Điện tư cho Truyền thông

Embed Size (px)

Citation preview

  • 7/27/2019 in t cho Truyn thng

    1/272

    Eecc f Cca

    Trn Quang Vinh VNU - 2014 Sde 11

  • 7/27/2019 in t cho Truyn thng

    2/272

    Course Outline

    2

  • 7/27/2019 in t cho Truyn thng

    3/272

    :

    Jacb Ma,, Ed. McGaH

    , , .

    :

    Ee e Maee, , Ed. Dd

    Chhe Me, , Ed. Lae

    Jea Aa, , Ed. Dd

    Ta Te Lag, , Ed. Ma

    Bdee, , Ed. Rad ( Teche de ge)

    3

  • 7/27/2019 in t cho Truyn thng

    4/272

    Eece 15%

    Mde Ea 25%

    Fa Ea 60%

    4

  • 7/27/2019 in t cho Truyn thng

    5/272

    Introduction for

    Information Transmission System

    1

    5

  • 7/27/2019 in t cho Truyn thng

    6/272

    1. Electronic system for information transmission

    Transmitter Input signal s(t), different frequency spectrums

    Baseband processor (noise filter, amplification, coder, decoder, )

    Modulator (carrier, mixer)

    Output amplifier to a transmission channel (line, antenna)

    Transmission channel and noise

    Receiver

    Demodulator (detector)

    Baseband processor

    Output signal s(t).

    6

  • 7/27/2019 in t cho Truyn thng

    7/272

    Presentation of signal in the time domain

    s(t)

    t0

    T = 2A

    -A

    () = ( + )() = (+T)

    +>

    2

    f

    S(f)

    f0+ f1 f0+ f2

    f

    average

    minmaxminmax

    ff

    )ff()ff(

  • 7/27/2019 in t cho Truyn thng

    22/272

    Meg a da ehd hch e chae baddh a.F eae, a caa cabe ha a baddh f 100' f Mh. Baebad eech a afe H

    Multiplexing

    Modulation and frequency shift

    22

  • 7/27/2019 in t cho Truyn thng

    23/272

    Th a eea 'eage' be aaed f baebad, hee he ae a he ae feec bad, adace b eag a f he ec.

    A eae f FDM badca ad (g ae LW, ed ae MW, .)

    Frequency Division Multiplexing FDM

    Modulation and frequency shift

    23

  • 7/27/2019 in t cho Truyn thng

    24/272

    TDM ahe f f eg baed ag hch a daeche. I TDM, ae f eea aage eage b, each eaed , ae aed a eece, .. he ae cc adacee .

    Time Division Multiplexing TDM

    Modulation and frequency shift

    24

  • 7/27/2019 in t cho Truyn thng

    25/272

    ( )

    Ceca TaeWae

    Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7 | Channel 8

    446,00625 | 446,01875 | 446,03125 | 446.04375 | 446.05625 | 446.06875 | 446.08125 | 446.09375 (MHz)

    12.5H

    446.05 MHz

    Modulation and frequency shift

    25

  • 7/27/2019 in t cho Truyn thng

    26/272

    Modulation and frequency shift

    26

    Transmitter

    Receiver

    X

    X

  • 7/27/2019 in t cho Truyn thng

    27/272

    AM radio transmitter and receiver with dual frequency shift.

    Modulation and frequency shift

    27

  • 7/27/2019 in t cho Truyn thng

    28/272

    1. Electronic Mixer

    (analog multiplier)

    2. Filters (low-pass, high-pass, band-pass, )

    3. Oscillator and voltage-controlled oscillator

    4. Amplifiers

    5. Add and substrate analog signals

    f0 ()=V.(2f0. ) () f= f0+ K ()

    Ae() ()=A . e()

    VCO

    e1()

    e2()

    ()= +e1() e2()+

    e1()

    e2()

    () = e1() . e2()

    Circuits for modulation and frequency shift

    Modulation and frequency shift

    28

  • 7/27/2019 in t cho Truyn thng

    29/272

    )]sin()[sin(

    2

    1)cos().sin(

    )]cos()[cos(2

    1)sin().sin(

    )]cos()[cos(2

    1

    )cos().cos(

    bababa

    bababa

    bababa

    ++=

    +=

    ++=

    )cos())(sin(

    )sin())(cos(

    xdx

    xd

    xdx

    xd

    =

    =

    Some trigonometric function :

    Non-linear circuit elements and mathematic tools

    Modulation and frequency shift

    29

  • 7/27/2019 in t cho Truyn thng

    30/272

    Fourier transform :

    )(.)2()()(

    )(.)()().()(*)(

    )().()(*)()(.)(

    )(11)(

    )()(

    )()()()(

    0

    2 0

    fXjffYFTdt

    xdty

    fYfXFTdtyXtytx

    dfyXfYfXFTtytx

    fFTFTt

    ffXFTetx

    fYbfXaFTtybtxa

    n

    n

    n

    tfj

    ==

    =

    =

    ++

    +

    +

    Some properties of the Fourier transform :

    Modulation and frequency shift

    30

  • 7/27/2019 in t cho Truyn thng

    31/272

    Phin tc thc chia lm 3 bng ln: Sng mt t ( Ground ware ), sng tri ( Skyware ) v sng truyn theo ng tm mt ( light of sight ) LOS.

    Slan truyn sng in ttrn knh truyn

    Sng mt t c di tn s< 2 MHz c khuynh hng truyn theo chu vi tri t, c

    dng phbin trong cc i AM. y sphsng a phng theo ng cong mt tv tn hiu truyn trn ng chn tri thy c.

    sbc xc hiu qu, antenna cn di hn 1/10 bc sng.V d: Vi sng mang fC = 10KHz, bc sng l: = C/fC = ( 3.108/ )/104H = 3.104 Nhvy, mt anten di t nht 3.000m bc xc hiu qumt sng in t10KHz!

    5. Propagation of RF waves

    31

  • 7/27/2019 in t cho Truyn thng

    32/272

    Sng tri c di tn s 2 30 MHz.Struyn ca sng ny da vo sphn xtng ion( ion sphere - tng in ly ) v mt t. Nh, c thtruyn mt khong rt xa.

    struyn sng, gc phn xv shao ht tn hiu ti mt im phn xtng ion ty thucvo f, vo thi gian trong ngy, theo ma v stc ng ca vt en mt tri.Ban ngy, g bhp thu, c rt t sng trli tri t.

    Ban m, xy ra hin tng khc xtng bc. Do sphn xnhiu ln gia tng ion vmt t, sng tri truyn i rt xa. V th, c nhng sng tri pht ra tnhng i xa bn kiatri t vn c ththu c trn bng sng ngn.

    32

  • 7/27/2019 in t cho Truyn thng

    33/272

    Sng truyn thng LOS cho di tn s > 30 MHz., sng in ttruyn theo ngthng, c rt t sng bkhc xbi tng ion. Sng struyn ngang qua tng ny. Tnh cht c dng cho thng tin vtinh.Cch truyn LOS bt li cho vic truyn thng tin gia 2 trm mt t, khi m ng i tnhiu phi trn ng chn tri. cong mt t schn ng truyn LOS.

    Anten pht cn phi t trn cao, sao cho anten thuphi thy c n.

    d2 + 2 = ( + h )2

    d2 = 2h + h2 h2

  • 7/27/2019 in t cho Truyn thng

    34/272

    A transmission line is a device designed to guide electrical energy from one point to another. It

    is used, for example, to transfer the output RF energy of a transmitter to an antenna. This

    energy will not travel through normal electrical wire without great losses.

    Although the antenna can be connected directly to the transmitter, the antenna is usually

    located some distance away from the transmitter.

    A transmission line is used to connect the transmitter and the antenna.

    The transmission line has a single purpose for both the transmitter and the antenna. This

    purpose is to transfer the energy output of the transmitter to the antenna with the least possible

    power loss. How well this is done depends on the special physical and electrical characteristics

    (impedance and resistance) of the transmission line.

    6. Transmission line

    34

  • 7/27/2019 in t cho Truyn thng

    35/272

    Two-Wire Open Line Two-Wire Ribbon Type Line Twisted Pair

    Shielded Pair Rigid (Air) Coaxial Line Flexible (Solid) Coaxial Lines

    Waveguides

    35

  • 7/27/2019 in t cho Truyn thng

    36/272

    Characteristic impedance, Z0, is the ratio of E to I at every point along the line. For maximum

    transfer of electrical power, the characteristic impedance and load impedance must be matched.

    The velocity at which a wave travels over a given length of transmission line can be found by

    using the formula:

    A transmission line that is not terminated in its characteristic impedance is said to be finite.

    When DC is applied to an open-ended line, the voltage is reflected back from the open end

    without any change in polarity, amplitude, or shape. Current is reflected back with the same

    amplitude and shape but with opposite polarity.

    When DC is applied to a short-circuited line, the current is reflected back with the same

    amplitude and polarity. The voltage is reflected back with the same amplitude but with

    opposite polarity.

    When AC is applied to an open-end line, voltage is always reflected back in phase with the

    incident wave and current is reflected back out of phase.

    36

    7 A

  • 7/27/2019 in t cho Truyn thng

    37/272

    After an RF signal has been generated in a transmitter, some means must be used to

    radiate this signal through space to a receiver. The device that does this job is the antenna.

    The transmitter signal energy is sent into space by a transmitting antenna; the RF signal isthen picked up from space by a receiving antenna.

    The cea aea a cdc, e f cdc, ha adae ece eecagec ae eeg. A dea aea ha a defe egh ad af daee, ad cee aed ace.

    The aea be abe adae effce he e ed b heae aed. A effce ag aea hae eacde. The de ae deeed b he ag feece. Thede f he eceg aea ae cca f eae adfeece. Hee, a he feec f he gabeg eceed ceae, hedeg ad aa f he eceg aea bece e cca.

    M acca ag aea ae dded bac cafca, he(hafae) aea ad Mac (aeae) aea.

    7. Antennas

    Introduction

    37

    Antenna

  • 7/27/2019 in t cho Truyn thng

    38/272

    38

    Antenna

  • 7/27/2019 in t cho Truyn thng

    39/272

    Curent and voltage distribution on antenna

    39

    Antenna

  • 7/27/2019 in t cho Truyn thng

    40/272

    Standing waves of current and voltage on an antenna

    40

    Antenna

  • 7/27/2019 in t cho Truyn thng

    41/272

    A half-wave antenna (referred to as a dipole, Hertz, or doublet) consists of two lengths of wire

    rod, or tubing, each one-quarter wavelength long at a certain frequency. It is the basic unit

    from which many complex antennas are constructed. The half-wave antenna operates

    independently of ground; therefore, it may be installed far above the surface of the earth or

    other absorbing bodies.For a dipole, the current is maximum at the center and minimum at the ends. Voltage is

    minimum at the center and maximum at the ends, as shown in figure.

    A half-wave antenna

    Development of

    Vertical and

    Horizontal Pattern

    41

    Antenna

  • 7/27/2019 in t cho Truyn thng

    42/272

    A one-half wavelength antenna is the shortest antenna that can be used in free space. If we cut a

    half-wave antenna in half and then ground one end, we will have a grounded quarter-wave or

    Marconi antenna. This antenna will resonate at the same frequency as the ungrounded half-wave

    antenna. Quarter-wave antennas are widely used in the military. Most mobile transmitting and

    receiving antennas are quarter-wave antennas.

    Quarter wave antennas

    Mobile Antennas

    Grounded Quarter-Wave Antenna Image

    42

  • 7/27/2019 in t cho Truyn thng

    43/272

    2

    43

    1 Components

  • 7/27/2019 in t cho Truyn thng

    44/272

    Passive devices

    ()

    ()

    A B

    ()

    () A B

    ()

    ()

    () = () () = ()/() = ()

    We hae: () = d()/d

    he () = C d()/d

    = =

    = 1/

    1. Components

    44

  • 7/27/2019 in t cho Truyn thng

    45/272

    Active devices

    FET and BJT transistors

    Operational amplifier

    da

    ce

    gae

    Nchae e

    ee

    bae

    cec

    +

    V

    V+

    Ve

    Ve

    VSAd(f)0

    0

    0

    0

    11

    +

    =

    +

    =

    j

    A

    f

    fj

    AA ddd

    Ace a fe ee:

    fT0 gf

    Ad

    0

    Addb

    f0LM741 TL081

    Ad0 . f0 = fT

    45

    2 Frequency Mixing circuits

  • 7/27/2019 in t cho Truyn thng

    46/272

    2. Frequency Mixing circuits

    ()

    ()

    () = .().()?

