. )[ arcctg( x )] '=− 1 1+ x 2 . 23. )[ arc sec ( x )] '= 1 |x |⋅ x 2 1 , ( 1<|x|) . 24. )[ arc csc ( x )] '=− 1 | x |⋅ x 2 1 ,( 1<|x|). 1. )( x ) '=1. 2. )( k ) '=0. 3. )( x n ) '=nx n1 . 4. )( a x ) '=a x ln( a ) . 5. )( e x ) '=e x . 6. )[ ln ( x )] '= 1 x , ( x>0 ) . 7. )[ log a ( x )] '= 1 x ln( a ) log a ( e ) x . ( x>0 )∧( a> 0 ) 8. )[ f ( x g ( x )]'=f'( x g' ( x ) . 9. )[ f ( x )⋅ g ( x )] '=f'( x )⋅ g ( x )+f ( x )⋅ g' ( x ) . 10 . ) [ f ( x ) g( x ) ] ' = f' ( x )⋅ g ( x )−f ( x )⋅ g' ( x ) [ g ( x ) ] 2 g ( x )≠0. 11 . )[ k f ( x )] '=k f'( x ) 12 . ) [ k f ( x ) ] ' =− k [ f ( x ) ] 2 ,f( x )≠0. 2. ) f ( x )=k kx 0 k∴f ( x )= x 0 k f ( x +h) =( x +h ) 0 k ( k ) '=lim h0 ( x+h ) 0 kx 0 k h k lim h0 ( x+ h) 0 x 0 h ( k ) '=k lim h 0 x+h x+h x x h k lim h0 x ( x+h ) x ( x +h ) x ( x+h ) h ( k ) '=k lim h 0 x ( x +h )( 11 ) x ( x+h ) h ( k ) '=k lim h 0 ( 11 ) +(e h e h ) h ( k ) '=k lim h 0 (e h 1)( e h 1) h ( k ) '=k [ lim h0 ( e h 1) h lim h0 (e h 1) h ] ( k ) '=k ( 11) ( k ) '=0 R //. 1. ) f ( x )=x [ f ( x )] '=lim h0 f ( x+h ) f ( x) h . ( x ) '=lim h0 ( x+ h) x h ( x ) '=lim h0 x+hx h ( x ) '=lim h0 h h =1. R //

Demostraciones de Derivadas Por Medio de Limites

Embed Size (px)

DESCRIPTION

Este documento, es una guía para el estudiante que dese saber como obtener las formulas de las derivadas usuales. Mediante un lenguaje formal se demuestran una a una las derivadas, empleando la definición formal.

Citation preview

Page 1: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Demuestre empleando la definición formal de derivada, cada una de las siguientes expresiones:

D V N Ing. ELECTICA POTENCIA Página 1

13 .)[ sen ( x ) ]'=cos ( x ) .14 . )[cos ( x ) ] '=−sen (x ).15 .)[ tg ( x ) ]'=sec2( x ).16 .) [ctg( x ) ] '=−csc2( x ) .17 .) [sec ( x ) ]'=sec ( x )⋅tg ( x ) .18 .)[ csc ( x ) ]'=−csc ( x )⋅ctg( x ).

19 .)[ arcsen( x ) ] '=1

√1−x2.

(−1<x<1) .

20 .)[ arccos( x ) ] '=−1

√1−x2.

(−1<x<1) .

21 .)[ arctg( x )] '=11+x2

.

22 .)[ arcctg (x )] '=−11+x2

.

23 .)[ arc sec ( x ) ] '=1|x|⋅√ x2−1

,(1<|x|) .

24 . )[ arc csc( x )] '=−1|x|⋅√x2−1

,(1<|x|).

1. )(x )'=1 .2. )(k ) '=0 .3. )( xn) '=nxn−1.4 . )(ax) '=ax ln( a) .5. )(ex )'=e x .

6 .)[ ln( x ) ] '=1x,( x>0 ).

7 .)[ loga ( x ) ]'=1x ln(a )

≡loga (e )x

.

( x>0 )∧(a>0 )8 .)[ f ( x )±g ( x ) ]'=f '( x )±g ' ( x ).9 .)[ f ( x )⋅g (x )] '=f ' ( x )⋅g( x )+ f ( x )⋅g ' ( x ).

10. )[ f ( x )g ( x ) ]'

=f '( x )⋅g ( x )−f ( x )⋅g '( x )

[g (x )]2g ( x )≠0 .

11. )[ k⋅f ( x ) ]'=k⋅f ' ( x )

12. )[kf ( x ) ]'

=−k

[ f (x )]2, f ( x )≠0 .

2 .) f ( x )=k⇒ k≡x0k∴ f ( x )= x0 kf ( x+h )=( x+h )0 k

( k ) '=limh→0

( x+h )0k−x0kh

≡k limh→0

( x+h )0−x0

h

( k ) '=k limh→0

x+hx+h

−xx

h≡k lim

h→0

x (x+h )−x ( x+h )x ( x+h)h

( k ) '=k limh→0

x ( x+h ) (1−1 )x (x+h )h

( k ) '=k limh→0

(1−1 )+(eh−eh )h

( k ) '=k limh→0

(eh−1 )−(eh−1 )h

( k ) '=k [ limh→0 (eh−1 )h

−limh→0

(eh−1 )h ]

( k ) '=k (1−1 ) ∴( k ) '=0R // .

1 .) f ( x )=x

[ f ( x ) ] '=limh→0

f ( x+h )−f ( x )h

.

