151
Dinámica de ecosistemas dominados por especies germinadoras obligadas en el oeste de la cuenca mediterránea: respuesta sucesional a incendios recurrentes Victor Manuel Santana Pastor

Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

Dinámica de ecosistemas dominados por especies germinadoras obligadas en el oeste de la cuenca mediterránea: respuesta sucesional a incendios recurrentes

Victor Manuel Santana Pastor

Page 2: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

Dinámica de ecosistemas dominados por especies germinadoras obligadas en el oeste de la cuenca med iterránea:

respuesta sucesional a incendios recurrentes.

___________________

Dynamics of ecosystems dominated by obligate seeder s in the western Mediterranean Basin: successional response to

recurrent fires.

Memoria presentada por:

Victor Manuel Santana Pastor para optar al grado de doctor en Ciencias Biológicas

Alicante, Marzo de 2011.

Page 3: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios
Page 4: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios
Page 5: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

Manuel Jaime Baeza Berná, Investigador Senior de la Fundación CEAM y Profesor Asociado de la Universidad de Alicante. HACE CONSTAR: Que el trabajo descrito en la presente memoria, titulado: “Dinámica de ecosistemas dominados por especies germinadoras obligadas en el oeste de la cuenca mediterránea: respuesta sucesional a incendios recurrentes” ha sido reallizado bajo su dirección por D. Victor Manuel Santana Pastor en la Fundación de la Generalitat Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), y reúne todos los requisitos necesarios para su aprobación como Tesis Doctoral.

Alicante, 25 de Enero de 2011

Dr. M. Jaime Baeza Berná

Page 6: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

AGRADECIMIENTOS

Esta Tesis doctoral ha sido posible gracias a la beca de Formación de Personal

Universitario (FPU) otorgada por el Ministerio de Educación. La financiación de

la investigación ha sido posible gracias a los proyectos FIREMED (AGL200/8-

04522/FOR) y Consolider-Ingenio 2010 (GRACCIE CSD2007-00067). El CEAM

está financiado por la Generalitat Valenciana y la Fundación Bancaja.

En primer lugar, quisiera agradecer a mi director de Tesis, Jaime Baeza,

la oportunidad de realizar esta tesis doctoral dentro de un campo de la ecología

que me encanta como son los incendios forestales. Ha sido un director

excelente además de un amigo. También los compañeros del CEAM, Alejandro,

David, Joanet, Alberto, Vanesa, Jaime, Esteban, Karim y Ramón han sido un

gran apoyo moral y logístico a la hora de realizar esta tesis doctoral y, sin el

cual, el trabajo hubiera sido mucho más difícil. También agradecer el apoyo de

la gente del CEAM de Valencia, Mª Carmen, Emilio y Cristina, que se han

encargado del papeleo infame de la beca. José Antonio Valiente colaboró

desinteresadamente en la puesta en marcha del complejo mecanismo del data

logger.

Los propietarios de las parcelas de las quemas experimentales, Cristóbal

Miró, Ramón Gisbert y Victoriano Fuentes amablemente dieron su permiso para

poder realizar este trabajo.

Agradecer el recibimiento prestado por los anfitriones en las estancias

cortas en el extranjero que he realizado durante esta Tesis: Rob Marrs del

Applied Vegetation Dynamics Lab de la Universidad de Liverpool (Reino Unido),

Ross Bradstock del Centre for Environmental Risk Management of Bushfires de

la Universidad de Wollongong (Australia) y Mike Palmer del Department of

Botany de la Oklahoma State University (Estados Unidos). Además de

contribuir con su experiencia y críticas constructivas al desarrollo de esta tesis,

me han enseñado a ver la ecología desde nuevas perspectivas. Fernando

Maestre de la Universidad Rey Juan Carlos de Madrid también ha contribuido

decisivamente en uno de los capítulos de esta tesis.

No quisiera olvidarme de la gente de la Universidad de Alicante. Román,

Marian, Tadas, Noelia y Jordi me introdujeron en el mundo de la investigación

gracias a la beca de colaboración en el departamento de Ecología (hace ya

Page 7: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

unos cuantos años). Susana y Andreu han colaborado con el diseño y

preparación de las parcelas de estudio. Mención especial para José Huesca

que me ha ayudado amablemente en las tareas de laboratorio. A todos los

becarios, laborantes, contratados y amigos de la UA, Karen, Rosario, Anna,

Ángeles, Soraya, Estrella, Adela, Bea, Juanjo, Luna, Diana, Núria, Olga,

imprescindibles en esas largas cenas de departamento.

El duro trabajo de campo no podría haberse realizado sin la ayuda de la

gente en prácticas. Oriol, David, Benjamín, Isabel, María, Silvia, Thanos,

Christos, Raquel & Raquel. Espero que no me guarden rencor por haberlos

llevado a trabajar bajo los terribles dominios del Ulex. A todos ellos muchas

gracias.

Un record especial per a la manada d'antics companys de llicenciatura,

Vicen, Santi, Soraya, Quique, Sofia, Isa, Susi, Cox, Peruan i Juanjo, que poc a

poc anem alcançant metes més llunyanes en açò de la Biologia. També, com

no, als meus amics de tota la vida i de la filà Kabilenyos de Sant Vicent. Espere

que després de llegir esta tesis doctoral (vos obligaré, no ho dubteu)

s'assabenten d'una vegada a què dedique la meua vida.

Un agraïment especial a la meua família, ma mare Victoria, mon pare

Juan Luis i el meu germà Abel. Pel seu recolzament incondicional al llarg de la

meua vida acadèmica (i no acadèmica també), i que han fet que siga la

persona que sóc hui en dia.

Finalment, el millor dels agraïments vull donar-lo a Mamen, per estar

sempre ahí, tant en el moments bons com dolents, i per fer-me creure que en

esta vida tot és possible.

A tots, moltes gràcies.

Page 8: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

ÍNDICE

Síntesis 1

1. Introducción general 5

2. Área de estudio 29

3. Características estructurales del combustible modulando las

temperaturas del suelo en parches de diferentes especies de matorral de

la cuenca mediterránea 37

4. Establecimiento sucesional de plántulas en matorrales mediterráneos

dominados por germinadoras obligadas 55

5. La recurrencia de incendios y el tiempo desde el incendio como

conductores de la inflamabilidad en matorrales mediterráneos 75

6. Sucesión secundaria en campos de cultivo abandonados del sureste de

España: ¿puede el fuego desviarla? 93

7. Efecto del régimen de temperatura después del fuego en la dormancia y

germinación de semillas de seis especies de Fabaceae australianas 113

8. Discusión general 127

9. Conclusiones 137

Page 9: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios
Page 10: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

1

SÍNTESIS

El abandono masivo de campos de cultivo a mediados del siglo XX en la

Comunitat Valenciana ha conllevado un aumento de ecosistemas en estados

iniciales de la sucesión dominados por especies germinadoras obligadas.

Debido a que este tipo de especies acumulan en su estructura gran cantidad de

combustible muerto y que a consecuencia de su desarrollo la conectividad

entre áreas forestales es mayor, la frecuencia y extensión de incendios

forestales se ha incrementado en las últimas décadas. Este hecho supone un

riesgo tanto para la fucionalidad del ecosistema como para la seguridad

humana. Por lo tanto, el objetivo general de esta tesis es indagar en los

procesos sucesionales que rigen los ecosistemas dominados por especies

germinadoras obligadas en el oeste de la cuenca mediterránea. Especialmente

en: (1) los mecanismos que controlan el establecimiento de individuos a lo

largo de la sucesión, (2) los patrones de abundancia de las especies

dominantes en función del tiempo desde el incendio y de la recurrencia de

incendio, (3) la dinámica de los diferentes tipos de combustible asociada a los

cambios sucesionales, (4) la variabilidad en los efectos del fuego en el

ecosistema dependiendo de la especie dominante en el dosel y que

característica estructural del combustible sería la más influyente sobre estos

mismos efectos. El conocimiento de estos procesos contribuirá a la toma de

decisiones en la gestión de estos ecosistemas altamente propensos al fuego.

Para ello se han realizado diferentes trabajos de campo en el interior de la

Comunitat Valenciana. Como conclusiones más importantes se destaca que: 1)

existen diferencias en el nicho de regeneración de las especies germinadoras

obligadas que hace que unas especies sean más competitivas que otras a lo

largo del gradiente sucesional o en diferentes regímenes de incendio. Aunque,

la mayor parte de los individuos de las especies estudiadas se establecen en

etapas inmediatamente post-fuego, Cistus albidus se regenera prioritariamente

en ambientes recientemente perturbados, mientras que Ulex parviflorus y

Rosmarinus officinalis pueden establecerse en periodos entre incendios. 2)

Existen procesos de sustitución especies a lo largo de la sucesión en los

matorrales dominados por especies germinadoras. Estos ecosistemas se rigen

por el mecanismo sucesional de tolerancia, y tras una primera etapa dominada

Page 11: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

2

por Ulex parviflorus y Cistus albidus la comunidad pasa a estar dominada por

Rosmarinus officinalis. Un fuego recurrente no afecta los patrones de

sustitución entre especies, pero si que afecta a la abundancia y retrasa en el

tiempo el punto donde las especies alcanzan su óptimo. 3) Los campos de

cultivo abandonados pueden establecer diferentes trayectorias sucesionales

dependiendo del régimen de recurrencia de incendio. En ausencia de fuego,

son dominados en una primera etapa por Pinus halepensis, que con el paso del

tiempo se convierten en una formación mixta de pinar con especies

rebrotadoras y de hoja ancha como Quercus ilex y Q. coccifera. Un solo

incendio puede sustituir el pinar por un matorral de R. officinalis, donde el

establecimiento de especies germinadoras obligadas y de especies

rebrotadoras de etapas sucesionales posteriores pueden estar impedidas. Una

alta recurrencia de incendio en intervalos cortos de tiempo desvían el

ecosistema hacia una comunidad dominada por terófitos o herbáceas como

Brachypodium retusum. 4) La capacidad de retener combustible muerto y su

disposición en la estructura de la planta es determinante en los efectos del

fuego en el ecosistema. Bajo parches de la especie que más acumula

combustible muerto, U. parviflorus, se experimentan las mayores tasas de

consumo de biomasa y de temperatura de suelo. En contra, bajo los parches

de R. officinalis, la especie con menor acumulación de combustible muerto, se

encuentran los efectos opuestos. 5) Los procesos sucesionales de sustitución

de especies en ecosistemas de matorral llevan asociada una función de

inflamabilidad basada en la cantidad de combustible muerto acumulado. Una

primera etapa de la sucesión dominada por U. parviflorus, especie que mayor

cantidad de combustible muerto acumula, seguida por una dominancia de R.

officinalis, especie que acumula menor cantidad, conlleva a una función de

inflamabilidad de forma jorobada; es decir, tras un incremento inicial del

combustible muerto acumulado, éste disminuye con el transcurso de la

sucesión. 6) Tras un fuego recurrente no existe un incremento en la cantidad

de combustible muerto acumulado a nivel de comunidad. Por lo tanto, se

sugiere la ausencia de un bucle de retroalimentación positivo entre las especies

que acumulan mayor cantidad de combustible muerto y una regeneración

estimulada por el fuego. 7) Un efecto indirecto del fuego, como el aumento del

régimen de temperaturas diarias del suelo, puede ser un desencadenante de la

Page 12: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

3

ruptura física de la dormancia en semillas de leguminosas de sureste de

Australia. Este efecto difiere entre las diferentes especies y, además, esta

modulado por el rango de temperaturas y el tiempo de exposición

Page 13: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

4

Page 14: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

5

CAPÍTULO 1-

INTRODUCCIÓN GENERAL

Page 15: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

6

Page 16: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

7

CAPÍTULO 1- INTRODUCCIÓN GENERAL

- Los ecosistemas mediterráneos y su relación con el fuego

La explotación de recursos naturales mediante la acción antrópica ha

modificado gran parte de los sistemas naturales durante milenios (Vitousek et

al. 1997). Sin embargo, debido a los cambios socio-económicos ocurridos a

nivel global desde el siglo pasado, la actividad en muchos de estos

ecosistemas ha cesado, mientras que en otros se ha iniciado o incluso se ha

incrementado (Cramer et al. 2008). Como consecuencia, están surgiendo en

diferentes biomas de todo el mundo ecosistemas emergentes (también

denominados ecosistemas noveles) con nuevas combinaciones de especies y

abundancias relativas que no se observaban previamente (Hobbs et al. 2006).

En algunos casos, estos ecosistemas pueden prevenir la instalación y

regeneración de las especies previas a la explotación, ya sea por competencia

o por modificar los mecanismos que controlan el funcionamiento del

ecosistema, incluyendo cambios en el régimen de perturbaciones (Suding et al.

2004, Hobbs et al. 2006).