    Mixing x(t) and y(t)multiplying x(t) by y(t)

    :() =.()+.()2+.()

    3

    Linear region: vout(t) =A.vin(t)

    () =.()

    ()

    ()

    () =

    .()+.()2

    +.()3

    ()

    ()

    46

  • 7/27/2019 in t cho Truyn thng

    47/272

    Need to be minimized (intermodulation terms)

    nonlinear

    device

    y(t)

    x(t) vin(t)vout(t)

    multiplication

    Consequence :

    Any nonlinear device

    can act as a mixer

    Using a non-linear device to design mixers

    47

    If inis a signal with large amplitude:

  • 7/27/2019 in t cho Truyn thng

    48/272

    exp

    lnx(t)

    vs(t) =K.x(t).y(t)

    lny(t)

    cant be used at frequency higher than few MHz

    very sensitive to temperature variations

    works only for positives signals

    BUT !

    s(t) = RIs.exp(-e(t)/VT)

    +

    -e(t)

    R

    s(t)

    V

    I

    +

    -e(t)

    Rs(t)

    i = Is[exp(v/VT)-1]

    V

    s(t) = -VTln(e(t)/(RIs))

    ln function : logarithmic circuit based on op-amp exp function : exponential circuit based on op-amp

    Analogic multiplier based on op-amp

    48

  • 7/27/2019 in t cho Truyn thng

    49/272

    Application domain : high frequencies ( < 2 GHz)

    identical transistors

    vs= RC((i4-i3)+(i6-i5))

    x = va-vb

    y = vd-vc

    +

    )TU

    xexp(1

    2i6i

    ++++

    ====

    )TU

    xexp(1

    1i

    4i++++

    ====

    )TU

    yexp(1

    EI2i

    ++++

    ====

    )TU

    yexp(1

    EI1i

    ++++

    ====

    )TU

    xexp(1

    1i3i ++++

    ====

    )TU

    xexp(1

    2i5i

    ++++

    ====

    )vv).(vv(U4

    IRv cdba2

    T

    ECs ====

    The Gilbert cell

    T5

    T2T1

    T3 T6T4

    IE

    vc

    VCC

    RC RCvs

    vd

    va vb

    i3

    i1 i2

    i4 i5 i6

    i3+i5 i4+i6

    49

  • 7/27/2019 in t cho Truyn thng

    50/272

    Application domain :very high frequencies ( > 1 GHz)

    RF(t)=LO(t).sign(HF(t))

    RF(t)

    t

    HF(t) RF(t)

    LO(t)

    D1

    D2D3

    D4

    HF(t)

    t

    LO(t)

    t

    HF(t)=A.sin(2f0.t) LO(t)=B.sin(2f.t)

    A

    D

    B

    C

    N M

    Diode ring mixer

    Amplitude spectrum of RF wave.

    f0 3f0 7f0f5f0

    RF(f)

    50

    3. Frequency filter

  • 7/27/2019 in t cho Truyn thng

    51/272

    First-order passive filters

    51

    q y

  • 7/27/2019 in t cho Truyn thng

    52/272

    First-order active filters using op-amp

    52

    4. Oscillator

  • 7/27/2019 in t cho Truyn thng

    53/272

    Conditions for generation of an electronic oscillation

    Sinusoidal oscillators

    T be abe aae he cag cd Bac feedbac de ed. Heehe ca bc: A afe hch cdeed be debad

    ad a feedbac e ha a feec eece a h fge.

    The Barkhausen oscillation criteria is the condition that the system will be self-generating

    and will perform continuous oscillation:

    53

    Sinusoidal Oscillator

  • 7/27/2019 in t cho Truyn thng

    54/272

    Armstrong generator LC

    Three-point generators LC

    They are known as the Colpits oscillator and theHartley oscillator.

    54

    Sinusoidal Oscillator

  • 7/27/2019 in t cho Truyn thng

    55/272

    Crystal Oscillator

    High Quality factor Q = 104 105 The relative unstable is very small:

    The crystal has two resonance frequencies: a

    series resonance and parallel at S and P.

    for s= j, we have the crystal impedance:

    55

    Sinusoidal Oscillator

  • 7/27/2019 in t cho Truyn thng

    56/272

    RC oscillator at low-frequency

    Phase-shift oscillator

    Wien-bridge oscillator

    The basic structure of the phase-shift

    oscillator consists of a negative gain amplifier

    (-K) with a three-section (third-order) RC

    ladder network in the feedback. The circuit

    will oscillate at the frequency for which the

    phase shift of the RC network is 180 . Only atthis frequency will the total phase shift

    around the loop be 0 or 360 .

    56

    Relaxation Oscillator

  • 7/27/2019 in t cho Truyn thng

    57/272

    Relaxation oscillators

    Astable multivibrator

    57

    Relaxation Oscillator

  • 7/27/2019 in t cho Truyn thng

    58/272

    Mono-stable multivibrator (One-shot)

    58

    Relaxation Oscillator

  • 7/27/2019 in t cho Truyn thng

    59/272

    Bistable multivibrator (Latch)

    59

  • 7/27/2019 in t cho Truyn thng

    60/272

    The VCO has its oscillation frequency controlled by a voltage input.

    The frequency of oscillation is varied by the applied DC voltage, while modulating

    signals may also be fed into the VCO to cause frequency modulation (FM) or phase

    modulation (PM); a VCO with digital pulse output may similarly have its repetition rate

    (FSK, PSK) or pulse width modulated (PWM). Voltage-controlled harmonic oscillators generate a sinus waveform.

    Voltage-controlled relaxation oscillators can generate a sawtooth or triangular

    waveform.

    KVCO: gain

    Center frequency. 10 GHz or higher

    The Tuning range, 2

    1

    Variation in output phase and frequency as a

    result of noise on the control line is important.

    To minimize the effect, the VCO gain must be

    minimized (in conflict with the tuning range)

    Tuning linearity

    Voltage-controlled oscillator (VCO)

    60

    VCO

  • 7/27/2019 in t cho Truyn thng

    61/272

    LC sinusoidal VCOs using varicap

    Relaxation VCO using IC - 55561

  • 7/27/2019 in t cho Truyn thng

    62/272

    A phase-locked loop (PLL) is an electronic circuit that consist of a phase detector, a low-

    pass filter, and a voltage-controlled oscillator (VCO)

    Phase-locked Loop (PLL)

    The PLL can be used in a wide variety of applications:1. Frequency synthesis.

    2. Frequency demodulation (detection).

    The Phase Detector (PD) compares the phases of the input and output signals,

    generating an error that varies with the VCO frequency until the phases are aligned,i.e. the loop is locked.

    The PD output consists of a DC component (desirable) and high frequency

    components (undesirable).

    The PD output is therefore filtered by a low-pass filter (LPD).

    62

  • 7/27/2019 in t cho Truyn thng

    63/272

    A

    3

    63

    3.1. Introduction

  • 7/27/2019 in t cho Truyn thng

    64/272

    The carriersignalc(t), in continuous modulation is the sinusoidal wave.

    The modulating signal m(t)is the baseband signal (message signal) varies one of three

    parameters of carrier to leads to 3 basic types schemes created output modulated signal

    o(t)known as Amplitude Modulation AM, Frequency Modulation FM, and Phase

    Modulation PM.

    These types of modulation are carrier/continuous wave modulation

    Frequency & Phase Modulation are also known as Angle Modulation.

    64

    Example single tone modulation

    Introduction to analog modulation

  • 7/27/2019 in t cho Truyn thng

    65/272

    m(t) is a sinusoidal wave which is wanted to transmit:

    c(t) is also a sinusoidal in the high-frequency range:

    where (t) is the instantaneous phase , (t) = ct + (t)

    (t) is the deviation to the phase.

    0(t) is the output modulated signal :

    where K(t) amplitude of the modulated signal.

    If m(t) creates a change on:

    - K(t) Amplitude Modulation (AM)- (t) Phase Modulation (PM)- fi(t) Frequency Modulation (FM)- (t) and K(t) at the same time Angular modulation (QAM)

    Example, single-tone modulation

    65

    Introduction to analog modulation

  • 7/27/2019 in t cho Truyn thng

    66/272

    Glancing signals in the time domain

    66

    3.2. Amplitude Modulation

  • 7/27/2019 in t cho Truyn thng

    67/272

    Outline

    1. Idc AM

    2. Dbe SdebadSeed Cae Mda (DSBSC)3. Dbe Sdebad F Cae Ade Mda (DSBAM)

    4. Sge Sdebad Mda (SSB)

    5. QadaeAde Mda (QAM)

    6. Feec ec hfg

    67

    1. Introduction

  • 7/27/2019 in t cho Truyn thng

    68/272

    Amplitude Modulation (AM) allows the baseband signal to vary the amplitude of a

    carrier signal in accordance with the instantaneous voltage of the baseband signal.

    In the case of single-tone transmission:

    Modulating signal is the sinusoidal wave:

    Carrieris the sinusoidal wave: where c>> m

    Modulatedoutput signal 0is:

    There are 4 kinds of Amplitude Modulation techniques, namely:

    Double Sideband-Full Carrier maplitude modulation (DSBAM or AM)

    Carrier + Upper Sideband + Lower Sideband

    Double Sideband-Suppressed Carrier (DSBSC)

    Upper Sideband + Lower Sideband Single Sideband (SSB)

    Only one Sideband (Upper Sideband or Lower Sideband)

    Quadrature Amplitude Modulation(QAM)

    Transmit simultaneously two message signals in one channel.

    68

    M d l ti i d ( d l ti f t )

    Introduction

  • 7/27/2019 in t cho Truyn thng

    69/272

    Modulation index m (modulating factor) :

    AM waveform in time domain

    = 1

    < 1

    > 1

    69

    Frequency spectrum by the trigonometric identity:

    Introduction

  • 7/27/2019 in t cho Truyn thng

    70/272

    Thus, as the carrierfcis modulated by an information signalfm,

    new signals at different frequencies are generated as part of the

    process. These new frequencies are called side frequencies.

    ( ) ( )1

    2 = + +

    ( ) ( )2 2

    = + + +

    Sidebands of complex modulating signal

    If the modulating signal is a complex wave, such as voice or video, a whole range of

    frequencies modulate the carrier, and thus a whole range of sidebands are generated.

    The upper sideband fUSBand lower sideband fLSBare computed as:

    The total bandwidth is simply the difference between the upper and lower sideband

    frequencies:

    70

    2. Double Sideband Suppressed Carrier modulation ( DSB-SC)

  • 7/27/2019 in t cho Truyn thng

    71/272

    - 0(t) and c(t) processes the same frequency and are in phase

    - k has the dimension volt

    -1

    amplitude of 0(t) is directly proportional to m(t)

    Signal

    (u.a.

    )

    mt (rd)

    m(t)

    320

    Temporal evolution of 0(t) for an arbitrary signal m(t)

    just a voltage multipier !

    It is a balanced modulator

    - 0(t) follows m(t) when the m(t) signal is positive

    and m(t) for negative values

    This modulation with suppressed carrier is not

    directly used but this is the bases for more evoluated

    modulations

    m(t)

    DSB-SC modulator

    71

    Time domain and frequency spectrum

    DSB-SC

  • 7/27/2019 in t cho Truyn thng

    72/272

    Time domain and frequency spectrum

    72

    Waveform and spectrum of the single-tone AM wave.

    Spectrum of complex baseband signal and its AM waves spectrum

    Circuits for DSB-SC modulator

    DSB-SC

  • 7/27/2019 in t cho Truyn thng

    73/272

    73

    DSB-SC

  • 7/27/2019 in t cho Truyn thng

    74/272

    Mda

    The cae e ae cdeab hghe

    feec ad ade ha hedag ga.

    The cae e ae ed a a ce ffad ad eee ba f he dde.

    The cae he dde ff ad a a

    hgh ae f eed.

    The dde ac e che ha cec hedag ga a he ecda f he a f .

    74

    DSB-AM

    3. Double Sideband Full Carrier modulation (DSB-AM)

  • 7/27/2019 in t cho Truyn thng

    75/272

    ( ) ( )( ) ( )

    1 1

    1 1

    = =

    +

    Thus, is the modulation index

    In fact, the message signal is not only the sinusoidal wave, so m should be presented by an

    arbitrary function -1 e(t) 1 :

    with

    DSB-AM modulator

    75

    Time domain

    DSBAM

  • 7/27/2019 in t cho Truyn thng

    76/272

    Frequency domain and Bandwidth requirement for DSB-AM

    In general, the message signal m(t) will not be a single 'sine' wave, but a band of frequencies

    extending up toBHz as shown.