( x )'=limh→ 0

( x+h )−xh

( x )'=limh→ 0

x+h−xh

( x )'=limh→ 0

hh=1 .R //

Page 2: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 2

3 .) f (x )=xn

( xn ) '= limx→0

( x+h )n−xn

h

( xn ) '= limh→0

(n0 )xn+(n1 ) xn−1h+(n2 ) xn−2 h2+…+(nn−2) x2hn−2+(nn−1)xhn−1+(nn )hn−xn

h

( xn ) '= limh→0

xn+nxn−1h+n(n−1)2

xn−2 h2+…+n (n−1 )2

x2hn−2+nxhn−1+hn−xn

h

( xn ) '= limh→0

nxn−1h+n(n−1)2

xn−2h2+…+n(n−1)2

x2hn−2+nxhn−1+hn

h

( xn ) '= limh→0

h[nxn−1+n(n−1)2xn−2h+…+

n(n−1)2

x2hn−3+nxhn− 2+hn−1]h

( xn ) '= limh→0 [nxn−1+n(n−1)2

xn−2 h+…+n(n−1)2

x2hn−3+nxhn−2+hn−1]( xn ) '=nxn−1+

n(n−1)2

xn−2( 0)+…+n (n−1 )2

x2 (0)+nx (0 )+(0 )

( xn ) '=nxn−1R // .

( ax) '=ax ln (a ) limt→0

(1t )(1t )

⋅tln ( t+1 )

( ax) '=ax ln (a ) limt→0

11tln ( t+1)

( ax) '=ax ln (a ) limt→0

1

ln ( t+1)1t

( ax) '=ax ln (a )1

limt→0ln ( t+1)

1t

limt→0ln ( t+1 )

1t ≡ln [ lim

t→0( t+1)

1t ]=ln (e )

( ax) '=ax ln (a )R // .

4 . ) f ( x )=ax

(ax )'=limh→0

ax+h−ax

h.

(ax )'=limh→0

ax (ah−1 )h

(ax )'=ax limh→0

ah−1h

t=ah−1⇒h=ln( t+1)ln( a)

(ax )'=ax limt→ 0

tln( t+1 )ln(a )

(ax )'=ax limt→ 0

ln(a )tln( t+1 )

Page 3: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 3

5 .) f (x )=ex

( ex )'=limh→0

ex+h−ex

h.

( ex )'=limh→0

ex (eh−1 )h

( ex )'=ex limh→0

eh−1h

t=eh−1⇒h=ln( t+1)ln(e )

( ex )'=ex limt→0

tln( t+1 )

( ex )'=ex limt→0

11tln ( t+1 )

( ex )'=ex1

limt→0ln( t+1 )

1t

limt→0ln( t+1 )

1t ≡ln [ lim

t→0( t+1)

1t ]=ln (e )

( ex )'=ex R // .

6 .) f ( x )=ln( x )

[ ln (x )] '=limh→0

ln (x+h )−ln( x )h

[ ln (x )] '=limh→0

ln (x+hx )h

[ ln (x )] '=limh→0

1hln(1+hx )

[ ln (x )] '=limh→0

hx⋅1h⋅[ xh ln(1+hx )]

[ ln (x )] '=limh→0

1x⋅[ ln(1+hx )

xh ]

[ ln (x )] '=1xlimh→0 [ ln(1+hx )

xh ]

limh→0 [ ln(1+hx )

xh ]≡ln [ limh→0(1+hx )

xh ]=ln(e )

[ ln (x )] '=1xR // .

7 .) f ( x )=loga( x )

[ log a( x ) ] '=limh→0

loga ( x+h)−loga ( x )h

[ log a( x ) ] '=limh→0

loga (x+hx )h

[ log a( x ) ] '=limh→0

1hlog a(1+hx )

[ log a( x ) ] '=limh→0

hx⋅1h⋅[ xh loga (1+hx )]

[ log a( x ) ] '=1x⋅limh→0 [ loga(1+hx )

xh ]

limh→0 [ loga (1+hx )

xh ]≡log a[ limh→0 (1+hx )

xh ]=loga (e )

loga(e )≡ln (e )ln ( a)

∴[ loga( x )] '=1x ln (a )

R // .

Page 4: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 4

8 .) Sean f ( x ) yg( x )diferenciables enun Intervalo I .Hallar : [ f ( x )+g( x ) ] ' y [ f ( x )−g ( x ) ]'

[ f ( x )+g( x ) ] '=limh→0

[ f ( x+h )+g (x+h )]−[ f ( x )+g( x )]h

[ f ( x )+g( x ) ] '=limh→0

[ f ( x+h )−f (x )]+ [g (x+h )−g (x )]h

[ f ( x )+g( x ) ] '=limh→0 [ f ( x+h )−f ( x )

h+g( x+h )−g( x )h ]

[ f ( x )+g( x ) ] '=limh→0

f ( x+h )−f (x )h

+limh→0

g( x+h)−g( x )h

[ f ( x )+g( x ) ] '=[ f ( x ) ] '+[ g( x ) ] ' R // .

[ f ( x )−g( x ) ] '=limh→0

[ f ( x+h )−g( x+h )]−[ f ( x )−g( x ) ]h

[ f ( x )−g( x ) ] '=limh→0

[ f ( x+h )−f ( x )]−[ g( x+h )−g( x ) ]h

[ f ( x )−g( x ) ] '=limh→0 [ f ( x+h)−f ( x )

h−g( x+h)−g( x )h ]

[ f ( x )−g( x ) ] '=limh→0

f (x+h )−f ( x )h

−limh→0

g ( x+h)−g ( x )h

[ f ( x )−g( x ) ] '=[ f ( x )] '−[ g( x ) ] ' R // .

9 .) Sean f ( x ) yg( x )diferenciables enun Intervalo I .Hallar : [ f ( x )⋅g( x ) ] '

[ f ( x )⋅g( x ) ] '=limh→0

[ f ( x+h )⋅g( x+h) ]−[ f ( x )⋅g ( x )]h

[ f ( x )⋅g( x ) ] '=limh→0

[ f ( x+h )⋅g( x+h) ]−[ f ( x )⋅g ( x )]+ [ f ( x )⋅g ( x+h)−f ( x )⋅g (x+h )]h

[ f ( x )⋅g( x ) ] '=limh→0

[ f ( x+h )⋅g( x+h)−f ( x )⋅g ( x+h) ]+[ f ( x )⋅g( x+h )−f ( x )⋅g( x )]h

[ f ( x )⋅g( x ) ] '=limh→0

g ( x+h)⋅[ f ( x+h)−f ( x )]+ f ( x )⋅[g( x+h )−g( x )]h

[ f ( x )⋅g( x ) ] '=limh→0 [ g( x+h)⋅f ( x+h )−f ( x )

h+ f ( x )⋅

g( x+h )−g( x )h ]

[ f ( x )⋅g( x ) ] '=limh→0

g ( x+h)⋅limh→ 0

f ( x+h )−f (x )h

+limh→0

f ( x )⋅limh→0

g ( x+h)−g ( x )h

[ f ( x )⋅g( x ) ] '=g ( x+0)⋅[ f ( x ) ] '+ f ( x )[ g (x )] '[ f ( x )⋅g( x ) ] '=g ( x )⋅[ f ( x ) ]'+f ( x )[ g( x ) ] ' R // .