La cuenca mediterránea ha sufrido durante milenios una alta antropización

de sus sistemas naturales. La agricultura, ganadería o explotación de otros

recursos naturales han sido una constante a lo largo de su territorio desde la

época neolítica, hace aproximadamente unos 10.000 años (Blondel y Aronson

1999, Blondel 2006). Sin embargo, la intensa industrialización de esta región

desde mediados del siglo pasado ha conducido al abandono de la actividad

rural y, en consecuencia, a un abandono generalizado de vastas extensiones

de terreno dedicadas al cultivo o al pastoreo (Le Houérou 1993). Actualmente,

estos sistemas se encuentran en estados iniciales de la sucesión, dominados

por especies de crecimiento rápido y alta capacidad de colonización de

espacios abiertos (Cramer et al. 2008).

Paralelamente al factor humano, el fuego es considerado una de las fuerzas

moduladoras más importantes del paisaje mediterráneo (muchas veces

provocado por la propia actividad humana). Tradicionalmente, se ha

considerado que estos ecosistemas poseen alta capacidad de regeneración y

que, con el paso del tiempo, recuperan su composición y estructura (Hanes

Page 17: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

8

1971, Trabaud y Lepart 1980). La capacidad de regeneración viene

determinada por una serie de estrategias de supervivencia intrínsecas a las

especies que permiten su persistencia tras el fuego. Muchas especies

sobreviven a nivel individual gracias a estructuras enterrados bajo el suelo

(como por ejemplo tubérculos, rizomas o lignotubérculos) que las protegen de

las altas temperaturas, permitiéndoles rebrotar posteriormente (especies

rebrotadoras). Algunas especies de pinos mediterráneos o el alcornoque

presentan gruesas cortezas que protegen los tallos. Otro tipo especies que no

sobreviven al efecto del fuego, persisten a la perturbación mediante

poblaciones de semillas enterradas en el suelo (especies germinadoras

obligadas) (Keeley 1986, Pausas et al. 2004). Estas especies disponen a

menudo de un banco de semillas persistente (en el suelo o de copa), y el

reclutamiento de nuevos individuos viene determinado por las condiciones

generadas durante y posteriormente al fuego; por ejemplo, rompiendo el estado

de dormancia de las semillas o abriendo los conos de las especies con frutos

serótinos (Bond y van Wilgen 1996). Algunas especies muestran ambas

estrategias (especies facultativas), mientras que otras no pueden regenerarse

después del incendio mediante estas estrategias y su persistencia depende de

la capacidad de colonización desde áreas no quemadas.

A pesar de que estos ecosistemas se consideran resilientes, la

presencia y/o abundancia relativa, tanto de las especies como de los grupos

funcionales dominantes, puede estar determinada por el régimen de incendios

(intensidad, severidad, recurrencia, frecuencia, extensión y estacionalidad del

fuego; ver Fox y Fox (1987) para una descripción detallada de los

componentes del régimen de incendio). Por ejemplo, altas severidades o

recurrencias de incendio pueden reducir la capacidad de regeneración de las

especies, ya sea por eliminar directamente sus estructuras de persistencia

(Lloret y López-Soria 1993, Herranz et al. 1999) o por impedir que en cortos

periodos entre incendios, éstas repongan sus estructuras de reserva o bancos

de semillas (Zedler et al. 1983). Por el contrario, largos periodos en ausencia

de incendios puede ir en detrimento de especies de vida corta cuya

regeneración es dependiente del fuego (Keeley 1986). La extensión del

incendio puede limitar la reentrada de especies extintas como consecuencia del

fuego (Rodrigo et al. 2004). La estacionalidad puede afectar la regeneración de

Page 18: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

9

especies cuya acumulación de recursos es baja o el banco de semillas no ha

sido completamente repuesto (Cruz y Moreno 2001, Domínguez et al. 2004).

No obstante, dentro del contexto de la presente tesis doctoral, cabe aclarar

algunas ambigüedades comunes entre dos componentes del régimen de

incendios como son la recurrencia y la frecuencia de incendios. La recurrencia

de incendios se considera como el número de incendios que ocurren en un

punto concreto y en un determinado periodo de tiempo, mientras que la

frecuencia de incendio se refiere al promedio de incendios ocurridos a lo largo

de un cierto periodo de tiempo y sobre un área concreta (sensu Johnson 1992).

En la actualidad, los incendios forestales en la cuenca mediterránea es uno

de los objetivos prioritarios dentro de la investigación forestal a nivel europeo,

ya que una media de 500.000 ha se queman anualmente en Europa. Los

cambios socioeconómicos ocurridos desde el siglo pasado han conllevado una

variación en el régimen de incendios hacia una mayor recurrencia y superficie

quemada. Los procesos que controlan la colonización y sucesión de las áreas

de cultivo abandonadas han supuesto un incremento en la cantidad de

combustible acumulado y una mayor conectividad entre los sistemas forestales.

Evidencias de algunas investigaciones han demostrado que el cambio en el

régimen de incendios podría estar potenciado como resultado del proceso de

cambio climático actual (Pausas 2004, Mouillot y Field 2005). Como

consecuencia directa, la resiliencia de estos ecosistemas se ha visto

comprometida en algunos casos, induciendo en el ecosistema procesos de

degradación a nivel de vegetación y de suelo (Lloret 2004). De hecho, en los

últimos años se ha sugerido una tendencia al reemplazo de los sistemas

forestales por matorrales, donde podría existir una pérdida en la calidad de los

ecosistemas (Lloret et al. 2002, Valladares et al. 2004). Además, cabe destacar

que la regeneración de los ecosistemas mediterráneos es altamente

dependiente de la disponibilidad hídrica (Lloret et al. 2004, Lloret et al. 2009) y

que, por lo tanto, estos procesos de degradación se podrían ver potenciados en

el marco de cambio climático actual (De Luis et al. 2001, Pausas 2004). Pero

sin duda, a parte del efecto en el funcionamiento del ecosistema, el efecto más

traumático del fuego es la pérdida de vidas humanas y de propiedades, así

como también de los elevados costes de su extinción.

Page 19: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

10

- Los ecosistemas dominados por especies germinadoras obligadas en el oeste

de la cuenca mediterránea

El término vegetación natural potencial que define los estados sucesionales

maduros de la vegetación ha sido objeto de amplias controversias y críticas en

los últimos años debido a problemas asociados con su definición y con la

dinámica del ecosistema (ver Chiarucci et al. 2010 para una amplia discusión

del tema). Considerando esta controversia, se podría decir en sentido amplio y

solamente a modo de referencia que, los estados sucesionales más maduros

del oeste de la cuenca mediterránea (zonas de ombroclima seco de la

Comunitat Valenciana) deberían estar compuestos por bosques esclerófilos de

hoja ancha dominados por Quercus ilex (Barberó et al. 1992, Zavala et al 2000,

Zavala 2003, Quézel 2004). Sin embargo, este tipo de vegetación es muy

escasa en la actualidad debido a la explotación experimentada en esta zona

durante milenios y, solamente, aparecen pequeños rodales aislados y

dispersos a lo largo del paisaje. En su lugar, encontramos estados degradados

de esta vegetación cuya composición de especies varía en función del

substrato litológico. Sobre substratos calizos predominan comunidades

constituidas por especies rebrotadoras, con arbustos de enraizamiento

profundo que aprovechan las fisuras verticales de las rocas. Muchas de estas

plataformas calizas están ocupadas por coscojares (Quercus coccifera), con

pies arbustivos de carrasca (Q. ilex) más o menos disperso (Abad et al. 1996).

En las partes bajas de las vertientes donde se acumula más suelo,

especialmente sobre substrato margoso no consolidado, son frecuentes los

abancalamientos abandonados que atestiguan antiguos cultivos. La

combinación entre las propiedades intrínsecas de estos suelos y los efectos del

laboreo aplicado en el pasado, resultan en comunidades vegetales arbustivas y

arbóreas dominadas por especies germinadoras obligadas. Estos sistemas se

encuentran dominados por especies con una gran capacidad de colonización

típicas de estados sucesionales iniciales, tanto de porte arbóreo (Pinus

halepensis) como arbustivo (Ulex parviflorus, Cistus albidus y Rosmarinus

officinalis) (Abad et al. 1996, Baeza et al. 2007).

Los procesos de regeneración sobre antiguos campos de cultivos asociados

a especies germinadoras obligadas han supuesto un problema emergente en

Page 20: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

11

las últimas décadas. En algunos casos, estas especies conforman matorrales

con una alta continuidad horizontal y vertical del combustible. Un caso bien

conocido son los aulagares dominados por U. parviflorus, que suponen uno de

las matorrales con mayor riesgo de incendio de la Comunitat Valenciana debido

a su alta capacidad de acumular combustible fino y muerto (Baeza et al. 2002,

De Luis et al. 2004, Duguy et al. 2007). Estos ecosistemas, además de suponer

un problema por el incremento en biomasa altamente inflamable en el paisaje,

han supuesto un aumento en la conectividad de las masas forestales que

anteriormente se encontraban separados por cultivo. Como consecuencia

directa, en las últimas décadas el régimen de incendios ha variado hacia una

mayor recurrencia de incendios y mayor superficie quemada en la Comunitat

Valenciana (Pausas 2004). Por esta razón, en los últimos años se han

realizado numerosos esfuerzos en conocer las bases ecológicas que rigen

estos ecosistemas (Baeza 2001, Baeza y Vallejo 2006, Verdú y Pausas 2007,

De Luis et al. 2008, Raventós et al. 2010) y el desarrollo de estrategias de

manejo (quemas controladas o desbroce) (Baeza 2001, Baeza et al. 2002,

Baeza et al. 2003, De Luis et al. 2005, Duguy et al. 2007, Baeza y Roy 2008).

Tradicionalmente, las especies germinadoras obligadas han sido clasificadas

dentro de un grupo homogéneo donde comparten una serie de atributos

comunes y que, en gran medida, contrastan con especies de diferente

estrategia regenerativa, como las especies rebrotadoras (Verdú 2000, Pausas

et al. 2004). Estas especies confían su regeneración post-fuego a partir de

semillas enterradas en el banco de semillas del suelo, generalmente, con

cubiertas duras que las hacen persistentes a las altas temperaturas (Paula y

Pausas 2008). Además, su germinación y establecimiento suele estar

favorecido por efectos directos (altas temperaturas, humo, fertilización por

cenizas; Baeza y Vallejo 2006, Moreira et al. 2010) e indirectos del fuego

(liberación de espacio, incremento de recursos del suelo, modificación del

espectro de luz, alternancia de temperaturas diaria en el suelo; Thanos y

Rundel 1995, DeBano et al. 1998, Baeza y Roy 2008) que favorecen su

emergencia y supervivencia. Tras el establecimiento, estas especies presentan

altas tasas de crecimiento de sus partes aéreas que les confiere un bajo ratio

raíz:tallo (Verdú 2000, Hernandez et al. 2010, Paula y Pausas en prensa).

Además, durante el crecimiento asignan gran parte de los nutrientes

Page 21: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

12

disponibles a estructuras u órganos con alta tasa de renovación, como las

hojas (Carreira y Niell 1992, Saura-Mas y Lloret 2009). Habitualmente, las

hojas de las especies germinadoras no son esclerófilas, pero sus

características intrínsecas, junto con la estructura de su sistema radical (baja

proporción de biomasa repartida en raíces largas, ramificadas y finas que las

convierte en eficientes captadoras de recursos), confieren a este tipo de

especies alta capacidad de resistir el déficit hídrico estival (Paula y Pausas

2006, Saura-Mas y Lloret 2007, Paula y Pausas en prensa). Incluso, algunas

especies como U. parviflorus carecen de hojas reales y poseen tallos

fotosintéticos y espinosos altamente competitivas en zonas de alta radiación

(Valladares et al. 2003). Si bien es cierto, que los atributos morfológicos y

propiedades químicas de este tipo de especies les confieren una fácil ignición y

combustión de su biomasa. Las especies germinadoras obligadas son

consideradas altamente inflamables como consecuencia de su alta relación

muerto:vivo y fino:grueso en la estructura aérea de su combustible (Papió y

Trabaud 1991, Pereira et al. 1995, Dimitrakopoulos y Panov 2001,

Dimitrakopoulos 2001, Baeza et al. 2006, Saura-Mas et al. 2010, Baeza et al.

en prensa). Además, estas propiedades son variables a lo largo de su

ontogenia (Baeza et al. 2006, Baeza et al. en prensa) y se ha sugerido que la

retención de estos rasgos altamente inflamables podría ser el resultado de

presiones evolutivas asociadas al clima y el fuego (Saura-Mas et al. 2010).

- Avances en el conocimiento en los ecosistemas dominados por germinadoras

obligadas y propuestas de investigación.