    Signal(u.a.

    )

    mt (rad)

    320

    a) m < 1

    1 + m e(t)

    -(1 + m e(t))

    Signal(u.a.

    )

    mt (rad)

    320

    b) m = 1

    Signal(u.a.

    )

    mt (rad)

    320

    c) m > 1

    Time domain

    76

    Power relations in DSB-AM waveform

    DSBAM

  • 7/27/2019 in t cho Truyn thng

    77/272

    In radio transmission, the AM signal is amplified by a power amplifier and fed to the antenna

    with a characteristic impedance that is ideally, but not necessarily, almost pure resistance. The

    AM signal is really a composite of several signal voltages, namely, the carrier and the two

    sidebands, and each of these signals produces power in the antenna. The a aede he f he cae e ad he e he debad USB

    ad LSB:

    he e a AM ga dbed ad cacaed b gg bac he ga AMea:

    hee he f e he cae, he ecd e he e debad, ad he hde he e debad.

    F e caca, ae be ed f he age. Ce f ea b ddg he ea ae b g b 0.707. The cae ad debad

    age ae he

    77

    The power in the carrier and sidebands can be calculated by using the power formula2

    DSBAM

  • 7/27/2019 in t cho Truyn thng

    78/272

    where P = V2

    /R is the output power, Vis the rms output voltage, andRis the resistive part ofthe load impedance, which is usually an antenna.

    Use the coefficients on the sine and cosine terms above in the power formula:

    If e ee he debad e e f he cae e, he a e bece

    Finally, we get a handy formula for computing the total power in an AM signal when

    the carrier power and the percentage of modulation are known:

    For 100% modulation (m = 1), he a debad e aa ehaf ha f hecae e. Whe he eceage f da e ha he 100, hee ch e e he debad.

    78

    Power with e(t)?

    DSBAM

  • 7/27/2019 in t cho Truyn thng

    79/272

    )t(eofpowerthebeingPlet e

    tcos)t(me(V)t(v cco += 1

    >===1 fading

    - Good security due to not knowing the carrier frequency limitary used.

    Introduction

    83

    SSB - AM

    SSB AM modulator

  • 7/27/2019 in t cho Truyn thng

    84/272

    The first step in generating an SSB signal is to create a DSBSC wave with no power is wasted

    on the carrier. The second step is to filter out the wanted sideband (USB or LSB).

    h () = c , e a e:

    ( ) ( ) ( )( ) ( )( )

    = + + +

    The SSB filter removes the LSB (say) and the output is

    ( ) ( ) ( )( )

    = + +

    For SSBSC, output signal = ( ) ( )( )2

    = +

    ()

    ()

    ()

    84

    Single-tone SSB-AM

    SSB - AM

  • 7/27/2019 in t cho Truyn thng

    85/272

    Modulating

    voltage

    Caeeedaef DSBSC

    Sgedebadaef SSB

    85

    Sideband spectrum of SSB-AM

    SSB - AM

  • 7/27/2019 in t cho Truyn thng

    86/272

    86

    Power in SSB

    SSB - AM

  • 7/27/2019 in t cho Truyn thng

    87/272

    he a e he DSB ga

    Hece, f ad ae , he cae e ad e e debad a bedeeed. Aeae, ce SSB ga =

    he he e SSB ga (Naed Aeage Pe)

    2 2 2

    12 4 4

    = + = + +

    ( ) ( ) ( )( )2

    = + +

    22 2 2

    2 2 82 2

    = + = +

    =2 2

    2 8

    +

    87

    SSB d l t i th filt i th d

    SSB - AM

  • 7/27/2019 in t cho Truyn thng

    88/272

    SSB modulator using the filtering method

    Baace

    da

    C02 10 MH

    Baace

    da

    Fe Fe

    C01100 H

    300 3400 H

    100.3 103.4 H 10.1003 10.1034 MH

    Eag e de bad f a eed cae ga.

    T eae:

    A eehe ca h a he e debad:

    0= 60 H; = 300 3400 H.

    h hghe cae feec, bece e dffc de e eee fe eee.

    = 600 H / 10 MH f 0 0.006%

    0

    88

    SSB modulator using the phase shift method

    SSB - AM

  • 7/27/2019 in t cho Truyn thng

    89/272

    SSB modulator using the phase-shift method

    Baaceda

    9090

    Baaceda

    +

    Mc

    M

    Vc c

    Vcc c

    E0c(c)

    E0/2[c(c) c (c+)]

    E0/2[c(c) + c (c+)]

    89

    Applications of DSB and SSB

    B th DSB d SSB t h i id l d i i ti SSB i l till

  • 7/27/2019 in t cho Truyn thng

    90/272

    Both DSB and SSB techniques are widely used in communication. SSB signals are still

    used in some two-way radios. Two-way SSB communication is used in marine applications,

    in the military, and by hobbyists known as radio amateurs (hams). DSB signals are used in

    FM and TV broadcasting to transmit two-channel stereo signals and to transmit the color

    information for a TV picture.

    An unusual form of AM is that used in TV broadcasting.

    Vestigial sideband transmission of a TV picture signal.

    90

    5. Quadrature Amplitude Modulation (QAM)

  • 7/27/2019 in t cho Truyn thng

    91/272

    QAM (quadrature amplitude modulation) is a method of combining two AM

    signals into a single channel, thereby doubling the effective bandwidth. QAM is

    used also with pulse amplitude modulation (PAM) in digital systems, especially in

    wireless applications.

    In a QAM signal, there are two carriers, each having the same frequency but

    differing in phase by 90 degrees (one quarter of a cycle, from which the term

    quadrature arises). One signal is called the I signal, and the other is called the Q

    signal.

    Mathematically, one of the signals can be represented by a sine wave, and the other

    by a cosine wave.

    The two modulated carriers are combined at the source for transmission. At the

    destination, the carriers are separated, the data is extracted from each, and then the

    data is combined into the original modulating information.

    91

    QAM Modulator

    QAM

  • 7/27/2019 in t cho Truyn thng

    92/272

    s(t) = V1e1(t) cos(ct) + V2e2(t) sin(ct)

    +

    +

    Sec

    92

    Example, a QAM mono-tone modulation

    Cae :

  • 7/27/2019 in t cho Truyn thng

    93/272

    ttVm

    ttVV

    tV

    tVVV

    tttVVttVVtVts

    cc

    cc

    cccc

    ccccccc

    2sincos2

    2coscos2

    2cos2

    cos22

    sincoscoscoscoscos)(

    22

    11

    11

    22

    2

    11

    2

    1

    ++++=

    ++=

    ttVV

    tV

    ttVV

    tVV

    ttVVtttVVttVts

    cc

    cc

    ccc

    cccccccc

    2sincos2

    2sin2

    2coscos2

    cos2

    sincossincoscossincos)(

    11

    22

    22

    2

    22112

    ++=

    ++=

    Vc(1

    +L+R)

    Vc(L R)

    Cae :

    Meage ga 1:

    Meage ga 2:

    93

    Demodulator

    QAM

  • 7/27/2019 in t cho Truyn thng

    94/272

    /2

    sr(t)

    pr(t) = A1cos(2f0t + )

    s1(t)

    s2(t)

    d1(t) = e1(t) + ...X

    X d2(t) = e2(t) + ...

    k

    k

    ( )

    ( )

    ++=

    ++=

    )sin(sin)(cos)()(

    )cos(sin)(cos)()(

    010220112

    010220111

    tkAtteVtteVts

    tkAtteVtteVts

    +=

    =

    cos2

    )(sin2

    )()(

    sin2

    )(cos

    2

    )()(

    2211112

    2211111

    teVkAteVkAtd

    teVkAteVkAtd

    94

    6. Frequency shifting

    The bac ea ed gedebad da fac a

    Frequency shift

  • 7/27/2019 in t cho Truyn thng

    95/272

    The bac ea ed ge debad da fac af f .

    SSB da ee efeed a , , .

    The fe.

    Bada fe baddh: ea ha f he daed ga ()ed a .

    95

    Due to frequency translation performed by the mixer : We may set

    Frequency shift

  • 7/27/2019 in t cho Truyn thng

    96/272

    The band-pass filter rejects the unwanted frequency and keeps the desired

    one.

    Mixing is a linear operation operation.

    96

    Frequency shift structure

    Frequency shift

  • 7/27/2019 in t cho Truyn thng

    97/272

    da

    BFca HF ca

    Fe bad

    a

    I

    ga

    Modulation with a first frequency

    - Shift of the spectra to the adapted channel with a mixer

    (the second operation is realized via a second multiplier)

    97

    Frequency shift of a modulated signal with a sine carrier

    Frequency shift

  • 7/27/2019 in t cho Truyn thng

    98/272

    k

    c(t) = C1cos(1t)

    s(t)

    B is the bandwidth of s(t)

    ( ) ( ) ( ) ( )( ) ( ) ( )( )1 0 1 0 12 2 2 22

    = + + + +

    f+B+fHfB fH-B+fH

    |S(f)|

    +B-fB-B+fB0

    If |f0-f1| > B spectrum of s(t) is formed with two componantes :

    - one centered at : fB= |f0-f1| shifted to the lower frequencies

    - the second centered on : fH= f0-f1shifted to the HF frequencies

    The desired band is then selected with a band-pass filter

    98

    Amplitude modulation and Frequency shift

    Frequency shift

  • 7/27/2019 in t cho Truyn thng

    99/272

    e()

    8.8

    196156 & 196

    15

    20

    176

    0 5 20 25 156 196

    20

    191 196 201

    15

    AM modulation is between 440 and 490 kHz and the carrier waves are ranging

    from 30 kHz to 3 MHz.

    Deg f a a e h ade da ad e 8.8

    99

    Thee ae 2 a ehd f AM Deda:

    3.3. AM Demodulation Analog modulation

  • 7/27/2019 in t cho Truyn thng

    100/272

    Eee ched deec

    Sched chee deda.

    100

    1. Envelope or non-synchroned detection

  • 7/27/2019 in t cho Truyn thng

    101/272

    101

    R i d i l|A(f)| baseband

    s(t) C (1+m e(t)) cos( t) with m A k

    Envelope Detection

  • 7/27/2019 in t cho Truyn thng

    102/272

    R Cs(t) u(t)

    demodulation : the ideal case m < 102

    1

    2

    1

    fRC

    FM >>>>

    Received signal :

    fFM0-FM

    R Cs(t) u(t)

    B

    u1(t)

    u(t)

    C0(1+m)

    s(t)

    t

    C0(1-m)

    -C0(1-m)

    -C0(1+m)

    tBm C0

    -Bm C0

    s(t) = C0(1+m e(t)) cos(ct) with m = A0k

    102

    Envelope Detection

  • 7/27/2019 in t cho Truyn thng

    103/272

    M

    2

    0 Fm2

    m1RCf2

    1

  • 7/27/2019 in t cho Truyn thng

    104/272

    Chaacec.

    The dde chaacec f he f () = + + + ..., hee

    ..DSBAM ga( ) ( ) = +

    104

    .. ( )( ) ( ) ( )( ) ( )( )2

    + + + +

    Envelope Detection

  • 7/27/2019 in t cho Truyn thng

    105/272

    =

    =

    =

    ( ) ( ) ( ) ( ) ( )22 22

    + + + + +

    ( ) ( ) ( ) ( ) ( )22 1 1

    2 22 2

    + + + + +

    ( ) ( ) ( ) ( )

    ( )2

    2 222

    2 2 2 2

    + + + + + +

    'LPF' ee ce.