Page 5: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 5

10 . )Sean f ( x ) yg (x )diferenciables enun Intervalo I .

Hallar :[ f (x )g( x ) ]'

[ f ( x )g ( x ) ]

'

=limh→0

f ( x+h )g ( x+h)

−f ( x )g ( x )

h

[ f ( x )g ( x ) ]

'

=limh→0

f ( x+h )⋅g( x )−f ( x )⋅g (x+h )h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0

[ f ( x+h )⋅g( x )−f ( x )⋅g (x+h )]+[ f (x )⋅g ( x )−f ( x )⋅g( x )]h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0

[ f ( x+h )⋅g( x )−f ( x )⋅g (x )]−[ f (x )⋅g( x+h)−f ( x )⋅g ( x )]h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0

g ( x )⋅[ f ( x+h)−f ( x )]−f ( x )⋅[g (x+h )−g( x )]h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0 [ g( x )g( x+h )⋅g ( x )

⋅f ( x+h)−f ( x )h

−f ( x )g( x+h )⋅g ( x )

⋅g( x+h )−g( x )h ]

[ f ( x )g ( x ) ]

'

=limh→0

g ( x )g ( x+h)⋅g (x )

⋅limh→0

f ( x+h)−f ( x )h

+ limh→ 0

f ( x )g (x+h )⋅g( x )

⋅limh→0

g ( x+h)−g ( x )h

[ f ( x )g ( x ) ]

'

=g ( x )g ( x+0)⋅g (x )

⋅[ f (x )] '−f ( x )g( x+0 )⋅g( x )

⋅[ g( x )] '

[ f ( x )g ( x ) ]

'

=g ( x )⋅[ f ( x ) ]'g ( x )⋅g( x )

−f ( x )⋅[ g( x )] 'g( x )⋅g ( x )

≡g( x )⋅[ f ( x ) ] '−f ( x )⋅[ g (x )] '

[ g( x )]2R // , g( x )≠0

11. )Sea g( x )diferenciable enun Intervalo I .

Hallar :[kg( x ) ]' , k∈ℜ .

[kg ( x ) ]'

=limh→0

kg ( x+h)

−kg ( x )

h≡[kg( x ) ]

'

=limh→0

k⋅g ( x )−k⋅g( x+h)h⋅[g (x+h )⋅g( x ) ]

[kg ( x ) ]'

=limh→0

−k⋅[g( x+h )−g( x )]h⋅[ g( x+h )⋅g( x )]

≡[kg( x ) ]'

=limh→0

−kg( x+h )⋅g( x )

⋅limh→0

g (x+h )−g (x )h

[kg ( x ) ]'

=−kg ( x+0)⋅g (x )

⋅[ g( x ) ] '≡[kg ( x ) ]'

=−k⋅[ g (x )] '[ g( x ) ]2

R // , g( x )≠0 .

12 .) Sea f ( x )diferenciable enun Intervalo I .Hallar :[ k⋅f ( x ) ] ',k∈ℜ .

[ k⋅f ( x ) ]'=limh→0

k⋅f (x+h )−k⋅f ( x )h

[ k⋅f ( x ) ]'=limh→0

k⋅[ f (x+h )−f ( x )]h

[ k⋅f ( x ) ]'=k⋅limh→0

f (x+h )−f ( x )h

[ k⋅f ( x ) ]'=k⋅[ f (x )] ' R // .

Page 6: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Derivadas de funciones trigonométricas y sus inversas.

D V N Ing. ELECTICA POTENCIA Página 6

13 . )Sea f ( x )=sen ( x )Hallar [ f ( x )] ' .

[ sen (x )] '=limh→0

sen( x+h )−sen ( x )h

[ sen (x )] '=limh→0

sen( x )cos (h)+sen(h )cos( x )−sen ( x )h

[ sen (x )] '=limh→0

sen(h )cos ( x )h

+ limh→0

sen( x )cos (h )−sen ( x )h

[ sen (x )] '=cos ( x )⋅limh→0

sen(h )h

+limh→0

sen ( x )⋅[cos (h )−1 ]h

[ sen (x )] '=cos ( x )⋅(1 )+ limh→0

sen ( x )⋅[cos (h)−1 ]h

⋅[cos (h)+1 ][cos (h)+1 ]

[ sen (x )] '=cos ( x )+limh→0

[cos2(h )−1 ]h

⋅sen (x )cos(h )+1

[ sen (x )] '=cos ( x )−limh→0

sen2( h)h

⋅limh→ 0

sen (x )cos(h )+1

[ sen (x )] '=cos ( x )−limh→0

sen(h )h

⋅limh→ 0

sen(h )sen ( x )cos (h )+1

[ sen (x )] '=cos ( x )−(1 )⋅sen(0 )sen (x )cos (0 )+1

[ sen (x )] '=cos ( x )−(0)⋅sen (x )1+1

[ sen (x )] '=cos ( x )−02

[ sen (x )] '=cos ( x )R // .

14 .)Sea f ( x )=cos ( x )Hallar [ f ( x )] ' .