A pesar de los recientes esfuerzos realizados en el estudio de los ecosistemas

de la cuenca mediterránea dominados por especies germinadoras obligadas,

todavía existe una falta de información de su funcionamiento en relación con la

actual tendencia de incremento de la recurrencia de incendios. Se ha sugerido

que, en ecosistemas propensos al fuego, las especies altamente inflamables

con una regeneración facilitada por el fuego podrían establecer bucles de

retroalimentación positivos que promovieran la expansión de las especies más

inflamables en detrimento de las menos inflamables (Wilson y Agnew 1992);

incluso, podrían establecer estados alternativos a los esperados en ausencia

Page 22: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

13

de fuego (Bond et al. 2005). Dentro de este marco se podrían establecer los

ecosistemas de matorral dominados por especies germinadoras obligadas

(dominados por U. parviflorus, C. albidus y R. officinalis) resultantes del

abandono de cultivos o de la escasa regeneración post-fuego de formaciones

de pinar (Baeza 2001). Además, se ha sugerido que en este tipo de matorral

mediterráneo, con alta densidad de especies pioneras, se podrían establecer

mecanismos de inhibición de especies típicas de estados más avanzados,

arrestando el proceso natural de sucesión (Acacio et al. 2007, Siles et al.

2008). De hecho, especies altamente inflamables, propensas a su auto-

inmolación, y que inhiben la entrada de especies de estados más maduros

podrían ser consideradas un caso especial de reemplazo direccional entre

especies, en el cual, la sustitución de las especies de estados iniciales podría

estar impedido (Platt y Connell 2003). Por lo tanto, son necesarias nuevas

aproximaciones que determinen las trayectorias sucesionales de este tipo de

ecosistemas bajo escenarios de diferente recurrencia de incendio y que,

además, establezcan la posible existencia de procesos de retroalimentación

positivos entre las especies más inflamables de estados iniciales de la sucesión

y el fuego, en detrimento de aquellas pertenecientes a estados más maduros.

Este hecho puede alcanzar especial relevancia dentro del marco ecológico de

la restauración de este tipo de ecosistemas en la Comunitat Valenciana, donde

se pretenden promocionar trayectorias sucesionales que conduzcan hacia

estados dominados por especies rebrotadoras (Valdecantos et al. 2009), con

una mayor resiliencia al fuego y una menor acumulación de combustible fino

muerto (Baeza et al. en prensa).

Gran parte de las aproximaciones realizadas en estos ecosistemas en

relación con la recurrencia de incendios se han llevado a cabo a nivel

individual, usando modelos, u obviando el componente dinámico de estos

ecosistemas en el gradiente sucesional (Pausas 1999, Lloret et al. 2003, De

Luis et al. 2006). Trabajos previos han observado que tanto la recurrencia de

incendios como el intervalo de tiempo entre fuegos pueden determinar cambios

en la abundancia y composición de especies (Lloret et al. 2002, Delitti et al.

2005, Eugenio y Lloret 2006, Baeza et al. 2007, Vilà-Cabrera et al. 2008). Sin

embargo, es necesario integrar esta respuesta dentro de un concepto

sucesional. Aproximaciones comparativas que analizan un momento puntual

Page 23: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

14

tras el incendio pueden obviar la variabilidad debida a procesos sucesionales

de sustitución entre especies (Connell y Slatyer 1977, Huston y Smith 1987).

Por lo tanto, son necesarios estudios que integren la variabilidad temporal de

las especies en la respuesta a la recurrencia de incendio; es decir, además de

los posibles cambios de abundancia, la edad en que las especies alcanzarían

su óptimo y los cambios en la amplitud de su nicho a lo largo del tiempo.

Generalmente, las especies germinadoras obligadas presentan atributos

funcionales pertenecientes a estados iniciales de la sucesión (Verdú 2000). Sin

embargo, existe una falta en el conocimiento de los posibles procesos

sucesionales que rigen estos ecosistemas y, por lo tanto, de la existencia de

posibles implicaciones en la asignación de recursos o historias de vida que

hagan unas especies más competitivas frente a otras en determinados

ambientes del gradiente sucesional. Un componente imprescindible para la

determinación de la dinámica sucesional es conocer el nicho de regeneración

de las especies que forman las comunidades (Grubb 1977); la dinámica de

establecimiento de plántulas revela el reemplazo potencial de los individuos

adultos en posteriores etapas (Harper 1977). Sin embargo, a pesar de que en

ecosistemas de la cuenca mediterránea se han observado patrones de

establecimiento de plántulas en etapas sucesionales entre fuegos (Clemente et

al. 1996, Lloret 1998, Lloret et al. 2005), la mayoría de trabajos sobre

regeneración en estas especies se han centrado solamente en la etapa

inmediatamente posterior al fuego, ignorando las etapas más tardías de la

sucesión (Baeza 2001, Quintana et al. 2004, De Luis et al. 2008).

Los cambios sucesionales en la composición de especies suelen estar

asociados a una función de inflamabilidad del combustible que dibuja en el

tiempo el riesgo de incendio (McCarthy et al. 2001). Las propiedades

intrínsecas del combustible de las especies germinadoras obligadas les

confieren una alta inflamabilidad (Saura-Mas et al. 2010); sin embargo, esta

inflamabilidad varia tanto entre las especies como a lo largo de su ontogenia

(Baeza et al. 2006, Baeza et al. in press). Concretamente, especial relevancia

se ha atribuido a la capacidad de acumulación de combustible muerto fino, ya

que estos combustibles disminuyen los tiempos de ignición y facilitan la

combustión por su bajo contenido en humedad (Bond y van Wilgen 1996). Por

tanto, diferentes funciones de inflamabilidad podrían establecerse dependiendo

Page 24: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

15

de las propiedades intrínsecas de cada una de las especies, de la composición

específica de la vegetación y del orden de reemplazo en el tiempo. McCarthy et

al. (2001) definieron una serie de funciones donde, por ejemplo, la

inflamabilidad permanecía invariable a lo largo del tiempo, crecía de forma

constante, crecía hasta alcanzar una asíntota, o bien, tras un incremento inicial,

ésta decrecía con el transcurso de la sucesión. Sin embargo, a pesar de la

importancia que la dinámica temporal del combustible puede tener en la

frecuencia de incendios (como en los ecosistemas mediterráneos de California;

Minnich y Chou 1997), esta función de inflamabilidad permanece sin ser

estimada en los ecosistemas dominados por especies germinadoras del oeste

de la cuenca mediterránea. Además, aparte del efecto que puede tener la

dinámica temporal del combustible en la frecuencia de incendios, el reemplazo

de especies con diferente grado de inflamabilidad podría conllevar cambios en

la severidad del fuego y/o efectos en el ecosistema (Keeley 2009). Los efectos

del fuego en el ecosistema suelen estar ligados a un calentamiento significativo

del suelo (en superficie y profundidad) que afecta a las estructuras de

persistencia de las plantas o a las propiedades del suelo (Bradstock y Auld

1995, Certini 2005, De Luis et al. 2005, Baeza y Vallejo 2006). Por lo tanto, son

necesarios nuevos estudios que clarifiquen estos efectos dependiendo de la

especie dominante en el dosel. Además, cabría determinar que característica

morfológica y/o estructural del combustible es la más relevante en generar

estos efectos; ya que, estudios previos han observado que estos efectos

pueden estar vinculados, simplemente, a características individuales del

combustible como la arquitectura de las ramas muertas de los estratos

inferiores de la planta (Schwilk 2003) o a combustibles finos acumulados sobre

la superficie del suelo (Bradstock y Auld 1995).

No obstante, ecosistemas propensos al fuego y con una importante

presencia de especies germinadoras obligadas no son exclusivos de la cuenca

mediterránea. Estas especies pueden alcanzar una cierta relevancia en

ecosistemas de otras regiones de California, Sudáfrica o Australia (Bell et al.

1993, Keeley 1995), o incluso, en ecosistemas con clima no mediterráneo (Auld

y O’Connell 1991). Por lo tanto, el estudio de estos ecosistemas en la cuenca

mediterránea puede contribuir a determinar la ecología de este grupo funcional

de una forma más transversal y global. Sin embargo, nuevos estudios

Page 25: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

16

centrados en este tipo de especies de diferentes regiones geográficas serían

necesarios para la realización de estudios comparativos entre regiones.

Por lo tanto, el objetivo general de esta tesis es indagar en los procesos

sucesionales que rigen los ecosistemas dominados por especies germinadoras

obligadas en el oeste de la cuenca mediterránea. Especialmente en: (1) los

mecanismos que controlan el establecimiento de individuos a lo largo de la

sucesión, (2) los patrones de abundancia de las especies dominantes en

función del tiempo desde el incendio y de la recurrencia de incendio, (3) la

dinámica de los diferentes tipos de combustible asociada a los cambios

sucesionales, (4) la variabilidad en los efectos del fuego en el ecosistema

dependiendo de la especie dominante en el dosel y que característica

estructural del combustible sería la más influyente sobre estos mismos efectos

y, (5) determinar los efectos del régimen de temperatura después del fuego en

la dormancia y germinación de seis especies germinadoras obligadas del

sureste de Australia. Para ello se han realizado diferentes trabajos de campo

en el interior de la Comunitat Valenciana. Estas aproximaciones se detallan a

continuación donde, además, se define la estructura de la tesis por capítulos.

- Capítulo 3. Se evalúa el papel de las diferentes características estructurales

del combustible de las especies dominantes en la determinación de los

posibles efectos sobre el ecosistema. Concretamente, se compara si existen

diferencias entre especies en las características estructurales del

combustible como su distribución por tamaños, la retención de combustible

muerto, la altura del combustible o su densidad aparente. Se analiza si las

diferencias entre las características estructurales del combustible se

traducen en diferencias en el consumo de combustible o en las temperaturas

del suelo. Determina que rasgos estructurales del combustible son los más

importantes modulando las temperaturas del suelo.

- Capítulo 4 . Se profundiza en el nicho de regeneración de las principales

especies de matorral, determinando cual es el patrón de establecimiento a lo

largo de la sucesión y cuales son los factores (bióticos y abióticos) que

dirigen la disponibilidad de micro-hábitats adecuados para el establecimiento

Page 26: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

17

de plántulas. La hipótesis inicial es que el fuego desencadena una alta

disponibilidad de micro-hábitats, estableciéndose la mayoría de individuos

en etapas inmediatamente post-fuego; en etapas más tardías, la

disponibilidad de micro-hábitats decrecerá y el establecimiento estará

altamente restringido.

- Capítulo 5. En este capítulo se modeliza la respuesta sucesional de las

principales especies y formas vitales. Se determina la función de

inflamabilidad de estos ecosistemas a lo largo del tiempo en función del

desarrollo del dosel leñoso, la acumulación de combustible muerto y la

presencia de herbáceas. Valora el papel de la recurrencia de incendios en la

respuesta de las especies dominantes y cómo esta afecta globalmente la

inflamabilidad del ecosistema. Específicamente trata de comprobar la

hipótesis de que las especies que acumulan mayor cantidad de combustible

muerto y que tienen una germinación estimulada por el fuego se verán

favorecidas por el incremento de la recurrencia de incendio. Se discute la

posible existencia de un bucle de retroalimentación positivo entre fuego e

inflamabilidad del ecosistema.

- Capítulo 6. Se determinan las posibles trayectorias sucesionales en campos

de cultivo abandonados en ausencia de fuego y bajo diferente grado de

recurrencia de incendio. La hipótesis inicial es que, a largo plazo y en

ausencia de incendios, la sucesión se dirigirá hacia comunidades dominadas

por especies esclerófilas de hoja ancha. En cambio, si la trayectoria

sucesional se ve afectada por fuego esta tendencia se podría ver desviada

dependiendo del régimen de incendios. Bajo regímenes de baja recurrencia,

con un solo incendio, la vegetación será capaz de volver a su estado previo

sin desviaciones significativas de la trayectoria esperada en ausencia de

fuegos. Sin embargo, bajo regímenes de alta recurrencia de incendio la

sucesión de la vegetación será desviada hacia posibles estados alternativos,

dominados por especies que pueden establecer un bucle de

retroalimentación positivo con el fuego y donde la entrada de especies de

estados sucesionales más tardíos se puede ver limitada.

Page 27: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

18

- Capítulo 7. Se indaga en los factores que controlan la germinación en

especies germinadoras obligadas pertenecientes a regiones geográficas

diferente a la cuenca mediterránea. Concretamente, se estudia si el régimen

de temperaturas diarias del suelo después del paso del fuego desempeña un

papel importante en la ruptura de la dormancia física de algunas especies de

la familia Fabaceae del sureste de Australia.

BIBLIOGRAFÍA

Abad N, Caturla RN, Baeza MJ, Bladé C, Vieira F, Carbó E, Valdecantos A,

Bonet A, Serrasolses I, Guàrdia R, Raventós J, Alloza JA, Escarré A,

Bellot J, Vallejo VR (1996) Regeneración de los montes quemados. En:

Vallejo VR (ed.) La restauración de la cubierta vegetal en la Comunidad

Valenciana. Fundación CEAM – Generalitat Valenciana, Valencia.