    Output signal = ( )2

    2

    + + ..he ca ()

    105

    Example,

    Demodulation of an AM signal by a crystal radio

  • 7/27/2019 in t cho Truyn thng

    106/272

    106

    2. Synchronised or Coherent Detection

    Synchronous Detection

    Detector structureVx(t) ( )AM

  • 7/27/2019 in t cho Truyn thng

    107/272

    m(t)

    Vx(t) sout(t)

    k

    c(t) = Vccos(ct)Local oscillator

    (synchronous)

    AM

    Analysing this for a DSBAM input : AM input = ( )( ) ( ) +

    Vx= AM input LO =

    = =

    ( ) ( )2 + ( ) ( ) ( ) = +

    ( ) ( )1 1

    22 2

    + +

    ( ) ( ) ( )

    ( )2 22 2 2 2

    + + +

    The AM input has been 'split into two' 'half' has moved or shifted up to :

    and half shifted down to baseband, and( )

    ( ) ( )2 2 22

    +

    2

    Vc ( )2

    tm

    107

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    108/272

    The signal spectrum

    from 'modulator to Vx'

    108

    Analysis

    Sch deec hd e f bh ga f DSBAM ad DSBSC

    Detect for AM input signal of DSB full carrier

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    109/272

    Detect for AM input signal of DSB full carrier

    The ea f DSB

    dhed cae eed cae be e.

    hee Ca f cae (DSBAM),

    Hece, = AM I LO

    Sce

    ( ) ( ) +

    ( )( ) ( ) ( )( ) = + + +

    ( ) ( )1

    2 = + +

    ( )( ) ( )( ) ( )( )2

    + = + + + + + +

    ( )( )( ) ( )2

    2 2

    = + + + + +

    ( )( ) ( ) ( ) ( )( ) ( ) ( )2 22 2 2 2

    = + + + + + + + + +

    109

    The LPF h a cff feec fcH ee he ce a 2c(.e.

    ce abe c) ad hece( )

    ( )

    = + + +

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    110/272

    Ob, f ad e hae, a e

    Consider now if is equivalent to a few Hz offset from the ideal LO:

    The output, if speech and processed by the human brain may be intelligible, but wouldinclude a low frequency 'buzz' at , and the message amplitude would fluctuate. Therequirement = 0 is necessary for DSBAM.

    ( )2 2

    = + + +

    0= 0=

    ( )2 2

    = +

    ( ) ( ) ( )2 2

    = +

    Consider now that = 0 but 0, i.e. the frequency is correct at cbut there is aphase offset. Now we have

    'c()' cae fadg (.e. ade edc) f he .

    ( ) ( )

    ( )2 2

    = +

    110

    The 'VC' ce a, b cde f (),

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    111/272

    f (900), .e.

    (1800),f .e.

    The hae e f = a be a be f eech c, b a bea be f h e f da ed dedae PRK

    Hee, he a be ha a ceae ad he ga egh

    ge eae (fade) ad a he e

    2

    = 0=

    2

    cos

    ( )0=

    2

    cos

    2

    tm=Vout

    2

    =

    ( )( ) ( )tm=cos

    2

    tm=Vout

    2

    ( ) 1=cos

    2

    111

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    112/272

    Thus the requirement for = 0 and = 0 is a 'strong' requirement for DSB amplitudemodulation.

    112

    The ea f SSB h a cae deedg VC

    Detect for AM input signal of SSB

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    113/272

    .e. ag

    Hence

    =

    ( ) ( )2

    + +

    ( ) ( ) =

    ( ) ( ) ( )( )2

    = + + + +

    ( )( ) ( )

    ( )( ) ( )( )

    22 2

    24 4

    + + + + +

    + + + + +

    113

  • 7/27/2019 in t cho Truyn thng

    114/272

    The Local Oscillator (LO) must be synchronised or coherent, i.e.at the same frequency andin phase, with the carrier in the AM input signal. If the LO is not perfectly synchronised to

    Requirement for carrier recovery

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    115/272

    -f f0ff + FMf - FM

    |D(f)|

    the carrier, it will be mixed between high and low frequencies after passing low-pas filter.

    If the AM input contains a small or large component of the carrier frequency, the LO may be

    derived from the AM input as shown below.

    Conclusion :

    Carrier recovering is required

    115

    Carrier recovering using PLL

    Synchronous Detection

    Systems without the emission of the carrier wave. Recover the carrier wave is then needed :

    Phase lock loop (PLL) or Quadratic filter.

    Xsr(t) u(t)

  • 7/27/2019 in t cho Truyn thng

    116/272

    When the PPL is stabilized both frequencies at the input of the phase comparator are equal

    )()(0

    tavftfi

    +=

    )(cos)( tAtyy

    =

    cos)(

    2

    1aVtav

    dt

    d==

    ++=

    +

    t

    yy constduumeAakAtAakA

    t

    0

    00)(

    42

    )(tanln

    )2

    2cos()(0

    += tfYty

    VCO

    dt

    df

    dt

    dtf

    i

    2

    10

    2

    1)( +=

    =

    0ff

    c

  • 7/27/2019 in t cho Truyn thng

    117/272

    0 2fm 2f02f0 - 2fm 2f0 + 2fm

    Va(f)4fm

    f

    mf

    fQ

    2

    0=

    PLLZero level

    comparator:2 pr(t)

    sinus => square

    w(t)

    k

    sr(t)

    Centr 2f0

    Q grand

    v(t)w(t)

    ( ) ( )( ) ( )( )tf4costf4cos1tf4cos14

    kA)t(v 0mm

    2r +++=sr(t) = A cos(2fmt) cos(2f0t)

    y(t), 2f0

    117

    * General case : e(t)

    Synchronous Detection

  • 7/27/2019 in t cho Truyn thng

    118/272

    0 2Fm 2f0

    Va(f)

    f2FM

    2f0- 2Fm 2f0+ 2Fm

    PLL

    Centered on 2f0

    s(t) :2 pr(t)Zero level

    comparator

    sinus => square

    Demodulated

    AM output

    118

    Outline

    3.4. Angle modulation Analog modulation

  • 7/27/2019 in t cho Truyn thng

    119/272

    1. Idc

    2. Phae da

    3. Feec da

    4. FM deec

    119

    1. Introduction

  • 7/27/2019 in t cho Truyn thng

    120/272

    Phase and frequency modulation are examples of the angle modulation.

    Before 1980, the main purpose of phase modulation is the generation of

    frequency modulated wave for FM generators of commercial purpose. In the last 25 yeas, the phase modulation becomes the important thing for the

    transmission of digital data.

    Frequency modulation also to be applied for digital transmitters and is one of

    two modulation forms which have signification in the century of 21.

    120

    Phase modulation

    Structure of a phase modulator consists of the modulating input signal and the

    carrier. The output phase modulated signal has a constant amplitude with a phase angle

    i i l h li d f h d l i i l

    Introduction

  • 7/27/2019 in t cho Truyn thng

    121/272

    )tsinMktcos(Vv mpccout ++= 0

    he haedaed age.Msinmt is the sinusoidal modulating signal c is the carrier frequency ca deeed b he cc aaee

    When the maximum value of Vmis applied to the modulator, the largest phase deviationsoccur.

    Then mp = kpMmax is called thephase modulation index.

    varies proportional to the amplitude of the modulating signal.

    121

    zero phase signal

    Advancing phase signal A chage hae a a chage

    feec. Dffeeag he age

    aae hae h eec

    Introduction

  • 7/27/2019 in t cho Truyn thng

    122/272

    time

    )sin( 0 tMkt mpc ++=

    tMkdt

    dmmpc

    cos+==

    mpMk= mpMfkf =

    Frequency deviation depends on both: amplitude and also frequency of the modulatingsignal !!

    e chage hae, e hae a :

    The a ada feec fdf:

    The unmodulated frequency (M=0) is c, whereas the modulated frequency deviatesfrom this value in both the positive and negative directions by a maximum value of:

    122

    Frequency modulation

    Frequency modulation occurs when the frequency of a carrier signal changes in accordance

    to a modulating signal.

    F l i i h f d i i i li i d d h

    Introduction

  • 7/27/2019 in t cho Truyn thng

    123/272

    tcosMkff mfc +=

    Mkf f=

    m

    f

    m

    f

    f

    Mk

    f

    fm =

    =Index of modulation:

    Bandwidth: (Carsons rule): )(2 mffBW +=

    For almost communication system, the frequency deviation is linearity depend on to the

    amplitude of the modulating signal.

    The expression for frequency of an FM signal with sinusoidal modulation is:

    The feec dea f he FM ga

    he a chage feec ad:

    Frequency Deviation depends on only the amplitude of modulating signal:

    The de f da f a edaed FM ga defed a he afeec dea f he aef dded b he da feec:

    where kfis constant andMis magnitude of the

    modulating signal applied to the frequency

    modulator.

    123

    Introduction

  • 7/27/2019 in t cho Truyn thng

    124/272

    Dg each cce f he dag ga, , he feec f e f fc fa,he bac fc, he fhe bac fc. The agde f ea ca.

    The feec dea:

    F FM, a chage dag feec , f, de chage f a d PM. A ceae dag ga ade, M, ceae fa, deceae f, ad hee b

    ceae f.

    F a ca fc f 100.1 MH ceca FM, he a feec dea, ed b

    he FCC, fa= 75 H. Th, fa= 100,175 H ad f= 100,025 H. The afeec chage e ha 0.1%.

    minmax fffff cc ==

    124

    2. Phase modulation

    )tsinMktcos(Cvmpcout

    ++=0

    mp = kpMmax

    The phase varies linearly with the applied modulating signal. The maximum phase shift is

    given by the index of phase modulation, which is:

  • 7/27/2019 in t cho Truyn thng

    125/272

    p p max

    Using 2 quadrature sinusoids of the same frequency create a resultant sinusoidwith phase shift

    )sin( += tDv c

    tAv csin1 =

    tBv ccos2 =

    22 BAD +=

    ABactg=

    ttmVv cmc cos)]cos1([2 +=

    ttkMVv cmc cos)]cos1([2 +=

    the phase will be modulated in accordance withM cos mt.The constant kis afunction of the amplitude modulator and kM equals m, the index of modulation.

    Phase modulators based on amplitude modulators

    g y p

    125

    Phasor representation

    Phase modulator

  • 7/27/2019 in t cho Truyn thng

    126/272

    of signals

    With the index of modulation for AM signal 100% then results in a phase

    deviation only of 7

    A

    tkMVactg mc

    )cos1(

    +=

    The phase modulator must exhibit a linear relationship between the phase angle

    and the modulating signal. It is adapted when actg

    A

    tkMV mc )cos1( +

    126

    Phase modulator

    Phase modulator

  • 7/27/2019 in t cho Truyn thng

    127/272

    90

    A

    1

    2

    out

    - Limitation of the output amplitude

    - The operating range is narrow: with the index of modulation for AM

    signal 100% then results in a phase deviation only of 7

    127

    Circuit for large-deviation phase modulator

    Phase modulator

  • 7/27/2019 in t cho Truyn thng

    128/272

    Circuit used a varistor (silicon-carbide voltage variable resistor). The modulator

    allows linear phase shifts of 50or greater and does not require an amplitude

    limiter.

    128

    The frequency modulator should produce a frequency deviation

    that is a function of the amplitude of the modulating signal, but is

    3. Frequency modulation

  • 7/27/2019 in t cho Truyn thng

    129/272

    p g g

    independent of modulation frequency.

    The phase modulator produce an output with a frequency that isdependent on both modulation signal amplitude and frequency.

    If a modulating signal is integrated and then applied to a phase

    modulator, a frequency-modulated signal results, with a frequency

    deviation that is not a function of modulation frequency.

    129

    The indirect method of frequency modulation

    Using the phase modulator with the frequency deviation do not depend on

    f f th d l ti i l

    Frequency modulator

  • 7/27/2019 in t cho Truyn thng

    130/272

    frequency of the modulating signal

    mpMk =

    tfMkff mmpc cos+=

    Phase

    modulation

    tMkff mfc cos+=Frequencymodulation

    Mkff

    =

    tM

    mm

    sin1

    11 Mk

    Mk pm

    m

    p ==

    130

    == tMktdtMke mm

    ImII

    sincos

    Frequency modulator

  • 7/27/2019 in t cho Truyn thng

    131/272

    If a modulating signal is integrated and then applied to a phase modulator, a frequency-

    modulated signal results, with a frequency deviation that is not a function of modulation

    frequency

    131

    Frequency modulator

  • 7/27/2019 in t cho Truyn thng

    132/272

    The Armstrong or Indirect method of FM waveform generation

    132

    The direct method of FM generation

    Frequency modulator

  • 7/27/2019 in t cho Truyn thng

    133/272

    Frequency reference signal is produced from the crystal oscillator

    - dc error signal is a result of the frequency comparison between VCO and reference

    133

    1. Convert the frequency variation of the signal into an

    amplitude variation and then applies an AM detector.