[ cos( x ) ] '=limh→0

cos( x+h )−cos ( x )h

[ cos( x ) ] '=limh→0

cos( x )cos (h )−sen (h )sen( x )−cos (x )h

[ cos( x ) ] '=limh→0

cos( x )cos (h )−cos ( x )h

−limh→0

sen(h )sen ( x )h

[ cos( x ) ] '=limh→0

cos( x )⋅[cos(h )−1 ]h

−sen ( x )⋅limh→0

sen(h )h

[ cos( x ) ] '=limh→0

cos( x )⋅[cos(h )−1 ]h

⋅[cos(h )+1 ][cos(h )+1 ]

−sen (x )⋅(1)

[ cos( x ) ] '=limh→0

[cos2(h )−1 ]h

⋅cos ( x )cos (h )+1

−sen( x )

[ cos( x ) ] '=−sen ( x )−limh→0

sen2 (h)h

⋅limh→0

cos( x )cos(h )+1

[ cos( x ) ] '=−sen ( x )−limh→0

sen(h )h

⋅limh→0

sen( h)cos (x )cos(h )+1

[ cos( x ) ] '=−sen ( x )−(1)⋅sen(0 )cos( x )cos (0 )+1

[ cos( x ) ] '=−sen ( x )−02

[ cos( x ) ] '=−sen ( x )R // .

Page 7: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 7

15 . )Sea f ( x )=tg ( x )Hallar [ f ( x ) ] ' .

[ tg ( x ) ] '=limh→0

tg (x+h)−tg ( x )h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos (x+h )

−sen ( x )cos (x )

h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos ( x )−sen( x )cos ( x+h)h⋅[cos ( x+h)⋅cos( x ) ]

;α=x+h , β=x .

sen (α−β )=sen(α )cos ( β )−sen( β )cos (α )

[ tg ( x ) ] '=limh→0

sen ( x+h−x )h⋅[cos ( x+h)⋅cos( x ) ]

[ tg ( x ) ] '=limh→0

sen (h )h

⋅limh→0

1cos (x+h )⋅cos ( x )

[ tg ( x ) ] '=(1)⋅1cos( x+0 )⋅cos ( x )

[ tg ( x ) ] '=1cos (x )⋅cos (x )

≡1cos2( x )

=sec2( x )R // .

Page 8: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 8

15 . )Sea f ( x )=tg ( x )Hallar [ f ( x ) ] ' .

[ tg ( x ) ] '=limh→0

tg (x+h)−tg ( x )h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos (x+h )

−sen ( x )cos (x )

h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos ( x )−sen( x )cos ( x+h)h⋅[cos ( x+h)⋅cos( x ) ]

;α=x+h , β=x .

sen (α−β )=sen(α )cos ( β )−sen( β )cos (α )

[ tg ( x ) ] '=limh→0

sen ( x+h−x )h⋅[cos ( x+h)⋅cos( x ) ]

[ tg ( x ) ] '=limh→0

sen (h )h

⋅limh→0

1cos (x+h )⋅cos ( x )

[ tg ( x ) ] '=(1)⋅1cos( x+0 )⋅cos ( x )

[ tg ( x ) ] '=1cos (x )⋅cos (x )

≡1cos2( x )

=sec2( x )R // .

16 . )Sea f (x )=ctg( x )Hallar [ f ( x ) ]' .

[ ctg(x )] '=limh→0

ctg( x+h )−ctg( x )h

[ ctg(x )] '=limh→0

cos ( x+h)sen( x+h )

−cos ( x )sen( x )

h

[ ctg(x )] '=limh→0

sen( x )cos ( x+h)−sen (x+h )cos( x )h⋅[sen ( x+h)⋅sen( x ) ]

;α=x , β=x+h.

sen (α−β )=sen(α )cos ( β )−sen( β )cos (α )

[ ctg(x )] '=limh→0

sen( x−h−x )h⋅[sen ( x+h)⋅sen( x ) ]

[ ctg(x )] '=limh→0

−sen (h )h

⋅limh→0

1sen ( x+h )⋅sen ( x )

[ ctg(x )] '=(−1 )⋅1sen ( x+0)⋅sen( x )

[ ctg(x )] '=−1sen( x )⋅sen (x )

≡−1sen2 ( x )

=−csc2 ( x )R // .

17 . )Sea f (x )=sec( x )Hallar [ f ( x ) ] ' .

[ sec( x ) ] '=limh→0

sec( x+h)−sec( x )h

[ sec( x ) ] '=limh→0

1cos(x+h )

−1cos( x )

h

[ sec( x ) ] '=limh→0

cos(x )−cos ( x+h)h⋅[cos( x+h)⋅cos( x ) ]

[ sec( x ) ] '=limh→0

cos(x )−cos ( x )cos(h )+sen ( x )sen (h)h⋅[cos( x+h)⋅cos( x ) ]

[ sec( x ) ] '=limh→0

cos(x )⋅[1−cos (h )]h⋅[cos( x+h)⋅cos( x ) ]

+ limh→ 0

sen (x )sen( h)h⋅[cos ( x+h)⋅cos ( x )]

[ sec( x ) ] '=limh→0

cos(x )⋅[1−cos (h )]h⋅[cos( x+h)⋅cos( x ) ]

⋅[1+cos(h )][1+cos(h )]

+ limh→0

sen(h )h⋅¿

⋅limh→0

sen( x )[cos( x+h)⋅cos( x ) ]

¿

[ sec( x ) ] '=limh→0

[1−cos2(h )]h

⋅limh→ 0

cos( x )[cos(h )+1 ]⋅[cos(x+h )⋅cos ( x )]

+(1 )⋅sen ( x )cos ( x+0)⋅cos( x )

[ sec( x ) ] '=limh→0

sen2 (h )h

⋅limh→0

cos( x )[cos(h)+1 ]⋅[cos( x+h )⋅cos(x )]

+sen ( x )cos( x )⋅cos( x )

[ sec( x ) ] '=limh→0

sen (h )h

⋅limh→0

sen (h )cos ( x )[cos (h)+1 ]⋅[cos( x+h)⋅cos( x ) ]

+1cos( x )

⋅sen ( x )cos( x )

[ sec( x ) ] '=(1 )⋅sen (0)cos( x )[cos(0 )+1 ]⋅[cos ( x+0)⋅cos ( x )]

+sec( x )⋅tg( x )

[ sec( x ) ] '=02cos2 (x )

+sec ( x )⋅tg( x )

[ sec( x ) ] '=sec( x )⋅tg( x )R // .