Acacio V, Holmgren M, Jansen P, Schrotter O (2007) Multiple recruitment

limitation causes arrested succession in Mediterranean oak systems.

Ecosystems 10: 1220-1230.

Auld TD, O’Connell MA (1991) Predicting patterns of post-fire germination in 35

eastern Australian Fabaceae. Australian Journal of Ecology 16: 53-70.

Baeza MJ (2001) Aspectos ecológicos y técnicas de control de combustible

(roza y quema controlada) en matorrales con alto riesgo de incendio

dominados por Ulex parviflorus (Pourr.). Tesis Doctoral, Departamento

de Ecología. Universidad de Alicante.

Baeza MJ, De Luís M, Raventós J, Escarré A (2002) Factors influencing fire

behaviour in shrublands of different stand ages and the implications for

using prescribed burning to reduce wildfire risk. Journal of

Environmental Management 65: 199-208.

Baeza MJ, Raventós J, Escarré A, Vallejo VR (2003) The effect of shrub

clearing on the control of the fire-prone species Ulex parviflorus. Forest

Ecology and Management 186: 47-59.

Baeza MJ, Vallejo VR (2006) Ecological mechanisms involved in dormancy

breakage in Ulex parviflorus seeds. Plant Ecology 183: 191-205.

Page 28: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

19

Baeza MJ, Raventós J, Escarré A, Vallejo VR (2006) Fire risk and vegetation

structural dynamics in Mediterranean shrubland. Plant Ecology 187: 189-

201.

Baeza MJ, Valdecantos A, Alloza JA, Vallejo VR (2007) Human disturbance

and environmental factors as drivers of long-term post-fire regeneration

patterns in Mediterranean forests. Journal of Vegetation Science 18: 243-

252.

Baeza MJ, Roy J (2008) Germination of an obligate seeder (Ulex parviflorus)

and consequences for wildfire management. Forest Ecology and

Management 256: 685-693.

Baeza MJ, Santana VM, Pausas JG, Vallejo VR (en prensa) Successional

trends in standing dead biomass in Mediterranean Basin species. Journal

of Vegetation Science.

Barberó M, Loisel R, Quézel P (1992) Biogeography, ecology and history of

Mediterranean Quercus ilex ecosystems. Vegetatio 99-100: 19-34.

Bell DT, Plummer JA, Taylor SK (1993) Seed germination ecology in

southwestern western Australia. Botanical Review 59: 24-73.

Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region.

Oxford University press, New York.

Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of

humans and ecological systems during the historic period. Human

Ecology 34: 713-729.

Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London.

Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of

ecosystems in a world without fire. New Phytologist 165: 525-538.

Bradstock RA, Auld TD (1995) Soil temperatures during experimental bushfires

in relation to fire intensity: consequence for legume germination and fire

management in south-eastern Australia. Journal of Applied Ecology 32:

76-84.

Page 29: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

20

Carreira JA, Niell FX (1992) Plant nutrient changes in a semiarid Mediterranean

shrubland after fire. Journal of Vegetation Science 3: 457-466.

Certini G (2005) Effects of fire on properties of forests soils: a review. Oecologia

143: 1-10.

Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM

(2010) The concept of potential natural vegetation: an epitaph? Journal

of Vegetation Science 21: 1172-1178.

Clemente AS, Rego FC, Correia OA (1996) Demographic patterns and

productivity of post-fire regeneration in Portuguese Mediterranean

Maquis. International Journal of Wildland Fire 6: 5-12.

Connell JH, Slatyer RO (1977) Mechanisms of succession in natural

communities and their role in community stability and organization.

American Naturalist 111: 1119-1144.

Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land

abandonment and ecosystem assembly. Trends in Ecology and

Evolution 23: 104-112.

Cruz A, Moreno JM (2001) Seasonal course of total non-structural

carbohydrates in the lignotuberous Mediterranean-type shrub Erica

australis. Oecologia 128: 343-350.

DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on Ecosystems. John

Wiley & Sons, New York.

Delitti W, Ferran A, Trabaud L, Vallejo VR (2005) Effects of fire recurrence in

Quercus coccifera L. shrublands of the Valencia Region (Spain): I. Plant

composition and productivity. Plant Ecology 177: 57-70.

De Luís M, García-Cano MF, Cortina J, Raventós J, González-Hidalgo JC,

Sánchez JR (2001) Climatic trends, disturbances and short-term

vegetation dynamics in a Mediterranean shrubland. Forest Ecology and

Management 147: 25-37.

Page 30: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

21

De Luís M, Baeza MJ, Raventós J, González-Hidalgo JC (2004) Fuel

characteristics and fire behaviour in mature Mediterranean gorse

shrublands. International Journal of Wildland Fire 13: 79-87.

De Luís M, Raventós J, González-Hidalgo JC (2005) Factors controlling

seedling germination after fire in Mediterranean gorse shrublands.

Implications for fire prescription. Journal of Environmental Management

76: 159-166.

De Luís M, Raventós J, González-Hidalgo JC (2006) Post-fire vegetation

succession in Mediterranean gorse shrublands. Acta Oecologica 30: 54-

61.

De Luís M, Raventós J, Wiegand T, González-Hidalgo JC (2008) Temporal and

spatial differentiation in seedling emergence may promote species

coexistence in Mediterranean fire-prone ecosystems. Ecography 31: 620-

629.

Dimitrakopoulos AP (2001) A statistical classification of Mediterranean species

based on their flammability components. International Journal of Wildland

Fire 10: 113-118.

Dimitrakopoulos AP, Panov PI (2001) Pyric properties of some dominant

Mediterranean vegetation species. International Journal of Wildland Fire

10: 23-27.

Domínguez L, Calvo L, de Luis E (2002) The impact of wildfire season on

regeneration of Quercus pyrenaica forest and Pinus sp. stands. Journal

of Mediterranean Ecology 3: 47-54.

Duguy B, Alloza JA, Röder A, Vallejo VR, Pastor F (2007) Modelling the effects

of landscape fuel treatments on fire growth and behaviour in a

Mediterranean landscape (eastern Spain). International Journal of

Wildland Fire 16: 619-632.

Eugenio M, Lloret F (2006) Effects of repeated burning on Mediterranean

communities of the northeastern Iberian Peninsula. Journal of Vegetation

Science 17: 755-764.

Page 31: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

22

Fox MD, Fox BJ (1987) The role of fire in scleromorphic forests and shrublands

of eastern Australia. En: Trabaud L, (ed.). The role of fire in ecological

systems. SPB, The Hague.

Grubb PJ (1977) The maintenance of species-richness in plant communities:

the importance of the regeneration niche. Biological Reviews 52: 107-

145.

Hanes TL (1971) Succession after fire in the chaparral of southern California.

Ecological Monographs 41: 27-52.

Harper JL (1977) Population biology of plants. Academic press, London.

Hernandez EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and

water use strategies in seedlings of Mediterranean coexisting species.

Plant Ecology 207: 233-244.

Herranz JM, Ferrandis P, Martínez-Sánchez JJ (1999) Influence of heat on

seed germination of nine woody Cistaceae species. International Journal

of Wildland Fire 9: 173-182.

Hobbs RJ, Arico S, Aronson J, Baron, Bridgewater P, Cramer VA, Epstein PR,

Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM,

Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel

ecosystems: a theorethical and management aspects of the new

ecological world order. Global Ecology and Biogeography 15: 1-7.

Huston M, Smith T (1987) Plant succession: life history and competition. The

American Naturalist 130: 168-198.

Johnson EA (1992) Fire and vegetation dynamics: studies from the North

American boreal forests. Cambridge University Press, Cambridge.

Keeley JE (1986) Resilience of Mediterranean shrub communities to fires. En:

Dell B, Hopkins AJM, Lamont BB (eds.) Resilience in Mediterranean-type

Ecosystems. Dr W. Junk Publishers, Dordrecht.

Keeley JE (1995) Seed-germination patterns in fire-prone Mediterranean-

climate regions. En: Arroyo MTK, Zedler PH, Fox MD (eds.) Ecology and

biogeography of Mediterranean ecosystems in Chile, California and

Australia. Springer-Verlag, New York.

Page 32: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

23

Keeley JE (2009) Fire intensity, fire severity, and burn severity: a brief review

and suggested usage. International Journal of Wildland Fire 18: 116-126.

Le Houérou HN (1993) Land degradation in Mediterrranean Europe: can

agroforestry be a part of the solution? A prospective review. Agroforestry

Systems 21: 43-61.

Lloret F (1998) Fire, canopy cover and seedling dynamics in Mediterranean

shrubland of northeastern Spain. Journal of Vegetation Science 9: 417-

430.

Lloret F (2004) Régimen de incendios y regeneración. En: Valladares F (ed.)

Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de

Medio Ambiente, Madrid.

Lloret F, López-Soria L (1993) Resprouting of Erica multiflora after experimental

fire treatments. Journal of Vegetation Science 4: 367-374.

Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape

patterns in the eastern Iberian Peninsula. Landscape Ecology 17: 745-

759.

Lloret F, Pausas JG, Vilà M (2003) Responses of Mediterranean plant species

to different fire frequencies in Garraf Natural Park (Catalonia, Spain):

field observations and modelling predictions. Plant Ecology 167: 223-

235.

Lloret F, Peñuelas J, Estiarte M (2004) Experimental evidence of reduced

diversity of seedlings due to climate modification in a Mediterranean-type

community. Global Change Biology 10: 248-258.

Lloret F, Peñuelas J, Estiarte M (2005) Effects of vegetation canopy and climate

on seedling establishment in Mediterranean shrubland. Journal of

Vegetation Science 16: 67-76.

Lloret F, Peñuelas J, Prieto P, Llorens L, Estiarte M (2009) Plant community

changes induced by experimental climate change: seedling and adult

species composition. Perspectives in Plant Ecology, Evolution and

Systematics 11: 53-63.

Page 33: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

24

McCarthy MA, Gill AM, Bradstock RA (2001) Theoretical fire interval

distribution. International Journal of Wildland Fire 10: 73-77.

Minnich RA, Chou YH (1997) Wildland fire patch dynamics in the chaparral

southern California and northern Baja California. International Journal of

Wildland Fire 7: 221-248.

Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of

heat and smoke as germination cues in Mediterranean Basin flora.

Annals of Botany 105: 627-635.

Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1º x 1º

fire history reconstruction for the 20th century. Global Change Biology

11: 398-420.

Papió C, Trabaud L (1991) Comparative study of the aerial structure of five

shrubs of Mediterranean shrublands. Forest Science 37: 146-159.

Paula S, Pausas JG (2006) Leaf traits and resprouting ability in the

Mediterranean basin. Functional Ecology 20: 941-947.

Paula S, Pausas JG (2008) Burning seeds: germinative response to heat

treatments in relation to resprouting ability. Journal of Ecology 96: 543-

552.

Paula S, Pausas JG (en prensa) Root traits explain different foraging strategies

between resprouting life histories. Oecologia

Pausas JG (1999) Response of plant functional types to changes in the fire

regime in Mediterranean ecosystems: a simulation approach. Journal of

Vegetation Science 10: 717-722.

Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula

(Mediterranean Basin). Climatic Change 63: 337-350.

Pausas JG, Bradstock RA, Keith DA, Keeley JE, Network GF (2004) Plant

functional traits in relation to fire in crown-fire ecosystems. Ecology 85:

1085-1100

Page 34: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

25

Pereira JM, Sequeira NM, Carreiras JM (1995) Structural properties and

dimensional relations of some Mediterranean shrub fuels. International

Journal of Wildland Fire 5: 35-42.

Platt WJ, Connell JH (2003) Natural disturbances and directional replacement

of species. Ecological Monographs 73: 507-522.

Quézel P (2004) Large-scale post-glacial distribution of vegetation structure in

the Mediterranean region. En: Mazzoleni S, Di Pasquale G, Mulligan M,

Di Martino P, Rego F (eds.) Recent dynamics of the Mediterranean

vegetation and landscape. J. Wiley & Sons, Chichester.

Quintana JR, Cruz A, Fernández-González F, Moreno JM (2004) Time of

germination and establishment success after fire of three obligate

seeders in a Mediterranean shrubland of central Spain. Journal of

Biogeography 31: 241-249.

Raventós J, Wiegand T, De Luis M (2010) Evidence for the spatial segregation

hypothesis: a test with nine-year survivorship data in a Mediterranean

shrubland. Ecology 91: 2110-2120.

Rodrigo A, Retana J, Picó FX (2004) Direct regeneration is not the only

response of Mediterranean forests to large fires. Ecology 85: 716-729.

Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter

content of Mediterranean woody species with different post-fire

regenerative strategies. Annals of Botany 99: 545-554.

Saura-Mas S, Lloret F (2009) Linking post-fire regenerative strategy and leaf

nutrient content in Mediterranean woody plants. Perspectives in Plant

Ecology, Evolution and Systematics 11: 219-229.

Saura-Mas S, Paula S, Pausas JG, Lloret F (2010) Fuel loading and

flammability in the Mediterranean Basin woody species with different

post-fire regenerative strategies. International Journal of Wildland Fire

19: 783-794.

Schwilk DW (2003) Flammability is a niche construction trait: canopy

architecture affects fire intensity. The American Naturalist 162: 725-733.

Page 35: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

26

Siles G, Rey PJ, Alcántara JM, Ramírez JM (2008) Assessing the long-term

contribution of nurse plants to restoration of Mediterranean forests

through Markovian models. Journal of Applied Ecology 45: 1790-1798.

Suding KN, Gross KL, Houseman GR (2004) Alternative status and positive

feedbacks in restoration ecology. Trends in Ecology and Evolution 19:

46-53.

Thanos CA, Rundel PW (1995) Fire-followers in chaparral: nitrogenous

compounds trigger seed germination. Journal of Ecology 83: 207-216.

Trabaud L, Lepart J (1980) Diversity and stability in garrigue ecosystems after

fire. Vegetatio 43: 49-57.

Valdecantos A, Baeza MJ, Vallejo VR (2009) Vegetation management for

promoting ecosystem resilience in fire-prone Mediterranean shrublands.

Restoration Ecology 17: 414-421.

Valladares F, Hernandez LG, Dobarro I, García-Pérez C, Sanz R, Pugnaire FI

(2003) the ratio of leaf to total photosinthetic area influences shade

survival and plastic response to light of green-stemmed leguminous

shrub seedlings. Annals of Botany 91: 577-584.

Valladares F, Camarero JJ, Pulido F, Gil-Pelegrín E (2004) El bosque

mediterráneo, un sistema humanizado y dinámico. En: Valladares F (ed.)

Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de

Medio Ambiente, Madrid.

Verdú M (2000) Ecological and evolutionary differences between Mediterranean

seeders and resprouters. Journal of Vegetation Science 11: 265-268.

Verdú M, Pausas JG (2007) Fire drives phylogenetic clustering in

Mediterranean Basin woody plant communities. Journal of Ecology 95:

1316-1323.

Vilà-Cabrera A, Saura-Mas S, Lloret F (2008) Effects of fire frequency on

species composition in a Mediterranean shrubland. Ecoscience 15: 519-

528.

Vitousek PM, Money HA, Lubchenco J, Melillo J (1997) Human domination of

Earth’s ecosystems. Science 277: 494-499.

Page 36: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

27

Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant-

communities. Advances in Ecological Research 23: 263-336.

Zavala MA, Espelta JM, Retana J (2000) Constraints and trade-offs in

Mediterranean plant communities: the case of holm oak-Aleppo pine

forests. Botanical Review 66: 119-149.

Zavala MA (2003) Dinámica y sucesión en bosques mediterráneos: modelos

teóricos e implicaciones para la selvicultura. En: Rey-Benayas JM,

Espigares T, Nicolau JM (eds.) Restauración de ecosistemas

mediterráneos. Universidad de Alcalá, Madrid.

Zedler PH, Gautier CR, McMaster GS (1983) Vegetation change in response to

extreme events: the effect of a short interval between fires in California

chaparral and coastal scrub. Ecology 64: 809-818.

Page 37: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

28

Page 38: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

29

CAPÍTULO 2- ÁREA DE ESTUDIO

Page 39: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

30

Page 40: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

31

CAPÍTULO 2 - ÁREA DE ESTUDIO El área de estudio se encuentra en el interior de las provincias de Alicante y

Valencia, en el sureste de la Península Ibérica (Figura 1). Geológicamente, el

área corresponde a las últimas estribaciones de las cordilleras Béticas,

concretamente a la zona Prebética. En el área de estudio predominan los

materiales de origen sedimentario y de naturaleza caliza. Excluyendo los

depósitos aluviales y coluviales, los substratos calizos suponen

aproximadamente un 55% del territorio forestal y los margosos un 35%. Las

condiciones climáticas secas en el área de estudio determinan las

características de los suelos, y por ejemplo, las calizas presentan suelos rojos

fisurales (Leptosoles, Cambisoles y Luvisoles; FAO 1988) en diferente grado de

descarbonatación y, normalmente son pedregosos, bien estructurados y poco

erosionables. Estos suelos, no han sido cultivados intensamente en los medios

forestales y su capacidad de infiltración es muy elevada. Por otro lado, el

segundo gran tipo de substrato esta formado por margas y arcilla, que dan

Figura 1. Área de estudio. Los números corresponden con el identificador

de las diferentes parcelas.

1

2

3

4

5 6

7 8

9 10

12

11 13

14

Km

Page 41: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

32

lugar a coluvios más o menos pedregosos, de profundidad media, de subsuelo

compacto y poco fisural. Los suelos suelen ser de tipo Regosol calcáreo (FAO

1989). En la Comunidad Valenciana, una gran parte de los suelos

desarrollados sobre substratos margosos no están consolidados y han sido

cultivados en algún momento (Abad et al. 1996).

En el área de estudio predomina el clima típicamente Mediterráneo, bajo

condiciones de ombroclima seco (precipitación media anual: 350-600 mm;

Pérez-Cueva 1994). El termoclima contempla un tipo ampliamente

representado en la Comunidad Valenciana: el mesomediterráneo (Tª media

anual 13-17ºC). Sin embargo, hay que exceptuar una zona de estudio

(Guadalest, Tabla 1, Figura 1) que presenta un termoclima termomediterráneo

(Tª media anual 17-19ºC). Investigaciones previas han mostrado que en las

últimas décadas se está observando una tendencia al descenso de la

precipitación estival y un claro patrón de incremento de la temperatura media

anual y estival (De Luis et al. 2001, Pausas 2004).

En general, el tipo de substrato es un determinante clave de la vegetación en el

área de estudio. Sobre substratos calizos predominan comunidades

constituidas por especies rebrotadoras, principalmente de Q. coccifera (Abad et

al. 1996). En substrato no consolidado y margoso, son frecuentes los

abancalamientos abandonados, donde la vegetación dominante esta

constituida por especies germinadoras. Estos sistemas se encuentran

dominados por especies tanto de porte arbóreo (Pinus halepensis Mill.) o

arbustivo (Ulex parviflorus Pourr., Cistus albidus L. y Rosmarinus officinalis L.)

con una gran capacidad de colonización, típicas de estados iniciales de la

sucesión (Abad et al. 1996, Baeza et al. 2007). No menos de un 30% de la

superficie forestal actual de la Comunidad Valenciana ocupa abancalamientos

que se hallan en un estado generalizado de desmantelamiento, especialmente

los muretes de contención de piedra seca. En casos extremos, los

abancalamientos han desaparecido por completo quedando el substrato

litológico descarnado.

Page 42: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

33

Identificador Nombre nº fuegos Altura (m) Pendiente (º) Orientación Suelo 1er

Fuego 2o Fuego 3

er Fuego XUTM YUTM Capítulo

1 Ayora a 2 833 28 ENE Margo-calizo 1979 1985 - 682077 4339697 5

2

Ayora b

0 763 10 SSO Margo-calizo - - - 679798 4334808 6

1 1041 31 NNE Margas 1979 - - 676400 4332099 4, 5, 6

2 1041 23 NE Margas 1979 1996 - 676684 4332010 4, 5, 6

3 1041 23 NE Margas 1979 1996 2006 676812 4331950 3, 4, 6

3 Ayora c 2 831 6 O Margas 1979 1991 - 676537 4322175 5

4 Ayora d 2 735 14 E Calizas 1979 1984 - 687777 4308441 5

5

Fontanars

1 710 30 NO Margo-calizo 1978 - - 697715 4293747 5

2 718 25 O Calizas 1978 1984 - 696615 4294317 5

6 Banyeres 1 820 14 NO Margas 1991 - - 704587 4289588 5

7

Onil

0 940 47 ENE Margas - - - 703401 4280552 6

1 940 35 NO Margas 1984 - - 703392 4280698 4, 5, 6

2 940 35 NO Margas 1984 1994 - 703339 4280706 4, 5, 6

3 940 35 NO Margas 1984 1994 2006 703338 4280686 3, 4, 6

8 La Venteta 0 997 22 NE Margas - - - 709253 4281051 6

9

Pardines

0 900 4 N Margas - - - 711154 4283127 6

1 900 4 N Margas 1984 - - 711302 4283187 4, 5, 6

2 900 4 N Margas 1984 1994 - 711215 4283194 4, 5, 6

3 900 4 N Margas 1984 1994 2006 711202 4283207 4, 6, 3

10 Fontroja 0 834 32 NE Margas - - - 716895 4283094 6

11 Els Plans 0 920 11 NO Margas - - - 721637 4280334 6

12

La Torre

1 840 16 N Margas 1984 - - 725918 4276893 5

2 840 16 N Margas 1984 1994 - 725936 4276847 5

13 Confrides 1 789 15 O Margas 1991 - - 738829 4285347 5

14 Guadalest 1 417 3 S Margas 1991 - - 744675 4283954 5

Tabla 1. Descripción de las zonas de estudio utilizadas en la tesis doctoral. El número identificador corresponde con la

ubicación en la figura 1.

Page 43: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

34

Dentro del área de estudio se seleccionaron 14 zonas ubicadas sobre antiguos

campos de cultivo abandonados a lo largo del siglo XX (Tabla 1). Estas zonas

han sido colonizadas por especies germinadoras, formando inicialmente

bosques de P. halepensis (excepto la zona de estudio de Ayora, que

corresponde a una formación mixta con Pinus pinaster Ait.). Sin embargo, parte

de estas zonas han sido objeto de diferentes incendios forestales desde 1978

(Tabla 1). Además, en años posteriores han ocurrido fuegos recurrentes dentro

de las áreas previamente quemadas y, en la actualidad, las zonas

seleccionadas conforman un mosaico de sistemas entre bosque y matorral en

diferente grado de desarrollo. Por lo tanto, se dispone de parcelas con un

diferente número de recurrencia de incendio y con características climáticas,

ambientales y de substrato similares entre ellas (Tabla 1). Por ejemplo, en

Ayora b, Onil y Pardines se dispone de cuatro parcelas con 0, 1, 2 y 3

incendios cada una. El tercer fuego sobre estas parcelas fue una quema

experimental realizada expresamente para esta tesis doctoral (ver capitulo 6).

La zona de Ayora corresponde a uno de los incendios más catastróficos de la

cuenca mediterránea, que en 1979 arrasó aproximadamente unas 30.000

hectáreas. Su gran extensión nos ha permitido establecer en su interior 4 zonas

de estudio diferentes con fuegos recurrentes independientes (Ayora a, Ayora b,

Ayora c y Ayora d; ver Tabla 1 para más detalles). Parte de las zonas utilizados

en esta tesis han formado parte de estudios previos dentro de proyectos de

investigación desarrollados por el Departamento de Restauración Forestal del

CEAM, donde se incluyen tanto estudios de dinámica de la vegetación como

de manejo de la vegetación para reducir el riesgo de incendio (Baeza 2001,

Baeza et al. 2002, Baeza et al. 2007). La altura sobre el nivel del mar de estas

zonas abarca entre 710-1041 m y se seleccionaron evitando exposiciones sur

para reducir la variabilidad ambiental. Sin embargo, hay que resaltar que la

zona de Guadalest es una excepción ya que se encuentra a 417 m de altura y

exposición sur.

Page 44: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

35

BIBLIOGRAFÍA

Abad N, Caturla RN, Baeza MJ, Bladé C, Vieira F, Carbó E, Valdecantos A,

Bonet A, Serrasolses I, Guàrdia R, Raventós J, Alloza JA, Escarré A,

Bellot J, Vallejo VR (1996) Regeneración de los montes quemados. En:

Vallejo VR (ed.) La restauración de la cubierta vegetal en la Comunidad

Valenciana. Fundación CEAM – Generalitat Valenciana, Valencia.

Baeza MJ (2001) Aspectos ecológicos y técnicas de control de combustible

(roza y quema controlada) en matorrales con alto riesgo de incendio

dominados por Ulex parviflorus (Pourr.). Tesis Doctoral, Departamento

de Ecología. Universidad de Alicante.

Baeza MJ, De Luís M, Raventós J, Escarré A (2002) Factors influencing fire

behaviour in shrublands of different stand ages and the implications for

using prescribed burning to reduce wildfire risk. Journal of

Environmental Management 65: 199-208.

Baeza MJ, Valdecantos A, Alloza JA, Vallejo VR (2007) Human disturbance

and environmental factors as drivers of long-term post-fire regeneration

patterns in Mediterranean forests. Journal of Vegetation Science 18: 243-

252.