    T a:

    3.5. FM detection

  • 7/27/2019 in t cho Truyn thng

    134/272

    2. Use Phase-Locked Loop for FM detection if an

    accurate frequency reference is available

    134

    Foster-Seeley discriminator

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    135/272

    Reace

    Off eace

    135

    FM detector using the phase-locked loop PLL

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    136/272

    PLL used as an FM detector

    136

    2 kind of Phase Comparator:

    - Multiplier (balanced modulator) then low-pass filter

    - Change to square-waveforms then XOR gate then LF or Integrator

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    137/272

    137

    FM Receiver

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    138/272

    (max)][2 mffBW +=)(2 mffBW +=

    138

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    139/272

    Spectrum of baseband signal applied to FM modulator

    An FM stereo transmitter

    139

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    140/272

    140

    FM Detection

  • 7/27/2019 in t cho Truyn thng

    141/272

    141

  • 7/27/2019 in t cho Truyn thng

    142/272

    Htruyn thng s

  • 7/27/2019 in t cho Truyn thng

    143/272

    Definition: the purpose of digital modulation is to convert an information bearingdiscrete-time symbol into a continuous-time waveform.

    Why Digital ?

    Increase System Capacity (compression, more efficient modulation)

    Error control coding, equalizers, etc. possible to combat noise and interference =>lower power needed

    Reduce cost and simplify designs

    Improve security (encryption possible)

    Basic concepts

    Data rate : rate at which data can be communicated . In general it is the baud rate(the number of symbolsper second). In binary transmission, data rate is bit rate(the number of bit per second).

    Each symbolrepresents nbits, and hasMsignal states, whereM = 2n. This is calledM ary signaling

    Cc thng scbn

  • 7/27/2019 in t cho Truyn thng

    144/272

    M-ary signaling.

    Channel Capacity (C): The maximum rate at which data can be transmitted over agiven communication path, or channel, under given conditions the maximum rate ofinformation transfer through a baseband channel is given by:

    Capacity fb= 2 B log2M bits per second,

    where B = bandwidth of modulating baseband signal.

    Bandwidth (B) : The bandwidth of the transmitted signal as constrained by thetransmitter and the nature of the transmission medium (Hertz)

    Noise (N) : Impairments on the communications path

    Bit error rate (BER) - rate at which errors occur : Error = transmit 1 and receive 0;transmit 0 and receive 1.

    Nyquist Bandwidth :- For binary signals (two voltage levels) : C = 2B;

    - Formultilevel signaling (M-ary signaling) : C = 2B log2M

    Shannon Boundfor AWGN non-fading channel : C = Blog2(1+ S/N)

    SNR l tsgia cng sut tn hiu v cng sut tp m. Khi nim ny dng chung cho

    cthng tin sln analog. i vi thng tin sth SNR c thhin cthqua ts

    Eb/No.

    Tstn hiu trn tp trong thng tin sEb/No

  • 7/27/2019 in t cho Truyn thng

    145/272

    b o

    SNR (digital com.) = Ps/Pnvi Psv Pnln lt l cng sut tn hiu hu ch v cng suttp m.Ps= Es/Tsvi Esl nng lng ca mt symbol cn Tsl rng thi gian ca

    symbol.

    Khi ghp bt thnh mt symbol, Es= .Eb, vi Ebl nng lng mt bt. Do

    Ps= .Eb/Ts.Cng sut tp m Pn= Ws.No, vi Wsl rng bng tn hiu truyn bng cc symbol cn

    Nol mt phcng sut mt pha ca tp m cng trng chun.

    Tuy nhin Ws= 1/Ts, do vy ta c: Ps/Pn = [.Eb/Ts]/[Ws.No] = . Eb/No.

    phthuc vo siu chtn hiu nhiu mc, trnh phthuc vo kiu

    iu ch, tstn/tp (SNR) trong thng tin sc thhin thng qua tsEb/No.

    Given any modulation scheme, it is possible to obtain its signal constellation.

    Represent each possible signal as a vector in a Euclidean space spanned by an

    orthonormal basis.

    If we know the signal constellation, we can estimate the performance in terms of theprobability of symbol error or probability of bit error given the noise parameters

    Signal Constellation

  • 7/27/2019 in t cho Truyn thng

    146/272

    probability of symbol error or probability of bit error given the noise parameters.

    Probability of error depends on the minimum distance between the constellation points.

    The receiver implementation can affect the performance.

    Coherent detection

    Receiver will exploit the exact knowledge of the phase of the carrier to detectthe signal better.

    Non-coherent detection

    Involves making some approximations to the phase information that results in

    a loss in performance. However, it simplifies the circuitry.

    In symbol detection decode incoming signal as closest symbol in the signalconstellation space

    D

    Constellation Diagram used to represents possible symbols that may be selected by a

    given modulation scheme as points in 2-D plane X-axis is related to in-phase carrier: cos(ct)

    The projection of the point on the X-axis defines the peak amplitude of the in-

    phase component

  • 7/27/2019 in t cho Truyn thng

    147/272

    p p

    Y-axis is related to quadrature carrier: sin(ct)

    The projection of the point on the Y-axis defines the peak amplitude of the

    quadrature component

    The length of line that connects the point to the origin is the peak amplitude of thesignal element (combination of X & Y components)

    The angle the line makes with the X-axis is the phase of the signal element

    Sng mang analog vi tn sthch hp c thtryn i xa trong mi trng truyn dn

    (nhdy ng, cp ng trc, hay khong khng).

    Cc kthut iu chsda trn bin i sng mang analog c phn loi cbn nhsau:

    Phn loi kthut iu chs

  • 7/27/2019 in t cho Truyn thng

    148/272

    iu chng bgm:

    - ng bnhphn: ASK (t c dng), PSK, FSK

    - ng bhng M: ASK hng M, PSK hng M, FSK hng M.

    iu chkhng ng bgm:

    - Khng ng bnhphn- Khng ng bhng M

    One binary digit represented by presence of carrier, at constant amplitude.Other binary digit represented by absence of carrier. Commonly, one of theamplitudes is zero.

    Amplitude Shift Keying (ASK)

  • 7/27/2019 in t cho Truyn thng

    149/272

    Pulse shaping can be employed to remove spectral spreading.

    ASK demonstrates poor performance, as it is heavily affected by noise andinterference.

    d(t)

    ASK(t)

    A

    C

    Phtn sca tn hiu ASK

  • 7/27/2019 in t cho Truyn thng

    150/272

    Mch iu chASK

    DataModulated Signal

  • 7/27/2019 in t cho Truyn thng

    151/272

    Sinusoidal Carrier

    g

    Mch gii iu chASK

    LPF

    Frequency Shift Keying (FSK)

    Trong kthut ny i lng mang thng tin 1, 0 l tn sf1v f2ca sng mang. Cp

    sng sin biu din c m tl:

  • 7/27/2019 in t cho Truyn thng

    152/272

    f1v f2 lch so vi tn ssng mang fcmt lng bng nhau nhng ngc du.

    B = 2([f2 f1]/2 + fb), trong fb = tc bit.

    d(t)

    FSK(t)

    F

    Hiu 2 tn ssng mang c tnh l : f2-f1=1/Tb= tn sbit.

    Tn hiu FSK m ty l tn hiu pha lin tc (khi chuyn bit ttn sny sang tn skhc,

    khng c snhy pha v chu kbit lun l bi ca chu ksng mang).Tp hm cssl:

  • 7/27/2019 in t cho Truyn thng

    153/272

    Do 2 tn sl trc giao vi nhau (c thkim tra bng php ly tch phn tch 2 hm nytrong khong thi gian bit sbng zero) v cc hssij tng ng l:

    HFSK c trng bng khng gian tn hiu 2 chiu v 2 im symbol (N = 2, M = 2).

    Ch khong cch Euclid gia 2 vectl

    Dliu s: vd(t) c iu chvi 1

    vd(t) = 1 vd(t) c iu chvi 2.

    Tn hiu c iu ch:

    vFSK(t) = cos1t.vd(t) + cos2t(1-vd(t)) =

    Phtn sca FSK

  • 7/27/2019 in t cho Truyn thng

    154/272

    FSK c pha gin on:

    Trong iu chFSK, tn stc thi ca sng mang c c thay i ty thuc dliu sbng gc.

  • 7/27/2019 in t cho Truyn thng

    155/272

    FSK c pha lin tc:

    u im: FSK t chu nh hng sai lch hn ASK do my thu nhn nhng tn sring

  • 7/27/2019 in t cho Truyn thng

    156/272

    nn t chu nh hng ca nhiu kim. Nhc im: FSK c phrng gp i phASK.

    ng dng: over voice lines, in high-freq. radio transmission, etc.

    Mch iu chFSK

  • 7/27/2019 in t cho Truyn thng

    157/272

    Ch l trong s 1 hoc 0 nhnh trn th qui tcngc li nhnhdi ().

    Mch gii iu ch FSK

    Vectquan st c (sau khi tn hiu qua knh) c 2 thnh phn l:

  • 7/27/2019 in t cho Truyn thng

    158/272

    Khng gian quan st c chia thnh 2 vng (hnh v) c x1>x2v vng x2>x1

  • 7/27/2019 in t cho Truyn thng

    159/272

    a vo mt bin mi l l=x1-x2khi :

    V x1v x2l cc bin c lp thng k (do gn vi 2 hm trc giao) c phng sai = N0/2 nn

    var[l] = var[x1] + var[x2] = N0.

    Gis0 c truyn, hm khnng sau knh sl:

    V x1>x2 tng ng l>0, nn:

  • 7/27/2019 in t cho Truyn thng

    160/272

    :

    :

    Cui cng khi xt thm Pe1mt cch tng tta c

    Dliu nhphn c biu din bi 2 tn hiu sng mang vi pha khc nhau trong BPSK. in

    hnh hai pha ny l 0 v . 0t

  • 7/27/2019 in t cho Truyn thng

    161/272

    vi m l snguyn, fbl tc bit dliu (data bit rate) th pha ban u ca mi bit schnh xcl 0 hay (hnh a). Nu khng th biu thc ca s1v s2skhng chnh xc vpha nhtrn (hnh

    b). iu kin ny l cn thit m bo xc xut li bit l cc tiu. Tuy nhin nu fc>> fbth

    iu kin ny c thc bqua.

    Trong biu chm sao, cc tn hiu ny c biu din trong hta 2 chiu vi cc hm:

    vi :

  • 7/27/2019 in t cho Truyn thng

    162/272

    Ta ca 2 symbol sl:

    u tin, lung dliu a(t) c to bi cc dliu nhphn:

    trong ak{+1, -1} v p(t) l xung chnht c bin n vtrong khong [0,T].

    Mch iu chBPSK

  • 7/27/2019 in t cho Truyn thng

    163/272

    g k { } p( ) g g g

    Sau a(t) c nhn vi sng mang hnh sin Acos 2fct.

    Mch gii iu ch BPSK

  • 7/27/2019 in t cho Truyn thng

    164/272

    Tn hiu chun phi c ng bvi tn hiu thu c vpha v tn s. Tn hiu nyc pht ra bi bhi phc sng mang CR (carrier recover).Khi khng c n (A = 1), li ra ca btch phn l:

    Nu fc = mRb, shng thhai bng 0, nhvy tn hiu a(t) c hi phc hon ho.Nu fcmRb, shng thhai khc 0, tuy vy, nu fc >> Rbth shng ny c thbquaso vi shng thnht.

    Tnh xc sut li bitchia khng gian thnh 2 vng: 1) vng gn v 2) vng gn

  • 7/27/2019 in t cho Truyn thng

    165/272

    T tnh c xc sut li loi 1 (pht 0 li quyt nh l 1 ti ni thu),

    Vng quyt nh k hiu l 1 (tn hiu s1(t)) l Z1 vi 0 < X1< vi

    y, x(t) l tn hiu thu c sau knh.

    Hm xc sut iu kin l:

  • 7/27/2019 in t cho Truyn thng

    166/272

    Do :

    i bin tch phn:

    Ta c:

    Tng tc thtnh c xc sut li pht 1 m thu c 0 c gi trcng nhvy.

    Mt phcng sut PSD (power spectral density) ca tn hiu PSK:

    Bit rng PSD ca cc sng skhng tng quan thng tng ng vi mt phnnglng ca xung chia cho di k hiu (symbol).

    Vi xung cbn hnh chnht:

  • 7/27/2019 in t cho Truyn thng

    167/272

    Chuyn i F ca n l:

    Nhvy PSD ca tn hiu bng gc PSK l:

    Tkt qucho thy bng thng ca tn hiu l:

    B = 2 /T = 2 fb

  • 7/27/2019 in t cho Truyn thng

    168/272

    So snh cc gi trPbca cc tn hiu PSK v FSK.

    The error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid shape which occurs in probability, statistics and partialdifferential equations. It is defined as:

    The complementary error function, denoted erfc, is defined as:

  • 7/27/2019 in t cho Truyn thng

    169/272

    which also defines erfcx, the scaled complementary error function(which can be usedinstead of erfc to avoid arithmetic underflow.