18 . )Sea f ( x )=csc( x )Hallar [ f ( x ) ] ' .

[ sec( x ) ] '=limh→0

csc( x+h)−csc( x )h

[ csc( x ) ] '=limh→0

1sen ( x+h)

−1sen ( x )

h

[ csc( x ) ] '=limh→0

sen ( x )−sen( x+h )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )−sen( x )cos (h )−sen (h )cos( x )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

−limh→0

sen (h)cos ( x )h⋅[ sen( x+h )⋅sen ( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

⋅[1+cos (h )][1+cos (h )]

−limh→0

sen(h )h⋅¿

⋅limh→ 0

cos ( x )[ sen( x+h )⋅sen ( x )]

¿

[ csc( x ) ] '=limh→0

[1−cos2( h)]h

⋅limh→ 0

sen (x )[cos(h )+1 ]⋅[sen ( x+h)⋅sen ( x )]

−(1 )⋅cos( x )sen( x+0 )⋅sen ( x )

[ csc( x ) ] '=limh→0

sen2 (h )h

⋅limh→0

sen( x )[cos(h )+1 ]⋅[sen (x+h )⋅sen( x ) ]

−cos(x )sen ( x )⋅sen( x )

[ csc( x ) ] '=limh→0

sen (h )h

⋅limh→0

sen (h )sen( x )[cos (h)+1 ]⋅[ sen( x+h )⋅sen ( x )]

−1sen ( x )

⋅cos ( x )sen( x )

[ csc( x ) ] '=(1 )⋅sen (0) sen( x )[cos(0 )+1 ]⋅[ sen( x+0 )⋅sen ( x )]

−csc( x )⋅ctg( x )

[ csc( x ) ] '=02 sen2 ( x )

−csc( x )⋅ctg( x )

[ csc( x ) ] '=−csc( x )⋅ctg( x )R // .

Page 9: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Si f (x) es una funcion diferenciable y f -1(x) su inversa, halle [f -1(x)]’

D V N Ing. ELECTICA POTENCIA Página 9

18 . )Sea f ( x )=csc( x )Hallar [ f ( x ) ] ' .

[ sec( x ) ] '=limh→0

csc( x+h)−csc( x )h

[ csc( x ) ] '=limh→0

1sen ( x+h)

−1sen ( x )

h

[ csc( x ) ] '=limh→0

sen ( x )−sen( x+h )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )−sen( x )cos (h )−sen (h )cos( x )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

−limh→0

sen (h)cos ( x )h⋅[ sen( x+h )⋅sen ( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

⋅[1+cos (h )][1+cos (h )]

−limh→0

sen(h )h⋅¿

⋅limh→ 0

cos ( x )[ sen( x+h )⋅sen ( x )]

¿

[ csc( x ) ] '=limh→0

[1−cos2( h)]h

⋅limh→ 0

sen (x )[cos(h )+1 ]⋅[sen ( x+h)⋅sen ( x )]

−(1 )⋅cos( x )sen( x+0 )⋅sen ( x )

[ csc( x ) ] '=limh→0

sen2 (h )h

⋅limh→0

sen( x )[cos(h )+1 ]⋅[sen (x+h )⋅sen( x ) ]

−cos(x )sen ( x )⋅sen( x )

[ csc( x ) ] '=limh→0

sen (h )h

⋅limh→0

sen (h )sen( x )[cos (h)+1 ]⋅[ sen( x+h )⋅sen ( x )]

−1sen ( x )

⋅cos ( x )sen( x )

[ csc( x ) ] '=(1 )⋅sen (0) sen( x )[cos(0 )+1 ]⋅[ sen( x+0 )⋅sen ( x )]

−csc( x )⋅ctg( x )

[ csc( x ) ] '=02 sen2 ( x )

−csc( x )⋅ctg( x )

[ csc( x ) ] '=−csc( x )⋅ctg( x )R // .

19 .)Sea y=sen ( x )Hallar [ f −1 ( x ) ]' .[ y−1=arcsen (x )]≡[ sen( y )=x ]Por lo tanto( y−1 ) '=( x )' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=sen( y )∴( x ) '=cos( y )

sen( y )=cateto opuestohipotenusa

sen( y )=x1

∴ cos ( y )=√1−x2

Por lo tanto( y−1 )'=1

√1−x2R //,(−1< x<1 )

yaque sen ( y )es acot adaeneste int ervalo .

Page 10: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 10

20 .)Sea y=cos (x )Hallar [ f−1( x )] ' .[ y−1=arccos( x ) ]≡[cos ( y )=x ]Por lo tanto( y−1) '=( x ) ' .

Dado que( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=cos ( y )∴( x )'=−sen( y )

cos ( y )=catetoopuestohipotenusa

cos ( y )=x1

∴ sen ( y )=√1−x2

Por lo tanto( y−1 )'=−1

√1−x2R //,(−1< x<1 )

yaque cos( y )esacot ada eneste int ervalo .

21 .)Sea y=tg( x )Hallar [ f−1( x ) ] ' .[ y−1=arctg ( x )]≡ [tg ( y )=x ]Por lo tanto( y−1 ) '=( x )' .

Dado que( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=tg ( y )∴( x )'=sec2 ( y )

tg ( y )=catetoopuestocatetoadyacente

tg ( y )=x1

∴ cos( y )=1

√1+x2⇒sec ( y )=√1+x2

Por lo tanto( y−1 )'=1

1+x2R // .

Page 11: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 11

22 .)Sea y=ctg( x )Hallar [ f −1 ( x ) ]' .[ y−1=arcctg ( x )]≡ [ctg( y )=x ] Por lo tanto( y−1 )'=( x ) ' .

Dado que( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=ctg( y )∴( x ) '=−csc2( y )

ctg( y )=cateto adyacentecateto opuesto

ctg( y )=x1

∴sen ( y )=1

√1+x2⇒ csc ( y )=√1+x2

Por lo tanto( y−1 )'=−1

1+x2R // .