De Luís, M., García-Cano, M.F., Cortina, J., Raventós, J., González-Hidalgo,

J.C., Sánchez, J.R. 2001. Climatic trenes, disturbances and short-term

vegetation dynamics ina Mediterranean shrubland. Forest Ecology and

Management 147: 25-37.

FAO 1988. Soil map of the world. Revised legend. World soil resources report,

60. 99 pp. Rome.

Pérez-Cueva A (1994) Atlas climàtic de la Comunitat Valenciana. Direcció

General d’Ubanisme i Ordenació del Territori, Generalitat Valenciana.

Col·lecció Territori, Nº4.

Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula

(Mediterranean Basin). Climatic Change 63: 337-350.

Page 45: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

36

Page 46: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

37

CAPÍTULO 3-

CARACTERÍSTICAS ESTRUCTURALES DEL COMBUSTIBLE

MODULANDO LAS TEMPERATURAS DEL SUELO EN PARCHES

DE DIFERENTES ESPECIES DE MATORRAL DE LA CUENCA

MEDITERRÁNEA

RESUMEN: La habilidad de un combustible para arder está determinada por su inflamabilidad, una propiedad que varía entre especies y que está parcialmente determinada por diferentes características estructurales del combustible como el ratio superficie: volumen de ramas y hojas, la retención de de ramillas muertas, la arquitectura de su copa y la densidad aparente. Nuestro objetivo fue valorar el rol de estas características estructurales en la modulación de temperaturas bajo diferentes parches de vegetación. Los resultados mostraron que hubieron diferencias contrastadas el la estructura del combustible entre los parches de diferentes especies de matorral mediterráneo. Las diferencias en la estructura del combustible fueron importantes en la modulación de las temperaturas ya que, sin tener en cuenta el combustible total, las temperaturas más altas fueron encontradas con la mayor cantidad y densidad de combustible muerto. Sorprendentemente, las temperaturas bajo especies herbáceas fueron altas en relación a las especies arbustivas; el tiempo de residencia de sus temperaturas fue más corto. Por lo tanto, las estrategias de manejo que promuevan especies que acumulan menor cantidad de combustible fino muerto podría ser crucial para conseguir fuegos menos severos con un impacto reducido en el ecosistema.

Este capítulo reproduce el siguiente manuscrito: Santana VM, Baeza MJ, Vallejo VR (en prensa) Fuel structural traits modulating soil temperatures in different species-patches of Mediterranean Basin shrublands. International Journal of Wildland Fire

Page 47: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

38

Page 48: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

39

Fuel structural traits modulating soil temperatures in different

species-patches of Mediterranean Basin shrublands

Victor M. SantanaA, M. Jaime BaezaA, B, V. Ramón VallejoA

AFundación de la Generalitat Valenciana Centro de Estudios Ambientales del

Mediterráneo (CEAM). Parque Tecnológico Paterna. C/Charles Darwin, 14.

46980 Paterna, Valencia. Spain BDepartamento de Ecología, Universidad de Alicante. Ap. 99. 03080 Alicante.

Spain.

Abstract The ability of a fuel to burn is determined by its flammability, a property which varies from one species to another and is partially determined by different fuel structural traits such as surface-to-volume ratio of twigs and leaves, retention of standing dead twigs, canopy architecture and bulk density. Our aim was to assess the role of these fuel structural traits in modulating soil temperatures under different species patches. The results showed that there were contrasted differences in the fuel-structure complex among different species-patches in Mediterranean Basin shrublands. The differences in the fuel structure were important in modulating soil temperature since, regardless of the total fuel load, the highest temperatures were found under the species with the highest loads and densities of dead fine fuel. Surprisingly, temperatures under herbaceous species were high in relation to shrubby species; however, temperature-residence-times were shorter. Therefore, management strategies which promote species that accumulate low contents of fine dead fuel could be crucial for attaining less severe fires with a reduced impact on ecosystem functioning. Key words: Dead fuel, Fire behaviour, Fire intensity, Fire severity, Flammability.

Page 49: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

40

1. Introduction

Management of high fire-risk vegetation is a

challenge for fire fighters and land managers,

especially in the next decades when forecasts

predict shifts in the fire regime as a result of

climate change (Pausas 2004; Mouillot and Field

2005; Westerling et al. 2006). Designing new fuel

treatment strategies to reduce fire hazard requires

further understanding of the functional

relationships between fuel characteristics and the

processes associated with fire, so that when a

wildfire ignites in a treated landscape, it spreads

more slowly, burns with less intensity and causes

fewer negative effects on the ecosystem

functioning (Conard et al. 2001; Fernandes and

Botelho 2003).

The ability of a fuel to burn is determined by its

flammability, a property that indicates how easily it

will ignite (ignitability), how quick the flames will

spread (combustibility) and how stable its burning

rate will be (sustainability) (Troumbis and Trabaud

1989). This property varies substantially from one

species to another, and it is determined by the

interaction of many different fuel structural traits

such as surface-to-volume ratio of twigs and

leaves, retention of standing dead twigs, canopy

architecture and bulk density (Cornelissen et al.

2003). Moreover, flammability can also be partially

modulated by the content of minerals, volatile oils,

waxes and resins in fuels (Philpot 1970;

Dimitrakopoulos and Panov 2001; Alessio et al.

2008). Fuel structural traits have been widely

analysed in laboratory studies aimed at classifying

species into possible fire-risk levels (Rothermel

1972; Papió and Trabaud 1991; Pereira et al.

1995; Dimitrakopoulos and Panov 2001;

Dimitrakopoulos 2001; Baeza et al. 2006; Saura-

Mas et al. 2010). However, there is still a lack of

knowledge linking the role of these species-

specific traits to fuel consumption processes in

real fires and their possible effects on ecosystem

functioning (Pérez and Moreno 1998; Molina and

Llinares 2001; Schwilk 2003).

Fire effects on ecosystem functioning are

mainly determined by ground and subsurface

heating which affects plant fire-persistence

structures, like seedbanks, rhizomes, buds and

bulbs, and alters soil properties and erosion

processes (Beadle 1940; Bradstock and Auld

1995; Brooks 2002; Certini 2005). Readily

measurable parameters such as the amount of

heat released by the physical combustion of fuel

(fire intensity sensu Keeley 2009) or the losses in

organic matter above and belowground (fire

severity sensu Keeley 2009) have often been

linked to fire effects on the ecosystem (Moreno

and Oechel 1991; Schimmel and Granström 1996;

Keeley et al. 2005); however, they are not always

good descriptors of fire impacts on the

ecosystems (Hartford and Frandsen 1992;

Bradstock and Auld 1995; Keeley and McGinnis

2007). The failure of these relationships has been

attributed to the very little radiant or convected

heat that is transferred from the combustion of

aerial fuels to the soil or, simply, to the fact that

soil temperatures are more dependent on a single

fuel structural trait, such as the architecture of the

dead branches in the lower strata of plants

(Schwilk 2003) or the fine fuels lying on the soil

surface (Bradstock and Auld 1995).

The aim of this work is to assess the role of

species-specific fuel structural traits in determining

soil temperatures in Mediterranean Basin

shrublands dominated by obligate seeders. As this

vegetation is characterised by very flammable

foliage with abundant dead woody material that

favours the rapid spread of fires, it has become

one of the most problematic vegetation types in

this area for fire managers (Duguy et al. 2007;

Saura-Mas et al. 2010). The existence of

individuals of the same species clumped together

on our study sites allowed us to establish patches

composed almost exclusively of a single species.

On these patches we also assessed the fuel traits

of the dominant species before setting three

experimental fires. Specifically, we assessed: 1)

whether the different species-patches show

differences in fuel structural traits such as fuel

distribution by size classes, standing dead fuel,

fuel height and fuel bulk density; 2) whether the

Page 50: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

41

differences in fuel structural traits between species

produce changes in fire effects, such as fuel

consumption and soil temperatures; and 3) which

fuel structural traits are most important for

modulating soil temperatures.

2. Material and methods

2.1 Experimental fires

We selected three sites in the Valencia Region

(Spain) to apply different experimental fires (Table

1). These sites have been subjected to frequent

fire episodes, both natural and human-caused,

with the most recent ones being experimental fires

for fuel management studies (Baeza et al. 2002b).

At the time of our experimental fires, the

vegetation was a shrubland dominated by several

obligate-seeding species. The woody stratum was

mainly composed of the shrubs Cistus albidus L.

(Cistus hereafter), Rosmarinus officinalis L.

(Rosmarinus hereafter) and Ulex parviflorus Pourr.

(Ulex hereafter), whereas the herbaceous stratum

consisted of perennial resprouting species, mainly

the grass Brachypodium retusum (Pers.) Beauv.

(Brachypodium hereafter). There were a few small

isolated individuals of woody resprouting species

like Quercus coccifera L. and Juniperus oxycedrus

L. At each site, we selected one plot of

approximately 30 x 20 m where we set an

experimental fire. The areas to be burned were

previously delimited by a 4 m-wide fire break in

which the vegetation was eliminated through

mechanical brushing. All three sites were burned

in June 2006, and there was a one-week

separation between each experimental fire. Fires

were ignited as a line encompassing the entire

upwind flank of the experimental plot (headfires).

As a safety measure, both fire-fighters and forest

rangers were present for each experimental fire.

2.2 Fuel structure of species-patches

Prior to the experimental fires, the existence of

individuals of the same species clumped together

on each site allowed us to distinguish patches

composed almost exclusively of a single species.

Table 1. Description of the experimental plots, including weather conditions and fire behaviour variables for the three different sites during the experimental fires.

Onil Pardines Ayora

Latitude 38º39'N 38º40'N 39º07'N

Longitude 0º39'W 0º39'W 0º57'W

Slope (º) 35 4 23

Aspect NW N N

Previous fire events 1986, 1994 1986, 1994 1979, 1996

Fuel load (g·m-2)

(n=6)

B. retusum 68±51 35±41 112±66

C.albidus 427±419 385±476 411±264

R. officinalis 130±201 61±144 33±81

U. parviflorus 235±168 636±601 194±166

Other species 38±56 347±540 186±180

Litter 370±209 334±362 344±250

Total 1274±705 1814±648 1285±468

Fuel moisture (%)

(n=5)

B. retusum 20±2,7 20,1±6,4 32,3±1,7

C.albidus 46,6±1,9 49,2±2,8 53,4±2,8

R. officinalis 54,1±3,1 52,1±1,4 59,8±3,4

U. parviflorus 44,1±1,3 49,9±2,6 50,2±3,1

U. parviflorus dead 15,1±9,2 13,8±4,7 15,7±3

Soil 12±2,8 7,8±2,2 20±9,5

Litter 6,9±0,7 8,4±1,6 12±4,5

Air temperature (ºC) 21,3 25,1 24,1

Air HR (%) 42 53,1 57,3

Wind speed (m/s) 4,9 1,6 3,7

Rate of spread (m.s-1)

(n=3) 0.21±0.04 0.11±0.04 0.25±0.02

Fire-line intensity

(Kw m-1) 4060 3288 4185

Tmax (ºC)

(0 cm depth, n=3) 283±175 445±147 278±91

We selected five different patches for each

dominant species (Brachypodium, Cistus,

Rosmarinus and Ulex) within each experimental

fire. These species have contrasting differences in

morphological and fuel traits (Table 2). Thus, to

assess the differences in fuel structural

characteristics between patches, we marked off

one 0.5 x 0.5 m square in each patch and

characterised all the vegetation present (Figure 1).

For shrubs, we assessed the total fuel load and its

Page 51: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

42

Table 2. Traits description for the dominant species.

Trait Species Reference

Brachypodium Cistus Rosmarinus Ulex

Vital form perennial graminoid shrub shrub shrub A

Leaf phenology evergreen drought semi-deciduous evergreen evergreen A

Leaf shape linear broad linear spines A

Surface to volume ratio (m2 m-3) 20 x 10-3 3,64 x 10-3 3,54 x 10-3 5,00 x 10-3 B, C

Mass to volume ratio (Kg m-3) 442 280 410 614 B, C

Heat of combustion (KJ Kg-1) 17638 19520 22296 21077 B, C

References: A= Paula et al. 2009; B= Cohen et al. 2003; C= Elvira and Hernando 1989

size class distribution on the basis of the

allometric relationships estimated for these

species in this area (for Ulex see Baeza et al.

2006; Cistus and Rosmarinus relations from M. J.

Baeza unpublished data). Allometric relationships

were applied to the basal stem diameters of the

individuals rooted inside each square. We

assumed that all the fuel of the plants rooted in

each 0.5 x 0.5 m square was contained within the

volume located over each square (Pérez and

Moreno 1998). We distinguished between four

different fuel fractions: on the one hand, fine live

and dead fuel (Ø <0.6 cm) and on the other hand,

coarse live and dead fuel (Ø >0. 6 cm). Leaves

and spines were included within the fine fuels.