    Differential PSK (DPSK)

    Gii iu chPSK yu cu phc hi tn hiu dliu my thu da vo sng mang chun c

    pha tuyt i bit. iu ny i hi my pht phi gi mt tn hiu my thu tham khopha phc hi sng mang.

    My thu PSK vi phn (DPSK) khng cn tn hiu sng mang chun. N dng s thay i

    ca dliu iu chsng mang chkhng phi chnh dliu. thc hin vic ny, so

    snh dliu hin hnh vi dliu vo trc , nu hai tn hiu ny ging nhau ta c mt

  • 7/27/2019 in t cho Truyn thng

    170/272

    y g g

    pha ca sng mang v nu chng khc nhau ta c mt pha ngc li. Ni thu v pht phi

    tha thun vi nhau vbit tham kho u tin trc khi pht dliu tn hiu c phc

    hi ng nh pht i.

    Mch iu chDPSK

    Mch gii iu chDPSK

  • 7/27/2019 in t cho Truyn thng

    171/272

    Tn hiu ra mch tch phn l:

    Khi khng c n v suy knh:

    vi skv sk-1l cc k hiu hin ti v trc .

    Li ra btch phn l dng nu tn hiu vo ging trc , ngc li l m. C ngha l

    bgii m lm mt quyt nh da trn ssai khc gia 2 tn hiu. Do dliu thngtin phi c m ha nhl skhc bit gia cc tn hiu ln cn, l chnh xc nhng

    g m bm ha khc bit thc hin.

    Nu bt 1 c chn lm chun th quy tc m ha vi sai l:

    Ngc li, bin i tdksang ak:

    Nu dkv dk-1nhnhau, chng i din cho 1 dy ak, ngc li l 0. So snh cc chui

    {dk} v {ak} trong bng. Dy {dk} c iu chvo sng mang vi pha 0 hoc . Li ra

    l dy bit ca bn tin.

  • 7/27/2019 in t cho Truyn thng

    172/272

    Tlli bit Pbca dy li ra bgii m phthuc vo tc bit Pb,d ca dy m ha

    trong gii iu ch l:

    Thay gi trPb,d vo ta c:

  • 7/27/2019 in t cho Truyn thng

    173/272

    Pbca DPSK v PSK

    iu chPSK hng M (M-ary PSK)

    Trong MPSK, mt symbol c biu din bi (n = log2M ) bit dliu. Trong M l

    hng ca iu ch.

    Tp tn hiu M-ary PSK c nh ngha nhsau:

    si(t) = A cos (ct+i) vi 0 t T , i = 1, 2, , M

    trong :

  • 7/27/2019 in t cho Truyn thng

    174/272

    Tn ssng mang c chn l bi ca tc k hiu (symbol rate).

    Thng M c chn l smca 2 (v d: M = 2n, n = log2M). Do vy dy sliu

    nhphn c chia thnh cc nhm c n bit. Mi nhm c biu din bi 1 k hiu

    (symbol) c pha ban u xc nh.

    Vit li biu thc si:

    trong l cc hm trc giao cs, v:

    trong A = A2T l nng lng k hiu

    Biu chm sao do c 2 chiu. Mi tn hiu si(t) c biu din bi mt im (si1, si2)

    trong ta

    Ta cc ca tn hiu l vi cc im tn hiu nm trn vng trn bn knhc tm ti gc ta .

    M Grray thng c dng trong biu din tn hiu ca MPSK bi l 2 tn hiu lin k

    trong trng hp ny chkhc nhau 1 bit. Khi mt k hiu bli, c nhiu khnng xy ra

    t hi l t h d h t t bt l b li

  • 7/27/2019 in t cho Truyn thng

    175/272

    tn hiu ln cn trn chm sao,, do chmt trong cc bt vo l bli.

    Hnh di l chm sao 8-PSK

    dng m Gray. Lu rng PSK(BPSK) v QPSK l MPSK vi M

    = 2 v M = 4.

    Trn ton trc thi gian, tn hiu MPSK l:

    trong :

  • 7/27/2019 in t cho Truyn thng

    176/272

    y, kl mt trong M pha c xc nh bi nhm n bit vo v p(t) l xung chnht n

    vtrong khong[0,T]. Biu thc ca s(t) chng trng tn ssng mang l bi ca thi

    gian k hiu pha ban u ca tn hiu trong bt kchu kk hiu no l k.

    V rng tn hiu MPSK l 2 chiu nn vi cc M 4, cc biu chc thc hin kiutrc giao. Vi cc M khc nhau, chc kt cu ca bphn tch bit l thay i. Mi nhm n

    bit li vo iu khin bphn tch cp cho knh I (ng pha) v Q (vung pha) cc tn hiu

    v mc cho cc ta ngang v dc ca thchm sao. i vi trng hp QPSK, b

    phn tch n gin chl bbin i ni tip song song.

    Mch iu chMPSK.

  • 7/27/2019 in t cho Truyn thng

    177/272

    Hiu sut bng thng c nh ngha l tsvn tc bit (bps) trn bng thng yu cu (Hz).

    Thng thng khi vn tc bit tng th bng thng tng, tuy nhin trong cc cch iu chkhc

    nhau tshai i lng ny c thkhc nhau, do ngi ta dng hiu sut bng thng

    nh gi cht lng ca hthng (hiu sut cao ng ngha vi tn dng c bng thng).

    Nguyn nhn ca vic dng iu chM hng MPSK l n cho php tng hiu sut bng thng

    Hiu sut bng thng:

  • 7/27/2019 in t cho Truyn thng

    178/272

    ca tn hiu ln n ln. V dvi QPSK (n = 2) bng thng knh truyn chcn bng so vi

    PSK.

    V d, vi ASK c vn tc bit 2400bps, tn ssng

    mang l 1200Hz, bng thng sl 2400 Hz vy :

    Vi QPSK 2400bps, iu chvn tc ca knh I v Q

    sl 1200 bps, tn smang l 600Hz, bng thng cn

    thit chl 1200 Hz vy:

    V tp tn hiu MPSK chc 2 hm csnn my thu ng bMPSK c thdng 2 bnhn nhhnh sau:

    Mch gii iu chMPSK.

  • 7/27/2019 in t cho Truyn thng

    179/272

  • 7/27/2019 in t cho Truyn thng

    180/272

    Psca MPSK (ng lin nt) v ca DMPSK(ng t nt).

    4-PSK (QPSK) l loi mch MPSK thng c dng nht do n khng chu nh hng ca ts

    li bit BER khi tng hiu sut sdng bng thng.V QPSK l trng hp c bit ca MPSK nn:

    trong : Nhvy, c 4 pha ban u l:

    Trong ta chm sao c th biu din 4 tn hiu ny bi 4 vector (im):

    iu ch4-PSK (QPSK)

  • 7/27/2019 in t cho Truyn thng

    181/272

    Trong ta chm sao, c thbiu din 4 tn hiu ny bi 4 vector (im):

    vi i = 1, 2, 3, 4.

    Mch iu chQPSK

  • 7/27/2019 in t cho Truyn thng

    182/272

    - Btch bit (bit splitter) : chuyn dng dliu vo theo hai ng I v Q.

    - Nhng bit vo I siu chsng mang c pha ban u v nhng bit vo Q siu ch

    sng mang c lm lch pha 90 .

    - V cc dliu vo c thl bit 1 hoc 0, nn tn hiu li ra mch nhn I c thl

    sinct hoc - sinct v li ra Q c thl cosct hoc -cosct, cc tn hiu ny c

    tng hp mch tng cho ra 1 trong 4 tn hiu c bin bng pha ban u

    khc nhau.

    cosctsinct + cosct-sinct + cosct

    (11)(01)

  • 7/27/2019 in t cho Truyn thng

    183/272

    -cosct

    sinct-sinct

    -sinct - cosct sinct - cosct

    (10)(00)

    Dng sng QPSK

  • 7/27/2019 in t cho Truyn thng

    184/272

    Gii iu chQPSK

  • 7/27/2019 in t cho Truyn thng

    185/272

    Mch phc hi sng mang cho li sng sinct ttn hiu nhn c, tn hiu ny c cho

    thng vo mch nhn knh I v c lm lch pha 90 trc khi vo mch nhn knh Q.

    Tn hiu ra cc mch nhn c a vo mch lc thng thp loi bthnh phn tn

    scao. Cc thnh phn DC sc tng hp mch tng cho li dng dliu. Gis

    tn hiu vo l tn hiu nhn c, th d: r(t) ~ (cosct - sinct )

    Tn hiu ra mch nhn knh I l:

    sinct ( cosct - sinct) = 1/2sin2ct - 1/2(1-cos2ct)

    Tn hiu ra sau mch lc l in thdc m, tng ng bit 0

    Tn hiu ra mch nhn knh Q l:cosct ( cosct - sinct) = -1/2sin2ct + 1/2(1+cos2ct)Tn hiu ra sau mch lc l in thdc dng, tng ng bit 1

    Mch thp bit scho li dliu nh pht : 01 (vit theo thtab)

    Xc sut li bit trung bnh cho mi knh l:

    V li ra ca bgii m l li ra dn knh I v Q nn tc li bt bng sbng gi tr

    ny trn mi knh. Mi k hiu biu din cho 2 bit trn mi knh nn mt li k hiu

    xy ra nu bt kknh ny c li/ Do xc sut li k hiul:

  • 7/27/2019 in t cho Truyn thng

    186/272

    Vi trng hp m Gray v c SNR ln:

    S ph thuc Pb (Eb/No) caQPSK so vi PSK c ch ra

    trn hnh.

    Tc truyn thng thng ca

    QPSK l 2400 bps v vy mch iu ch tc ca knh I

  • 7/27/2019 in t cho Truyn thng

    187/272

    mch iu chtc ca knh I

    v Q l 1200 bps. Tc bin

    i ln nht ca tn hiu tng

    ng vi chui lin tip cc bit 1

    v 0, chui ny c biu dinbi tn hiu hnh vung tn s

    600 Hz, tn hiu hnh vung bao

    gm tn scbn v cc ha tn

    bc l.

    iu chvi sai QPSK (DEQPSK)

    Trong DEQPSK, cc nhm bit thng tin (dbit) c biu din bi cc lch pha i, tk

    hiu ny ti k hiu khc. C cc php gn pha khc nhau gia v cc nhm bit. Mttrong cc khnng nhtrong bng:

  • 7/27/2019 in t cho Truyn thng

    188/272

    Quy tc lp m nhsau:

    trong : Ik(0,1) v Qk (0,1) l cc bit thng tin tng ng lv chn

    uk(0,1) v vk(0,1) l cc bit knh I v Q c m ha.Cp (IK,Qk) v (uk-1,vk-1) c dng sinh ra cp (uk,vk) dng iu khin pha tuyt i

    ca sng mang.

    Biu chDEQPSK vcbn ging nhtrong QPSK c thm blp m vi sai trn mi

    knh cho tn hiu trc khi i vo bnhn vi sng mang.Bng m ha vi sai cho DEQPSK:

  • 7/27/2019 in t cho Truyn thng

    189/272

    Gii m DEQPSK

    Vcbn nhgii m QPSK nhng phi thm vo bgii m vi sai sau khi c

    gii iu ch. Quy tc gii m l:

    V dkt qumt bng gii m DEQPSK:

  • 7/27/2019 in t cho Truyn thng

    190/272

    Sbgii m ng bDEQPSK ng b:

  • 7/27/2019 in t cho Truyn thng

    191/272

    Xc sut li bit c tnh xp x:

    Offset QPSK (OQPSK) l cch iu chda trn nguyn tc ca QPSK nhng to s

    lch pha ca hai tn hiu trn hai knh I v Q bng cch cho mt tn hiu trmt bit so

    vi tn hiu kia.

    Vic lm ny khin cho schuyn trng thi ca tn hiu knh ny (th dknh I)

    lun lun xy ra ngay im gia ca tn hiu ca knh kia (knh Q), nhvy trong

    mt cp bit IQ bt kchc sthay i ca mt bit duy nht v iu ny a n ktqu l cc tn hiu ng ra tng hp ch lch pha 0 hoc 90 ch khng phi 180

    iu chOQPSK (Offset QPSK)

  • 7/27/2019 in t cho Truyn thng

    192/272

    qul cc tn hiu ng ra tng hp chlch pha 0 hoc 90 chkhng phi 180

    nhQPSK.

    im thun li ca OQPSK l gii hn c slch pha ca tn hiu ra v trnh c

    cc xung t bin khi phc hi tn hiu nhphn. Tn hiu OQPSK c thc biu din nhsau:

    V OQPSK chkhc QPSK mt chu ktrnn mt phcng sut v cc chtiu v

    sai scng nhca QPSK.

    c thso snh cc tn hiu cc li ra, xt chui tn hiu vo nhhnh (a) v chui

    tn hiu ca 2 knh I v Q trong hai trng hp QPSK hnh (b) v OQPSK hnh (c).