23 .)Sea y=sec( x )Hallar [ f −1 (x )] ' .[ y−1=arc sec( x ) ]≡[sec( y )=x ]Por lo tanto( y−1) '=( x ) ' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=sec( y )∴( x )'=sec( y )⋅tg( y )

sec( y )=hipotenusacatetoadyacente

sec( y )=x1

∴ tg( y )=√ x2−1

Por lo tanto( y−1 )'=1|x|⋅√ x2−1

R //, (1<|x|)

24 . )Sea y=csc ( x )Hallar[ f −1( x ) ] ' .[ y−1=arc csc ( x ) ]≡[csc ( y )=x ] Por lo tanto( y−1 )'=( x ) ' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=csc ( y )∴( x )'=−csc( y )⋅ctg( y )

csc ( y )=hipotenusacatetoopuesto

csc ( y )=x1

∴ ctg( y )=√x2−1

Por lo tanto( y−1 )'=−1|x|⋅√x2−1

R //, (1<|x|)

Page 12: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Demuestre formalmente las derivadas de las siguientes funciones

D V N Ing. ELECTICA POTENCIA Página 12

24 . )Sea y=csc ( x )Hallar[ f −1( x ) ] ' .[ y−1=arc csc ( x ) ]≡[csc ( y )=x ] Por lo tanto( y−1 )'=( x ) ' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=csc ( y )∴( x )'=−csc( y )⋅ctg( y )

csc ( y )=hipotenusacatetoopuesto

csc ( y )=x1

∴ ctg( y )=√x2−1

Por lo tanto( y−1 )'=−1|x|⋅√x2−1

R //, (1<|x|)

31 .)[ arg senh( x ) ] '=1

√x2+1.

32 .)[ argcosh( x ) ]'=1

√x2−1,( x>1 ).

33 .)[ arg tgh( x ) ] '=11−x2

,(|x|<1)

34 . )[arg ctgh( x ) ]'=1

1−x2.(|x|>1 )

35 .)[ argsec h( x ) ] '=−1

x⋅√1−x2

( 0<x<1) .

36 .) [argcsc h( x ) ] '=−1|x|⋅√1+ x2

( x≠0) .

25 .)[ senh ( x ) ] '=cos( x ) .26 .) [cosh ( x ) ] '=senh ( x ).27 .) [ tgh( x ) ]'=sec2h( x ).28 .)[ ctgh( x ) ]'=−csc2 ( x ).29 .)[ sech ( x ) ]'=−sec h( x )⋅tgh( x ) .30 .)[ csc h( x ) ]'=−csc h( x )⋅ctgh( x ).

senh( x )=ex−e−x

2. cosh ( x )=e

x+e−x

2.

tgh( x )=ex−e− x

e x+e−x. ctgh( x )=ex+e− x

ex−e−x.

sec h( x )=2ex+e− x

. csch (x )=2e x−e− x

.

Page 13: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 13

25 .) f (x )=senh( x )

[ senh( x ) ] '=limh→0

senh ( x+h)−senh (x )h

.

[ senh( x ) ] '=limh→0

ex+h−e−x−h

2−ex−e−x

2h

[ senh( x ) ] '=limh→0

ex+h−e−x−h−ex+e− x

2h

[ senh( x ) ] '=limh→0

(ex+h−ex )−(e−x−h−e− x )2h

[ senh( x ) ] '=limh→0

ex (eh−1 )2h

−limt→0

e−x (e−h−1 )2h

[ senh( x ) ] '=limh→0

ex

2⋅limh→0

eh−1h

−limh→0

e− x

2⋅limh→0

e−h−1h

[ senh( x ) ] '=ex

2⋅(1)−e

−x

2⋅(−1)

[ senh( x ) ] '=ex+e−x

2≡cosh ( x )R // .

26 .) f ( x )=cosh ( x )

[cosh ( x ) ] '=limh→0

cosh ( x+h)−cosh ( x )h

.

[cosh ( x ) ] '=limh→0

ex+h+e− x−h

2−e

x+e−x

2h

[cosh ( x ) ] '=limh→0

ex+h+e− x−h−ex−e− x

2h

[cosh ( x ) ] '=limh→0

(ex+h−ex )+(e− x−h−e−x )2h

[cosh ( x ) ] '=limh→0

ex (eh−1 )2h

+ limt→0

e−x (e−h−1 )2h

[cosh ( x ) ] '=limh→0

ex

2⋅limh→0

eh−1h

+ limh→0

e−x

2⋅limh→0

e−h−1h

[cosh ( x ) ] '=ex

2⋅(1)+e

−x

2⋅(−1)

[cosh ( x ) ] '=ex−e−x

2≡senh( x )R // .

Page 14: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 14

27 .) f ( x )=tgh ( x )

[ tgh ( x ) ]'=limh→0

tgh ( x+h)−tgh( x )h

.

[ tgh ( x ) ]'=limh→0

e x+h−e− x−h

e x+h+e−x−h−e

x−e− x

e x+e−x

h

[ tgh ( x ) ]'=limh→0

(ex+h−e−x−h ) (ex+e−x )−(e x+h+e−x−h) (e x−e− x )h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

(e2 x+h−e−h+eh−e−2 x−h )− (e2 x+h+e−h−eh−e−2 x−h)h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

(e2 x+h−e2 x+h)+(e−2 x−h−e−2 x−h)+2 (eh−e−h )h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

2 [ (eh−1 )− (e−h−1 ) ]h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

2

(ex+h+e− x−h) (ex+e− x )⋅[ limh→0

(eh−1 )−(e−h−1 )h ]

[ tgh ( x ) ]'=2(ex+0+e− x−0) (ex+e− x )

⋅[ limh→0

eh−1h

−limh→0

e−h−1h ]

[ tgh ( x ) ]'=2

(ex+e− x )2⋅(1−(−1 ))=[2(ex+e− x ) ]

2

=sec h2 (x )R // .

28 .) f (x )=ctgh( x )

[ctgh( x ) ] '=limh→ 0

ctgh(x+h )−ctgh( x )h

.