Fuels larger than 2.5 cm were very scarce, and

they were included within the Ø >0.6 cm class. In

order to analyze the architecture of the fuel, we

assessed different fuel distribution parameters.

We measured total height as the visually averaged

top of the canopy of the individuals rooted inside

each square, disregarding occasional taller stems

(Figure 1). Fine dead fuel is usually concentrated

in the lower parts of plants, accumulating as the

plant grows and produces new live shoots in the

upper part of stems. This fact enabled us to

differentiate two strata in the vertical distribution of

the fuel-structure complex, the fine dead and the

fine live fuel stratas (Baeza et al. 2006). Thus, we

visually averaged the height of the fine dead fuel

layer from the ground level to the first branches

with live leaves (hereafter first live branches

height) (Figure 1). We assumed the total fuel bulk

density (FBD hereafter) to be the fuel inside the

volume comprised by the 0.5 x 0.5 m square

surface and the total height of individuals

(Rothermel 1972; Fernandes 2001). In addition,

we assumed the fine dead and green FBD to be

the fuel of these fractions comprised within the

lower and higher strata respectively delimited by

the height of the first live branches (Figure 1).

Spaces between patches of woody-shrubs

were dominated mainly by Brachypodium.

Because allometric relationships could not be

applied in this herbaceous species, we calculated

its fuel components by means of a multiple linear

regression. Outside the three experimental plots,

we measured percent cover and average height

(four points in each square) in ten 0.5 x 0.5 m

squares dominated by this species. Then, we

extracted, dried and weighed the fuel in the

laboratory. The resultant regression (Brachfuel =

4,28 Brachheight + 0,59 Brachcover - 18,69; r2=0,88;

p<0,001; n=30) was used to estimate the total fuel

in the Brachypodium patches of the experimental

plots. To calculate the fraction of dead and live

fuel, we used the proportion estimated for this

species in this region in summer periods, where

approximately 80% of its fuel is dead (Caturla

2002). Because dead and live fuels are mixed in

the same space for this species, we calculated

only the total FBD.

The proportion of biomass corresponding to

litter accumulated on the soil was insignificant

within the fuel-complex structure. Most squares

were bare soils with sparse litter particles, and

litter accumulated only in a few Rosmarinus and

Cistus patches. Although these species can

Page 52: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

43

Figure 1. Fuel structural traits measured for shrubby species. FBD = fuel bulk density.

accumulate litter as a consequence of the annual

leaf fall, this litter layer was distributed

heterogeneously in small and isolated spots under

the canopy and did not reach thicknesses higher

than 2.5 cm in any case. Therefore, we assumed

that the influence of the litter layer on fire effects

was minimum, and it was not measured

quantitatively because of the difficulties entailed in

measuring it without using destructive methods

that alter the fuel structure system.

2.3 Species-patches fire effects

Variability in fire effects under the different species

patches was measured using two proxies. First,

we calculated the percentage of the total fuel

consumed for each square. We calculated the

difference between the pre-fire fuel load and the

fuel remaining after fire. For this, we clipped all the

unburned fuel remaining within each square; then

we took it to the laboratory where it was oven

dried at 80ºC for 24 h and weighed. Secondly, we

estimated the possible fire effects on ecosystem

functioning on the basis of the maximum

temperatures (Tmax hereafter) and duration of

heating over threshold temperatures (temperature-

residence-time) in the soil profile. In these

ecosystems dominated by obligate seeders, the

largest soil temperature increases due to fire have

been found in the first 1 cm of the profile (Baeza et

al. 2002a; De Luis et al. 2004) where, in addition,

the maximum density of seeds stored in the

seedbank has also been found (Baeza 2001;

Clemente et al. 2007). Thus, we measured the

temperature at the 1 cm depth under the different

vegetation patches as a possible proxy of the fire

effects on ecosystem functioning. The availability

of only 17 insulated chrome-alumel thermocouples

(K-type) per fire limited the equal distribution of

thermocouples among species. The sensors of the

thermocouples were placed in the centre of the

squares and distributed as follows: 5 for Cistus, 4

for Ulex, 4 for Rosmarinus and 4 for

Brachypodium. A narrow hole (3 cm wide, 2 cm

deep approximately) was excavated and the

sensors were inserted horizontally at the desired

depth. Then, the soil was restored as closely as

possible to the original state. If there was any litter

present, it was removed and restored after setting

up the sensors. After each fire, the buried sensors

were excavated and their exact depth was

checked. Thermocouples displaced from their

original depth during the fires were discarded in

the data analysis. A total of one thermocouple for

Brachypodium, three for Cistus, two for

Rosmarinus and one for Ulex were discarded in all

the experimental fires. The thermocouples were

protected from fire by a stainless steel sheath, and

they were connected to a datalogger (CR1000;

Campbell Scientific, North Logan, Utah, USA)

located outside the fire perimeter. The response

time of the thermocouples to temperature

fluctuations was 1 second, and the soil

Page 53: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

44

temperature was registered every 10 seconds.

The register began 20 min before the

experimental fire was initiated and ended 2 hours

after the fire had been extinguished. The data

logger was also connected to a meteorological

station installed contiguous to the experimental

plot which registered wind speed, air temperature

and air relative humidity (Table 1).

2.4 Data analysis

We tested differences for each fuel structural trait

among the different species patches by means of

two-factor ANOVA. We used species-patches as a

fixed factor and site as random. Variables were

transformed to homogenise variances when

necessary. When significant differences were

found, Tukey’s HSD test for multiple pair-wise

comparisons of means was performed.

Differences in coarse dead and live fuel load, first-

live-branches height and fine live and fine dead

FBD could be tested only for shrubby species.

The assessment of which fuel component was

the most important one for determining Tmax and

temperature-residence-times was difficult because

the values of the fuel structural traits are

correlated with each other. However, performing a

separate correlation analysis of each fuel structure

component with the soil temperature parameters

could provide information about this. We assumed

that the most influential trait would be determined

by the strongest correlation coefficient with

temperature values. Correlation analyses were

performed separately for each species, and then,

for all shrubby species together. All statistical

analyses were performed using the SPSS v. 15

package (SPSS Inc., Chicago, IL).

3. Results

3.1 Fuel structural traits

Total fuel load within Brachypodium patches

(Mean ± SD; 216 ± 87 g m -2) was drastically lower

than in the shrub species patches, whilst there

were no significant differences found between

shrub species (3401 ± 1219 g m-2 for Ulex; 2926

± 1279 g m-2 for Rosmarinus; and 2122 ± 714 g m-

2 for Cistus; Table 3). However, the distribution of

fuel by size classes was markedly different among

shrubs. Fine dead fuel for Ulex represented 34%

of total fuel and was significantly higher than

Cistus and Rosmarinus (Figure 2A, Table 3),

which only reached 16% and 7% respectively. The

live fuel fraction was the most abundant one for all

Brachypodium Cistus Rosmarinus UlexF

uel (

g m

-2)

0

500

1000

1500

2000

Fine deadCoarse deadFine liveCoarse live

Brachypodium Cistus Rosmarinus Ulex

Hei

ght (

cm)

0

20

40

60

80

100

Total height First live branches

Brachypodium Cistus Rosmarinus Ulex

Bul

k de

nsity

(g

m-3

)

0

2000

4000

6000

8000

10000 Total Fine deadFine live

a

bbcc

a'

b' b'

c'

a

abb

c

a'a'

b'

A

B

C

Figure 2 . Fuel structural traits for the different species

patches. A) Fuel distribution by size classes, B) Total

and first-live-branches-height average, C) Bulk density

for total and fine fuel fractions. Error bars represent the

standard error. Different letters indicate significant (p

<0.05) differences between species patches (HSD

Tukey’s test).

shrubby species. Fine live fuel was the most

abundant fraction for Rosmarinus and it was

significantly higher than Cistus and Ulex (Figure

2A, Table 3). Coarse live fuel was similar for these

three species, representing 38-49% of the total

fuel load. Coarse dead fuel was scarce for all

Page 54: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

45

Table 3. Results of the two-factor ANOVAs comparing fuel structural traits between the different species patches (p<0,05 *; p<0,01 **; p<0,001 ***). FBD = fuel bulk density. Fuel structure trait df F p Fuel structure trait df F p

Total fuel load Total height

Species patch 3 49,17 <0,001*** Species patch 3 122,91 <0,001***

Plot 2 0,228 0,803 Plot 2 1,29 0,342

Species patch*Plot 6 3,158 0,011* Species patch*Plot 6 2,22 0,057

Fine dead fuel load Live branches height

Species patch 3 9,21 0,012* Species patch 2 39,28 0,002**

Plot 2 1,45 0,306 Plot 2 0,68 0,558

Species patch*Plot 6 2,43 0,039* Species patch*Plot 4 1,13 0,359

Fine live fuel load Total FBD

Species patch 3 114,4 <0,001*** Species patch 3 3,76 0,079

Plot 2 0,11 0,898 Plot 2 0,15 0,856

Species patch*Plot 6 1,937 0,094 Species patch*Plot 6 4,77 0,001**

Coarse dead fuel load Fine dead FBD

Species patch 2 2,85 0,17 Species patch 2 6,25 0,059

Plot 2 0,09 0,913 Plot 2 1,99 0,251

Species patch*Plot 4 1,36 0,266 Species patch*Plot 4 2,15 0,094

Coarse live fuel load Fine live FBD

Species patch 2 1,5 0,327 Species patch 2 3,63 0,126

Plot 2 0,68 0,555 Plot 2 0,4 0,694

Species patch*Plot 4 2,53 0,057 Species patch*Plot 4 1,21 0,324

species and did not exceed 6% in any species

(Figure 2A, Table 3). There were also differences

among the heights of shrubs. Rosmarinus patches

were significantly higher than Ulex in total height,

whereas Cistus had intermediate values (Table 3,

Figure 2B). The average height of the first live

branches was significantly closer to the soil in

Rosmarinus patches than in Cistus and Ulex

patches (Table 3, Figure 2B). Differences close to

significance were found in total and fine dead fuel

FBD (Table 3). Total FBD and fine dead FBD were

slightly higher in Ulex patches than in the other

shrub patches (Figure 2C). In contrast, the fuel-

structure complex showed marked differences

between the Brachypodium herbaceous patches

and the shrub patches. Not only did the grass

patches have a lower total fuel load, but they also

contained only fine fuel, most of which was dead

(Figure 2A). Total height was also lower and did

not exceed 13 cm. However, because all its fuel

was concentrated at low heights above the soil

surface, its total FBD was higher than Ulex

patches and more than twice the values of Cistus

and Rosmarinus (Figure 2C).

3.2 Species-specific fire effects

Among shrubs, fuel consumption was highest in

Ulex patches (83.7%) (Figure 3A), whereas Cistus

and Rosmarinus consumption showed similar

values (70.1 and 68% respectively). Practically all

the fuel in Brachypodium patches was consumed

(Figure 3A). Maximum temperatures reached at

the 1 cm-depth were highly variable. They ranged

from 24ºC to 99ºC. The highest temperature

values were registered under Ulex patches,

though variabilty was high (Figure 3B), followed by

Brachypodium, Cistus and Rosmarinus patches

respectively (Figure 3B). Temperature-residence-

time above 40ºC was also variable, ranging

between 30.1 and 0.6 min in the different species

patches. Brachypodium residence-times were

approximately two times those of Ulex, whereas

Page 55: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

46

Cistus and Rosmarinus experienced very short

times (Figure 3C). Temperatures above 50ºC were

of relatively short duration (less than 5 min) for all

species patches, but in this case longer durations

were experienced under Ulex patches.

Temperatures above 60ºC were found only under

Ulex patches and lasted no longer than 2 min

(Figure 3C).

3.3 Fuel structure traits that modulate soil

temperatures

Pearson correlation coefficients showed that Tmax

was better correlated with fuel structure traits than

BrachypodiumCistus Rosmarinus Ulex

Max

imum

tem

pera

ture

(ºC

)

20

30

40

50

60

70

80

90B

BrachypodiumCistus Rosmarinus Ulex

Fue

l con

sum

ptio

n (%

)

0

20

40

60

80

100 A

BrachypodiumCistus Rosmarinus Ulex

Res

iden

ce ti

me

(min

)

0

10

20

30

40 >40ºC >50ºC >60ºC

C

Figure 3. Fire effects in the different species-patches. A)

Consumed fuel; B) Maximum temperatures at 1 cm

depth. Boxes show the first and third quartiles and the

dividing line is the median; C) Soil temperature-

residence-times at 1cm depth. Error bars represent the

standard error.

with temperature-residence-times (Table 4). For

the whole set of shrub patches, fine dead fuel was

the most important fraction determining Tmax,

moreso than the rest of fractions and the total fuel

load. In addition, the spatial distribution of this

fraction was also important since the highest

correlation coefficient was found with fine dead

FBD. By species, Ulex patches showed the

strongest coefficients with Tmax, especially the

fine dead FBD (Table 4), whilst Cistus patches

were negatively correlated with the total FBD

(Table 4). The weakest coefficients were found in

Rosmarinus patches, which correlated negatively

with the coarse dead fuel load. For the grass

Brachypodium, Tmax was positively correlated

with the total fuel load.