  • 7/27/2019 in t cho Truyn thng

    193/272

    V tn hiu tng hp tng ng (a) v (b)

  • 7/27/2019 in t cho Truyn thng

    194/272

    C () () :

    - Nu 2 bit trn 2 knh I v Q khc nhau hon ton th cc tn hiu tng ttng ng khc

    nhau 180o

    - Nu 2 bit trn 2 knh I v Q chkhc nhau mt bit th cc tn hiu tng ttng ng khc

    nhau +90o hoc -90o.im bt li ca phng php OQPSK l sthay i pha ca tn hiu ra xy ra trong tng

    khong thi gian T (chkhng phi 2T), do vn tc iu ch(baud rate) v bng thng ti

    thiu ca knh truyn tng gp i so vi phng php QPSK .

    iu ch/4- PSK

    /4-PSK l loi m vi phn DQPSK, nhng khc vi DQPSK quy tc m ha vi sai:

    trong uk l bin ca u(t) trong k hiu thk, v.v Ik v Qk ly gi tr(-1,1). Nu

    ban u u0 = 1 v v0 = 0 th uk v vk c bin l 1,0 v 1/ .

    Tn hiu ra b iu ch s l:

  • 7/27/2019 in t cho Truyn thng

    195/272

    Tn hiu ra biu chsl:

    y: phthuc vo dliu c m ha,v :

    Mi quan hvpha gia 2 k hiu lin tip bng:

    trong l lch pha c xc nh bi

    dliu vo.

    Thay vo phng trnh trn ta c:

    Bng sau cho kt quxc nh k theo dliu vo:

    Thy rng:

    - cc thay i vpha l bi slca /4 (khng c pha 90cng nh180)

  • 7/27/2019 in t cho Truyn thng

    196/272

    - Thng tin vsbin i pha k chkhng phi pha tuyt i k.

    - Trong biu chm sao, gc ca mt vector i

    vi hng dng ca trc u l pha ca k hiu

    k.

    - Mt k hiu c biu din bi () chc thtr

    thnh cc k hiu c biu din bi (x) vngc li.

    Bgii m ng b/4-QPSK nhhnh, trong d bgii m vi sai c thc hin trn

    cc pha tn hiu vo. Bgii m DEQPSK khng thch hp y do nhm bit (dbit) c

    gn khc nhau.

  • 7/27/2019 in t cho Truyn thng

    197/272

    GisAk= 1, tn hiu gii iu chl hai mc (1/ ) tt cthi gian ly mu. Giacc khong l 3 mc (0, 1). Trn biu , cc tn hiu () ng vi 2 mc v (x) ng

    vi 3 mc. Khi tn hiu l 2 mc, chuyn mch vtr A v vic tch sng ging nh

    QPSK. Khi tn hiu l 3 mc, chuyn mch vtr B, tn hiu c bin i thnh 2 mc

    theo cng thc:

    Dthy kt qubin i l squay vector (x1k, y1k)

    i +/4 v khuch i bin ln Ni cch khc

    quay vector (x) ti vector () bn cnh v nhn binln , tc l tng cng sut tn hiu ln gp i.

    Tuy vy, cng sut n cng tng gp di do n trn 2

    knh l khng tng quan nhau. Do BER cng vn

    nhtrong gii m ng bQPSK.

  • 7/27/2019 in t cho Truyn thng

    198/272

    Tn hiu v c gii m bi mt bgii m DEQPSK, sau c a qua b

    bin i song song ni tip . Xung nhp nhn c tnhp k hiu chia hai. Pha ca

    nhp ng hny c ng bvi chuyn mch chn tn hiu ly mu.

    Trong iu chQAM cbin v pha ca sng mang u thay i

    Mch iu chQAM 8 pha

    iu chQAM (iu chbin trc giao - Quadrature Amplitude Modulation)

  • 7/27/2019 in t cho Truyn thng

    199/272

    Trong mch iu chny a,b xc nh cc tnh ca tn hiu ra mch bin i, ring bit c

    uc a thng vo hai mch bin i m khng qua mch o nhPSK 8 pha, nu c =1

    chai li ra c bin cao v nu c = 0 chai li ra c bin thp. Nhvy, vi QAM 8pha, cc tn hiu cc li ra ca mch bin i lun c cng bin , gin vtr cc

    im c trng cc tribit cho hnh sau.

  • 7/27/2019 in t cho Truyn thng

    200/272

    Cc tn hiu ra ca QAM 8 pha c 2 bin v 4 pha khc nhau.

    So snh cc cch iu chQAM v PSK ngi ta thy QAM tt hn vmt ts

    tn hiu nhiu. Th dvi hthng QAM 16 pha xc sut li l 10-8 trong lc PSK

    16 pha xc sut ny l 10-4. Do trong cc hthng truyn vi vn tc cao ngi

    ta thng dng cch iu chQAM hn.

    Mch iu chQAM 16 pha

  • 7/27/2019 in t cho Truyn thng

    201/272

    Trong s, mch chia bit chia thp 4 bit theo hai knh vo hai mch bin i 2 ra 4mc, cc bit a,b xc nh cc tnh tn hiu ra v cc bit c,d xc nh bin

    a,b = 0, tn hiu ra m c,d = 0 bin = 0,22 V

    a,b = 1 tn hiu ra dng c,d = 1 bin = 0,821 V

    Mi li ra ca mch bin i c thc 1 trong 4 tn hiu 0,22 hoc 0,821. Mch LPF

    loi bcc ha tn cao. Cc tn hiu sau vo mch iu chcn bng nhtrong ccphn trc v li ra ta c 1 trong 16 tn hiu, cc tn hiu ny nhn 3 gi trbin v

    12 gc pha khc nhau, khong cch cc gc pha l 30 .

    Vi cch iu chQAM 16 pha, mi 4 bit tng ng mt tn hiu ra nn vn tc bit bng 4

    ln vn tc baud. Nu chn vn tc baud l 2400 baud/s tha bng thng ca knh thoi th

    vn tc bit l 9600 bps v hiu sut bng thng l 4 bps/Hz. Trong trng hp ny bng thngtn hiu trong khong t500 Hz (1700 Hz - 1200 Hz) n 2900 Hz (1700 Hz + 1200 Hz)

    Trong gin trn gc A xc nh bi:

  • 7/27/2019 in t cho Truyn thng

    202/272

    Th dvi thp cc bit li vo nhtrong hnh l

    1001, ta c cc kt qusau:Li ra knh I : +0,22 V

    Li ra knh Q : -0,821 V

    Li ra mch iu chknh I : +0,22 cosct

    Li ra mch iu chknh Q : -0,821sinct

    Li ra mch lc di thng : 0,22 cosct -0,821sinctTn hiu ra tng ng c xc nh trn gin bi

    du X.

    Phc hi sng mang

    Vi kthut iu chFSK vic phc hi sng mang khng cn thit.

    Tuy nhin, iu chPSK hay QAM tng tvi kthut iu chtrit sng mang, do

    cn thit phi c mch phc hi sng mang my thu. Hn na, sng mang c phc hiphi c tn sv pha ging nhmy pht mch gii iu chmy thu hot ng hu

    hiu.

    Skhi mt mch phc hi sng mang cho trng hp iu chBPSK cho nhhnh.

  • 7/27/2019 in t cho Truyn thng

    203/272

    Tn hiu nhn c my thu l +cosct hoc -cosct, sau khi qua mch lc di thng (

    hn chdi tn) squa mch bnh phng cho li ra cos2ct. Dng bin i lng gc

    ta c:

    cos2ct =(1/2)(1+cos2ct)

    Tn hiu ny li qua mch lc loi bthnh phn mt chiu, cn li tn hiu tn s2c ,

    tn hiu ny li qua mch chia tn c sng mang. Vng kha pha trong mch c tc

    dng gipha ca tn hiu ra khng blch so vi tn hiu vo.i vi cc tn hiu iu chPSK bc cao hn (4-PSK, 8-PSK, 16-QAM . . .) th mch

    gii iu chsnng tn hiu vo ln theo cc ly tha bc cao hn. Dnhin mch sphc

    tp hn.

  • 7/27/2019 in t cho Truyn thng

    204/272

  • 7/27/2019 in t cho Truyn thng

    205/272

    i mt sng cha tin analog thnh tn hiu ri rc, trc thi gian phi c ri rcho. Si trc thi gian lin tc thnh mt trc ri rc c thc hin nhphngphp ly mu.

    nh l ly mu ( nh l Shannon) chng trng: Nu bin i F ca mt hm thigian l zero vi |f| > fm v nhng trgi ca hm thi gian c bit vi t = n TS(vimi trnguyn ca n ) th hm thi gian c bit mt cch chnh xc cho mi trca t.

    iu kin hn chl TS< 1/2fm.

    Ly mu tn hiu

    Gii thiu v iu chxung

  • 7/27/2019 in t cho Truyn thng

    206/272

    S m

    Ni cch khc, s(t) c thc xc nh tnhng trgi ca n ti mt lot nhng thiim cch u nhau.

    Tn sly mu, k hiu l fS

    = 1/TS

    , fS > 2fmNhvy, tn sly mu t nht phi 2 ln cao hn tn sca tn hiu c ly mu.Nhp ly mu ti thiu, 2 fm, c gi l nhp ly mu Nyquist. Th d, nu mtting ni c tn smax 4 kHz, n phi c ly mu t nht 8.000 ln/sec. Ta thy rngkhong cch gia nhng thi im ly mu th tlnghch vi tn scao nht ca tnhiu ( fm).

    nh l ly mu gi ra mt kthut i mt tn hiu analog s(t) thnh mt tn

    hiu ri rc. Ta chcn ly mu tn hiu lin tc ti nhng thi im ri rc, th d

    mt danh sch cc sc ly mu s(0), s(T), s(2T)... Trong T< 1/2fm. truyn tn hiu ri rc mu ho , danh sch cc ssc c trn mt

    telephone hoc c vit trn mt mnh giy gi FAX.

    C thiu chvi thng sca mt sng mang ty vo danh sch cc s. Tn

    hiu c iu chsau c truyn trn dy hoc trong khng gian (nu bngtn n chim cho php ).

    V thng tin c dng ri rc nn ch cn dng tn hiu mang sng ri rc (thay v

  • 7/27/2019 in t cho Truyn thng

    207/272

    V thng tin c dng ri rc, nn chcn dng tn hiu mang sng ri rc (thay v

    dng sng sin lin tc nhtrc).

    Nu chn mt chui xung tun hon lm sng mang. Cc thng sc thlm thayi l bin , brng v vtr ca mi xung. Slm thay i mt trong ba thng

    sy sa n 3 kiu iu ch::

    - PAM ( Pulse Amlitude Modulation): iu chbin xung .

    - PWM ( Pulse Width Modulation): iu chrng xung.

    - PPM ( Pulse Position Mod: iu chvtr xung.

    Hnh di vmt sng mang sc(t) mt tn hiu cha tin s(t) v tn hiu PAM sm(t).

    ta thy chc bin ca xung sng mang bthay i, cn dng xung vn gi

    khng i.

    Nhl sm(t) khng phi l tch ca s(t) vi sC(t).

    Ta gi sm(t) trong trng hp ny l PAM nh phng ( flat top PAM ) hoc PAM ly

    mu tc thi (Instantanous Sampling PAM )

    iu chbin xung PAM

  • 7/27/2019 in t cho Truyn thng

    208/272

    Nu ly tch ca sC(t) v s(t), ta c kt qul sng PAM vnhhnh . , chiucao cc xung khng phi l hng m thay i theo ng cong ca s(t). Trng hpny, ta gi l PAM ly mu tnhin (Natural Sampling ).

    Phtn sca PAM

  • 7/27/2019 in t cho Truyn thng

    209/272

    By gita ly bin i Fourier ca PAM xc nh knh sng cn thit. Trc htl xem trng hp ca PAM ly mu tnhin. Da vo nh l ly mu. Khai trin

    sC(t) thnh chui F. Ri nhn vi s(t). Kt quthu c l 1 tng gm nhiu sngAM vi cc tn ssng mang l tn scn bn v cc hotn sC(t).