[ctgh( x ) ] '=limh→ 0

ex+h+e− x−h

ex+h−e−x−h−ex+e− x

ex−e−x

h

[ctgh( x ) ] '=limh→ 0

(ex+h+e−x−h ) (ex−e−x )−(ex+h−e−x−h ) (ex+e−x )h⋅(e x+h+e−x−h) (e x+e− x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h+e−h−eh−e−2 x−h)−(e2 x+h−e−h+eh−e−2 x−h )h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h−e2 x+h)+(e−2 x−h−e−2 x−h )−2 (eh−e−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2 [ (eh−1 )−(e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2(ex+h−e−x−h) (e x−e− x )

⋅[ limh→0 (eh−1 )−(e−h−1 )h ]

[ctgh( x ) ] '=−2(ex+0−e−x−0) (e x−e− x )

⋅[ limh→0 eh−1h

−limh→0

e−h−1h ]

[ctgh( x ) ] '=−2

(ex−e−x )2⋅(1−(−1 ) )

[ctgh( x ) ] '=−[2(e x−e− x ) ]2

[ctgh( x ) ] '=−csch2( x )R // .

Page 15: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 15

28 .) f (x )=ctgh( x )

[ctgh( x ) ] '=limh→ 0

ctgh(x+h )−ctgh( x )h

.

[ctgh( x ) ] '=limh→ 0

ex+h+e− x−h

ex+h−e−x−h−ex+e− x

ex−e−x

h

[ctgh( x ) ] '=limh→ 0

(ex+h+e−x−h ) (ex−e−x )−(ex+h−e−x−h ) (ex+e−x )h⋅(e x+h+e−x−h) (e x+e− x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h+e−h−eh−e−2 x−h)−(e2 x+h−e−h+eh−e−2 x−h )h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h−e2 x+h)+(e−2 x−h−e−2 x−h )−2 (eh−e−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2 [ (eh−1 )−(e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2(ex+h−e−x−h) (e x−e− x )

⋅[ limh→0 (eh−1 )−(e−h−1 )h ]

[ctgh( x ) ] '=−2(ex+0−e−x−0) (e x−e− x )

⋅[ limh→0 eh−1h

−limh→0

e−h−1h ]

[ctgh( x ) ] '=−2

(ex−e−x )2⋅(1−(−1 ) )

[ctgh( x ) ] '=−[2(e x−e− x ) ]2

[ctgh( x ) ] '=−csch2( x )R // .

29 .) f (x )=sec h( x )

[sec h( x ) ] '=limh→0

sec h( x+h )−sec h( x )h

.

[sec h( x ) ] '=limh→0

2

ex+h+e− x−h−2ex+e−x

h

[sec h( x ) ] '=limh→0

2 (ex+e− x )−2 (e x+h+e−x−h)h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

2 (−ex+h+ex−e− x−h+e−x )h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ (ex+h−ex )+(e−x−h−e−x ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ ex (eh−1 )+e−x (e−h−1 ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2(ex+h+e− x−h ) (ex+e− x )

⋅[ limh→0 ex (eh−1 )+e−x (e−h−1 )h ]

[sec h( x ) ] '=−2(ex+0+e− x−0 ) (ex+e− x )

⋅[ex limh→0 eh−1h

+e− x limh→0

e−h−1h ]

[sec h( x ) ] '=−2(ex+e−x )2

⋅(ex−e−x )

[sec h( x ) ] '=−2(ex+e−x )

⋅(ex−e− x )(ex+e−x )

[sec h( x ) ] '=−sech( x )⋅tgh( x )R // .

Page 16: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 16

29 .) f (x )=sec h( x )

[sec h( x ) ] '=limh→0

sec h( x+h )−sec h( x )h

.

[sec h( x ) ] '=limh→0

2

ex+h+e− x−h−2ex+e−x

h

[sec h( x ) ] '=limh→0

2 (ex+e− x )−2 (e x+h+e−x−h)h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

2 (−ex+h+ex−e− x−h+e−x )h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ (ex+h−ex )+(e−x−h−e−x ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ ex (eh−1 )+e−x (e−h−1 ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2(ex+h+e− x−h ) (ex+e− x )

⋅[ limh→0 ex (eh−1 )+e−x (e−h−1 )h ]

[sec h( x ) ] '=−2(ex+0+e− x−0 ) (ex+e− x )

⋅[ex limh→0 eh−1h

+e− x limh→0

e−h−1h ]

[sec h( x ) ] '=−2(ex+e−x )2

⋅(ex−e−x )

[sec h( x ) ] '=−2(ex+e−x )

⋅(ex−e− x )(ex+e−x )

[sec h( x ) ] '=−sech( x )⋅tgh( x )R // .

30 .) f (x )=csc h( x )

[csc h( x ) ] '=limh→0

csch( x+h )−csc h( x )h

.

[csc h( x ) ] '=limh→0

2

ex+h−e−x−h−2ex−e−x

h

[csc h( x ) ] '=limh→0

2 (ex−e−x )−2 (ex+h−e−x−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

2 (−ex+h+e x+e−x−h−e−x )h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ (ex+h−ex )−(e− x−h−e−x ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ ex (eh−1 )−e− x (e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2(ex+h−e−x−h) (ex−e− x )

⋅[ limh→0

ex (eh−1 )−e−x (e−h−1 )h ]

[csc h( x ) ] '=−2(ex+0−e−x−0 ) (ex−e− x )

⋅[ex limh→0 eh−1h

−e−x limh→0

e−h−1h ]

[csc h( x ) ] '=−2(ex−e−x )2

⋅(ex+e−x )

[csc h( x ) ] '=−2(ex−e−x )

⋅(ex+e− x )(ex−e−x )

[csc h( x ) ] '=−csch( x )⋅ctgh( x )R // .

Page 17: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Si f (x) es una funcion diferenciable y f -1(x) su inversa, halle [f -1(x)]’

D V N Ing. ELECTICA POTENCIA Página 17

30 .) f (x )=csc h( x )

[csc h( x ) ] '=limh→0

csch( x+h )−csc h( x )h

.