    Bin i F ca PAM ly mu tnhin

    Xc nh bin i F ca PAM nh phng th kh hn. n gin ta xem hthng ly

    mu s (t) bng mt chui xung lc l tng. Ri nh dng mi xung lc thnh dngxung nh mun, trong trng hp ny l mt xung vung nh phng.

  • 7/27/2019 in t cho Truyn thng

    210/272

    Bin i F ca tn hiu ly mu ca lc c tm tnh l ly mu.

    Chui F ca chui xung lc c nhng trCn bng nhau vi mi n.

    Bin i F ca sng c ly mu xung lc vhnh

    Hm truyn mch lc nhhnh sau:

  • 7/27/2019 in t cho Truyn thng

    211/272

    Bin i F ca output ca mch lc l tch ca bin i trn y vi hm ca mchlc. Nhrng phn tn sthp ca n khng phi l mt phin bn bmo ca S(f).

  • 7/27/2019 in t cho Truyn thng

    212/272

    Bin i F ca PAM nh phng

    Th d1: Mt tn hiu cha tin c dng: s(t) = sint/tc truyn bng cch dng PAM. Sng mang l chui xung tam gic tun hon nhhnh di. Tm bin i F ca sng bin iu.

    ca mch ly mu bng xung lc l tng c bin i F.

  • 7/27/2019 in t cho Truyn thng

    213/272

    Trong S(f) l bin i F ca sin/t. Bin i ny l mt xung nhhnh v.

    Mch lc phi thay i mi xung lc thnh mt xung tam gic. p ng xung lc cachng l mt xung tam gic m bin i ca n l:

    Cui cng, bin i F ca sng PAM c cho bi tch ca S(f).H(f)

  • 7/27/2019 in t cho Truyn thng

    214/272

    ng PAMchim tt cnhng tn stzero n v hn. Nhvy, n bxem lkhng thtruyn c hiu qutrong khng kh cng nhMultiplexing.

    V phn c ngha nht ca bin i F ca sng PAM nm xung quanh tn szero,

    ta thng dng AM hoc FM gi sng PAM. l, taxem sng PAM nhl tn

    hiu cha tin v n bin iu mt sng mang hnh sin. Nhng ti sao ta phi thchin mt bin iu kp, m khng truyn tn hiu gc bng AM hoc FM ? Hy nh

    l tn hiu gc khng c dng nalog lin tc m l tn hiu ri rc.

  • 7/27/2019 in t cho Truyn thng

    215/272

    t u gc g c d g a og tc t u c.

    Sau khi bin iu AM hoc FM vi sng PAM, khbng trnn rt rng. V l do

    ny bin iu xung c kt hp vi AM hoc FM thng khng c truyn theocng cch thc nhtn hiu bin iu khc. N thng truyn trn cp ng trc,

    vn c khnng truyn mt khong rng ca tn s. i khi n cng c truyn

    qua khng kh ti tn smicrowave. Tn sny cao khbng rng khng b

    xem nhl squ cng sut ( over powering ) i vi sng mang.

    Nhng mch cng dng bin iu AM u c thdng PAM ly mu

    tnhin. Chcn loi blc dy thng tkhi (nh a). Hnh b chkhi

    dng cu diode.

  • 7/27/2019 in t cho Truyn thng

    216/272

    Khi iu chcho PAM phng nh th n gin hn cho PAM ly mu tnhin. Ta

    chcn dng mt mch ly mu v gi( Sample and Hold ). Mch ny c l tng

    ho nhhnh sau.

    S1ng tun hon ti nhng thi im ly mu T C np in n tr mu mi khi S1

  • 7/27/2019 in t cho Truyn thng

    217/272

    S1 ng tun hon ti nhng thi im ly mu. TC np in n trmu mi khi S1ng v ri ngt. V tkhng c ng phng in, nn sgitrgi mu v to nn

    ng phng ca nh sng PAM. Khi S2ng, tsphng in n zero.Cn tnh trc tv mch in tsao cho thi gian np tht nhanh v ta cng chn

    mch c tng trra tht nhhng sthi gian phng in ngn.

    Tch sng PAM ly mu tnhin da trc tip vo nh l ly mu. Shi phc tn

    hiu analog gc tphin bn mu ho ca n cn mt LPF.

    Tch sng PAM nh phng cn thm mt svic. Dng mch S/H phc hi mt

    dng sng hnh bc thang xp xvi dng sng tn hiu gc. t thi gian gibng

    chu kly mu. Kt quvhnh di. Hm bc thang c thc lc bi mt LPF

    dng sng c trn phng, gn ging vi dng sng gc.

  • 7/27/2019 in t cho Truyn thng

    218/272

    Do c c bin i F ca sng PAM nh phng bng cch nhn bin i F ca tn hiu

    mu ho cho H(f) (l hm truyn ca mch lc). Phn bng gc ca bin i F c dng

    S(f)H(f). Vy s(t) c thc hi phc tsm(t) bng cch dng mt mch lc LPF mhm truyn ca n th vhnh di. Mch lc vi hm truyn 1/H(f) c xem nhl

    mt mch cn bng v n trit nhng hiu quca sto dng xung.

  • 7/27/2019 in t cho Truyn thng

    219/272

  • 7/27/2019 in t cho Truyn thng

    220/272

    Nhtrng hp ca PAM, cng c sng mang l mt chui xung tun hon. Hnh di ch

    mt sng mang cha bin iu, mt tn hiu cha tin s(t) v sng bin iu PWM. rng

    ca mi xung bin iu thay i tutheo trmu tc thi ca s(t). Trmu ln hn slm rng xung bin iu rng hn. V rng xung thay i, nn nng lng ca sng cng thay

    i. Vy khi bin tn hiu tng, cng sut truyn cng tng.

    iu chrng xung PWM (Pluse Width Modulation)

  • 7/27/2019 in t cho Truyn thng

    221/272

    Cng nhtrong trng hp FM, PWM l mt php phi tuyn. Xem mt th d

    n gin minh chng iu . Gistn hiu cha tin l mt hng, s(t) = 1. Sng

    PWM sgn nhng xung c rng bng nhau, v mi trmu th bng vi mi trmukhc. By ginu ta truyn s(t) = 2 theo PWM, th ta li c mt chui xung c rng

    bng nhau, nhng rng ca chng ln hn khi truyn s(t) = 1. Nguyn l tuyn tnh s

    cho kt qul rng xung ca trng hp sau gp i trng hp trc. Nhng y

    khng phi nhvy, nhhnh .Nu ta gistn hiu s(t) bin i chm ( ly mu

    vi nhp nhanh hn so vi nhp Nyquist ) th cc xung ln cn sc rng hu nhbngnhau. Vi githit ny, c thphn gii xp xcho sng bin iu, theo chui Fourier.

    Mi shng ca chui l mt sng FM, thay v l mt sng sin thun tu.

  • 7/27/2019 in t cho Truyn thng

    222/272

    Ta strnh by mt dng ca khi bin iu v mt dng ca khi hon iu cho PWM.Trong chai, ta u dng sng rng ca chuyn i gia thi gian v bin . iu nytng tnhcch thc cho FM, ta thy rng cch dnht bin iu mt tn hiu ltrc tin i n thnh AM. Tn hiu rng ca c dng vhnh.

    Mch iu chPWM

  • 7/27/2019 in t cho Truyn thng

    223/272

    c thc hin bng cch tch phn sng PWM trong mi khongthi gian. V chiu cao ca xung th khng i, tch phn tlvi rng xung. Nuoutput ca tch phn c ly mu v giti trgi cui ca n, kt qusl mt sngPAM.

    Trc tin tn hiu s(t) c ly mu vgic s1(t).

    Tn hiu rng ca bdi xung 1 n vto nn s2(t). Tng ca s1(t) v s2(t) tonn s3(t) v vo mch so snh. Nhngkhong thi gian m s3(t) dng lnhng khong m rng tlvi trgi mu gc. Output ca mch

    so snh l 1 khi s3

    (t) dng v l 0 khis3(t) m. Kt qul s4(t), l mt sngPWM. rng xung c thc hiuchnh bng cch tng gim s(t). Tronghnh v, ta gisrng bnh thng s(t)

  • 7/27/2019 in t cho Truyn thng

    224/272

    , g g g ( )nm gia 0 v 1.

    Shon iu c thc hin bng cchtch phn sng PWM trong mi khongthi gian. V chiu cao ca xung thkhng i, tch phn tlvi rngxung. Nu output ca tch phn cly mu v giti trgi cui ca n,kt qusl mt sng PAM.

    PPM c li hn PWM vmt trit nhiu v cng khng c vn cng sut thay itheo bin tn hiu.

    Mt tn hiu cha tin s(t) v sng PPM tng ng vhnh.

    iu chvtr xung PPM (Pulse Position Modulation)

  • 7/27/2019 in t cho Truyn thng

    225/272

    Nu trgi mu ln hn sc

    xung tng ng di xa hn (sovi vtr khng bin iu ca

    n).

    Mt sng PPM c thc

    suy tmt sng PWM. Slin

    hgia chng l, trong khi vtr ca xung thay i trong

    PPM th sn ca xung thay

    i t PWM Gi t d

  • 7/27/2019 in t cho Truyn thng

    226/272

    i trong PWM. Gista d

    mi sn iu khin ca

    PWM, (ly o hm v xem

    nhng xung m).

    By ginu ta t mt xung c

    rng khng i ti mi

    im ny, kt qul sngPPM. c vra nhhnh.

    R rng, cPWM v PPM u rt phc tp so vi PAM. Chng phc tp hn v cn

    c nhng tnh cht khc. Trong cc hphn knh theo thi gian TDM, ta phi bo

    m rng cc xung mu ln cn khng c phnhau. Nu cc xung di tdo hoc

    rng hn (nhtrong PPM v PWM), ta khng thchen vo mt cch n gin cc

    xung khc trong khng gian m tin chc rng khng c stc ng qua li sxy ra.

    Khong cch cn thit phi c gic thtruyn cc trmu ln nht. iu

    ny lm gim sknh khi Multiplex.

  • 7/27/2019 in t cho Truyn thng

    227/272

  • 7/27/2019 in t cho Truyn thng

    228/272

    Bc thnht chuyn i mt tn hiu analog lin tc thnh dng digital l i tn hiuthnh mt danh mc cc s. ( iu ny c thc hin bng cch ly mu hm thi gian).

    Danh mc cc skt qubiu din cho nhng trlin tc. l mc d mt mu no c

    thtrng ra nhl mt slm trn, nhng thc tn sc tip tc nhmt sthp phn

    v hn.

    Danh mc cc sanalog sau phi c m ho thnh cc Code Words ri rc. Bin php

    trc nht hon tt vic l lm trn mi strong danh mc. Th d, nu cc mu nm

    trong khong t0 n 10V, mi mu sc lm trn n snguyn gn nht. Vy cc tm

    ( d d ) t t 11 ( t 0 10 )

    Lng tha tn hiu Bin i ADC

  • 7/27/2019 in t cho Truyn thng

    229/272

    ( code words ) srt ra t11 snguyn ( t0 n 10 ).

    Schuyn i A/ D c xem nhl slng tho ( quantizing ). Trong slng thou n, cc trlin tc ca hm thi gian c chia thnh nhng vng u n, v mt m s

    nguyn c kt hp cho mi vng. Nhvy, tt ccc trca hm trong mt vng no

    u c m ho thnh mt snhphn ging nhau.

    ng tho 3 bit theo hai cch khc nhau.

    Hnh a, chkhong cc trca hm c chia lm 8 vng nhau. Mi vng kt hp vi mt

    snhphn 3 bit. Chn 8 vng v 8 l lutha ca 2 ( = 23

    ). Tt cthp 3 bit u c dng,lm hiu quln hn.

    Hnh b chslng tho bng cch dng slin hca input v output. Trong khi input th

    lin tc, output chly nhng trri rc. Brng ca mi bc khng i. V slng tho th

    u n.

  • 7/27/2019 in t cho Truyn thng

    230/272

  • 7/27/2019 in t cho Truyn thng

    231/272

    A/D

    Cc mch bin i A/D

    1. Lng tho m, m ln lt ng vi snhn c thng qua mi mc lng

    t.

    2. Lng tho ni tip, to ra mt tm, tng bit mt. l, chng bt u vi bit

    c trng sln nht ( MSB ) v lm vic n bit c trng snhnht ( LSB ).

    3. Lng tho song song, to ra cng lc tt ccc bit ca mt tm hon chnh.

  • 7/27/2019 in t cho Truyn thng

    232/272