[csc h( x ) ] '=limh→0

2

ex+h−e−x−h−2ex−e−x

h

[csc h( x ) ] '=limh→0

2 (ex−e−x )−2 (ex+h−e−x−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

2 (−ex+h+e x+e−x−h−e−x )h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ (ex+h−ex )−(e− x−h−e−x ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ ex (eh−1 )−e− x (e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2(ex+h−e−x−h) (ex−e− x )

⋅[ limh→0

ex (eh−1 )−e−x (e−h−1 )h ]

[csc h( x ) ] '=−2(ex+0−e−x−0 ) (ex−e− x )

⋅[ex limh→0 eh−1h

−e−x limh→0

e−h−1h ]

[csc h( x ) ] '=−2(ex−e−x )2

⋅(ex+e−x )

[csc h( x ) ] '=−2(ex−e−x )

⋅(ex+e− x )(ex−e−x )

[csc h( x ) ] '=−csch( x )⋅ctgh( x )R // .

31 .)Sea y=senh ( x )Hallar [ f−1 (x )] ' .

x=senh( y )

sen( y )=ey−e− y

2

x=ey−e− y

22 x=e y−e− y

e y (2 x )=e y (e y−e− y )2 xe y=e2 y−1 ; t=e y

e2 y−2xe y−1=0t2−2xt−1=0

t=2 x±√4 x2+42

t=x+√ x2+1∨t=x−√x2+1e y=x+√x2+1y−1=ln (x+√ x2+1 )

( y−1) '=1

x+√x2+1⋅(1+x√x2+1 )

( y−1) '=1x+√x2+1

⋅(x+√ x2+1√x2+1 )

( y−1) '=1

√x2+1Por lo tanto( y−1 )'=1

√ x2+1R //

Page 18: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 18

32 .)Sea y=cosh ( x )Hallar [ f−1 (x )] ' .

x=cosh ( y )

cos ( y )=e y+e− y

2

x=ey+e− y

22 x=e y+e− y

e y (2 x )=e y (e y+e− y )2 xe y=e2 y+1; t=e y

e2 y−2xe y+1=0t2−2xt+1=0

t=2 x±√4 x2−42

t=x+√ x2−1∨t=x−√x2−1e y=x+√x2−1y−1=ln (x+√ x2−1 )

( y−1) '=1

x+√x2−1⋅(1+ x√x2−1 )

( y−1) '=1x+√x2−1

⋅( x+√x2−1√x2−1 )

( y−1) '=1

√x2−1Por lo tanto( y−1 )'=1

√ x2−1R //,( x>1)

33 .)Sea y=tgh( x )Hallar [ f−1( x ) ] ' .

x=tgh( y )

tg( y )=ey−e− y

e y+e− y

x=ey−e− y

e y+e− y

x (e y+e− y )=e y−e− y

xe y (e y+e− y )=e y (e y−e− y )xe2 y+ x=e2 y−1e2 y−xe 2 y=x+1e2 y (1−x )=x+1

e2 y=x+11−x

2 y−1=ln(x+11−x )y−1=1

2ln(x+11−x )

( y−1) '=12⋅(1−xx+1 )⋅1−x+1+x

(1−x )2

( y−1) '=12⋅2

(1+x ) (1−x )

Por lo tanto( y−1 )'=11−x2

R //,(|x|<1)

34 . )Sea y=ctgh( x )Hallar [ f −1( x ) ] ' .

x=ctgh( y )

ctg( y )=ey+e− y

e y−e− y

x=ey+e− y

e y−e− y

x (e y−e− y )=e y+e− y

xe y (e y−e− y )=e y (e y+e− y )xe2 y−x=e2 y+1xe2 y−e2 y=x+1e2 y ( x−1 )=x+1

e2 y=x+1x−1

Page 19: Demostraciones de Derivadas Por Medio de Limites

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 19

34 . )Sea y=ctgh( x )Hallar [ f −1( x ) ] ' .

x=ctgh( y )

ctg( y )=ey+e− y

e y−e− y

x=ey+e− y

e y−e− y

x (e y−e− y )=e y+e− y

xe y (e y−e− y )=e y (e y+e− y )xe2 y−x=e2 y+1xe2 y−e2 y=x+1e2 y ( x−1 )=x+1

e2 y=x+1x−1

2 y−1=ln(x+1x−1 )y−1=1

2ln(x+1x−1 )

( y−1) '=12⋅( x−1x+1 )⋅x−1−x−1

( x−1 )2

( y−1) '=12⋅−2

( x+1 ) (x−1 )

( y−1) '=−1x2−1

Por lo tanto( y−1)'=11−x2

R //,(|x|>1)

35 .)Sea y=sech ( x )Hallar [ f−1 (x )] ' .

x=sec h( y )

sec( y )=2e y+e− y

x=2e y+e− y

x (e y+e− y )=2xe y (e y+e− y )=2e yxe2 y+ x=2e y ; t=e y

xt2−2 t+ x=0

t=2±√4−4 x22 x

t=1+√1−x2

x∨t=

1−√1−x2

x

e y=1+√1−x2

x

y−1=ln(1+√1−x2

x )

( y−1) '=x

1+√1−x2⋅(−x2

√1−x2−1−√1−x2

x2)

( y−1) '=x

1+√1−x2⋅(−x2−√1−x2−1+x2

x2√1−x2 )( y−1) '=−x

1+√1−x2⋅(1+√1−x2

x2√1−x2 )Por lo tanto( y−1 )'=−1

x √1−x2R //,(0< x<1 )

36 .) Sea y=csc h( x )Hallar [ f −1 ( x ) ]' .

x=csc h( y )

csc ( y )=2e y−e− y

x=2e y−e− y

x (e y−e− y )=2xe y (e y−e− y )=2e yxe2 y−x=2e y ; t=e y

xt2−2 t−x=0

t=2±√4+4 x22 x

t=1+√1+x2x

∨t=1−√1+ x2x

e y=1+√1+x2x

y−1=ln(1+√1+x2x )

( y−1) '=x

1+√1+x2⋅(x

2

√1+x2−1−√1+x2

x2)

( y−1) '=x

1+√1+x2⋅(x2−√1+x2−1−x2

x2 √1+x2 )( y−1) '=−x

1+√1+x2⋅(1+√1+x2x2 √1+x2 )

Por lo tanto( y−1 )'=−1|x|⋅√1+x2

R //,( x≠0 )