Correlation analyses for temperature-

residence-times were performed only for

temperatures >40ºC, because patches showing

higher temperature thresholds were scarce. For

the collective set of shrub patches, the fine dead

fuel was also the most important fuel fraction in

determining residence-times. However, the spatial

distribution of the fuel fractions in the canopy was

also important in determining residence-times,

since the highest correlation coefficient was found

with total FBD. By species, Ulex had the

strongest correlation with total FBD (Table 4). No

significant correlations were found in Cistus and

Rosmarinus patches (Table 4). Patches of

Brachypodium had the strongest correlation with

the total height.

4. Discussion

The intrinsic differences in fuel structural traits

among species may entail variability in soil

temperatures in ecosystems dominated by

obligate seeders in Mediterranean Basin

shrublands. Subtle differences in the fuel-complex

structure could be crucial in modulating fire effects

at the micro-scale level, both for fuel consumption

and for soil temperatures. These results agree

with studies in other fire-prone vegetation types

where fire parameter variability is controlled by the

fuel array provided by the dominant species with

Page 56: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

47

Table 4. Pearson r correlations between fuel structure traits and soil temperatures for each species-patch. The strongest correlations are marked in bold letters (p<0,05*; p<0,01 **; p<0,001 ***).

Fuel structure trait

Fuel load Height Fuel bulk density

Variable Total

Fine

live

Fine

dead

Coarse

live

Coarse

dead Total

Live

branch Total

Fine

live

Fine

dead

Tmax (1cm depth)

Brachypodium (n=11) 0,596* - - - - -0,253 - 0,497 - -

Cistus (n=12) -0,352 -0,479 -0,238 -0,203 -0,184 0,603* 0,552* -0,693** -0,608* -0,421

Rosmarinus (n=10) -0,198 -0,291 -0,226 -0,008 -0,578* 0,02 -0,121 -0,329 -0,46 0,045

Ulex (n=11) 0,652* -0,044 0,775** 0,696** 0,33 -0,485 -0,351 0,842** 0,18 0,871***

All shrubs (n=33) 0,416* -0,227 0,646*** 0,401* 0,107 -0,252 0,068 0,623*** 0,054 0,665***

Residence time >40ºC (min)

Brachypodium (n=11) -0,337 - - - - 0,711** - -0,516 - -

Cistus (n=12) 0,403 0,375 0,115 0,432 0,141 0,298 0,081 0,165 -0,02 0,077

Rosmarinus (n=10) -0,112 -0,272 0,179 -0,089 -0,152 0,297 0,433 -0,257 -0,332 -0,026

Ulex (n=11) 0,351 0,069 0,383 0,324 0,329 -0,379 -0,184 0,500* 0,269 0,425

All shrubs (n=33) 0,484** -0,074 0,652*** 0,400* 0,275 -0,325 0,014 0,709*** 0,267 0,629***

respect to soil temperatures (Bradstock et al.

1992; Savadogo et al. 2007; Wright and Clarke

2008), flame length (Bradstock and Gill 1993;

Morvan and Dupuy 2004), fire severity (De Luis et

al. 2005) and the rate of spread (van Wilgen et al.

1990; Fernandes 2001; Fernandes 2009).

The accumulated fine dead fuel load and its

spatial distribution in the plant architecture

together probably represent one of the most

important fuel structure traits determining fuel

consumption and soil temperatures in our

experimental fires. The low moisture content of

dead fuel increases both the risk of fire ignition

and the capacity of a fire to grow after ignition.

The dead fuel turns into the first heat source in the

initial steps of fire and its combustion contributes

to the loss of moisture in green fuel, which acts as

a heat sink until it, in turn, catches fire and

releases heat (Johnson 1992; Bond and van

Wilgen 1996; Sun et al. 2006). In Ulex patches,

where the proportion of accumulated fine dead

fuel was higher than in the other shrubby species,

the total amount of fuel consumed reached greater

values. The heat released by the consumption of

dead fuels in these patches could favour the

combustion of other fuel fractions such as fine and

coarse live fuels. In contrast, in Rosmarinus

patches, where the lowest accumulation of fine

dead fuel was registered, the heat released would

not be high enough to ignite green fuels, resulting

in a lower consumption of other fractions.

The spatial distribution of these fine dead fuels

could be a crucial factor in determining soil

temperatures. The highest temperature values

were observed under Ulex patches, and they were

also better correlated to the bulk density of fine

dead fuels. The considerable loads of fine dead

fuel in the lower strata lead to high densities in an

aerated state close to the soil; as a result, when

these fuel loads burn they can be consumed

easily, heating the soil profile. The burned fuel

could even collapse over the soil surface and

increase the heating efficiency. In this sense,

Schwilk (2003) demonstrated that both fuel

flammability and soil temperatures under

Adenostoma fasciculatum plants depended on the

architecture of the dead fuel accumulated. The

retention of dead branches in an aerated state in

the canopy close to the soil was likely to increase

flammability more than the same amount of

branches lying on the soil surface. In our study,

Rosmarinus patches registered the lowest soil

temperatures. This may be explained firstly, by its

lower fuel consumption and release of heat, and

Page 57: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

48

secondly, by the low bulk density of its fuels,

which were more dispersed in the vertical canopy

structure and which, on consumption, could not

concentrate enough heat in the lower strata to

significantly heat up the soil profile. In fact, as has

been widely documented in other fire-prone

shrublands, under fuel beds with the same fuel

load, maximum soil temperatures and longer

residence-times were significantly higher for the

fuels with a lower height and a higher bulk density

(Bradstock et al. 1992; Molina and Llinares 2001;

Wright and Clarke 2008).

It has been demonstrated that the litter layer

can affect soil temperatures by buffering soil

heating in the case of low intensity fires with a

high rate of spread (Hartford and Frandsen 1992;

Valette et al. 1994). Despite the fact that litter

accumulation was low in our study, it could have

some effect in Rosmarinus and Cistus patches, as

these species accumulate litter under their

canopies due to an annual leaf release. This could

explain the negative correlation between their bulk

fuel densities and soil temperatures. High stem

densities could result in an increase in leaf release

and accumulation. Therefore, as our fires showed

high rates of spread and the fuel consumption of

these species was not severe, the litter layer could

have buffered soil heating. In fact, it has been

proposed that litter layers formed by obligate

seeders have low flammability; the high packing

ratio resulting from their small leaf sizes inhibits

the aeration of the fuel bed, thus hindering its

ignition and consumption (Scarff and Westoby

2006).

The Brachypodium herbaceous patches

behaved differently from the shrub patches. The

high proportion of fine dead fuel in these grass

patches was completely consumed by fire.

Surprisingly, we observed high soil temperature

values under these patches despite their low fuel

load. The high bulk densities of fine fuels in a few

centimetres near the soil surface were able to heat

the soil profile efficiently when they were burnt.

However, despite the fact that Brachypodium and

Ulex reached similar Tmax values, Brachypodium

temperature-residence-times above 50ºC or 60ºC

were lower in comparison. Because the low fine-

fuel load of this grass is consumed rapidly, the

heat released during the burn would not last long

enough to reach long residence-times. In contrast,

Ulex patches, composed of greater loads and

coarser fuels, would sustain a more prolonged

consumption. In fact, deeper penetrations and

longer temperature durations have been atributed

to the combustion of woody fuel collapsed on the

soil surface (Odion and Davis 2000).

At community level, the critical role of fine

dead fuels in determining the probability of fire

ocurrence through their high ignitability (Bond and

van Wilgen 1996), and in driving fire behaviour

through their high combustion rate (Rothermel

1972; Fernandes 2001; Anderson and Anderson

2009; Davis et al. 2009, 2010), has been widely

recognized and modelled in different fire-affected

shrublands. In fact, U. parviflorus-dominated

shrublands are regarded by fire managers as one

of the most problematic vegetation types on our

study site (eastern Iberian peninsula) because of

the high amounts and high bulk densities of their

fine dead fuel, which result in fuel beds of high

density and continuity (Baeza 2001; Baeza et al.

2002b; De Luis et al. 2004; De Luis et al. 2005;

Duguy et al. 2007). Species composition in

eastern Iberian peninsula ecosystems is

determined in part by the fire history; shifts in the

dominance of one species with respect to others

are driven by the effect of recurrent fires or

successional processes (Baeza et al. 2007).

Therefore, management strategies to drive

vegetation types within a desired successional

trajectory or a new preferable state dominated by

species with lower dead-fuel contents are highly

desirable. The promotion of mature and stable

stages of these shrublands dominated by R.

officinalis (Santana et al. 2010), could be a crucial

step to reduce fire-ignition risk, fire severity and

possible impacts on the ecosystem.

Acknowledgements

Page 58: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

49

We thank J. Scheiding for her assistance with the

English revision of the text and the Fontroja

Natura-UA Scientific Station, the Conselleria de

Territori i Habitatge and the Consorcio de

Bomberos de Alicante and Valencia for their

fieldwork support. V.M. Santana was supported by

a FPU grant awarded by the Spanish Ministry of

Education and Science. We also thank to F.

Moreira for his suggestions in the early draft of this

study. This research was carried out within the

FIREMED (AGL200/8-04522/FOR) and

Consolider-Ingenio 2010 (GRACCIE CSD2007-

00067) projects. CEAM is supported by the

Generalitat Valenciana and Fundación Bancaja.

References

Alessio GA, Peñuelas J, De Lillis M, Llusià J

(2008) Implications of foliar terpene content

and hydration on leaf flammability of Quercus

ilex and Pinus halepensis. Plant Biology 10,

123-128.

Anderson SAJ, Anderson WR (2009) Predicting

the elevated dead fine fuel moisture content in

gorse (Ulex europaeus L.) shrub fuels.

Canadian Journal of Forest Research 39,

2355-2368.

Baeza MJ (2001) Aspectos ecológicos y técnicas

de control de combustible (roza y quema

controlada) en matorrales con alto riesgo de

incendio dominados por Ulex parviflorus

(Pourr.). Ph.D thesis, Departamento de

Ecología. Universidad de Alicante.

Baeza MJ, Raventós J, Escarré A (2002a) Ulex

parviflorus germination after experimental

burning: effects of temperature and soil depth.

In ‘Fire and Biological Processes’ (Eds L

Trabaud, R Prodon) pp. 83-91. (Backhuys

Publisher: Leiden, The Netherlands).

Baeza MJ, de Luis M, Raventós J, Escarré A

(2002b) Factors influencing fire behaviour in

shrublands of different stand ages and the

implications for using prescribed burning to

reduce wildfire risk. Journal of Environmental

Management 65, 199-208.

Baeza MJ, Raventos J, Escarré A, Vallejo VR

(2006) Fire risk and vegetation structural

dynamics in Mediterranean shrubland. Plant

Ecology 187, 189-201.

Baeza MJ, Valdecantos A, Alloza JA, Vallejo VR

(2007) Human disturbance and environmental

factors as drivers of long-term post-fire

regeneration patterns in Mediterranean

forests. Journal of Vegetation Science 18, 243-

252.

Beadle NCW (1940) Soil temperatures during

forest fires and their effect on the survival of

vegetation. The Journal of Ecology 28, 180-

192.

Bond WJ, van Wilgen BW (1996) Fire and plants.

(Chapman & Hall: London)

Bradstock RA, Auld TD, Ellis ME, Cohn JS (1992)

Soil temperatures during bushfires in semi-

arid, mallee shrublands. Australian Journal of

Ecology 17, 433-440.

Bradstock RA, Gill AM (1993) Fire in semi-arid,

Mallee shrublands: size of flames from

discrete fuel arrays and their role in the spread

of fire. International Journal of Wildland Fire 3,

3-12.

Bradstock RA, Auld TD (1995) Soil temperatures

during experimental bushfires in relation to fire

intensity: Consequence for legume

germination and fire management in south-

eastern Australia. Journal of Applied Ecology

32, 76-84.

Brooks ML (2002) Peak fire temperatures and

effects on annual plants in the Mojave desert.

Ecological Applications 12, 1088-1102.

Caturla RN (2002) Efecte del foc i la recurrència

d’incendis en camps abandonats dominats per

Brachypodium retusun (Pers.) Beauv. a la

Comunitat Valenciana. PhD thesis,

Page 59: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

50

Departamento de Ecología. Universidad de

Alicante.

Certini G (2005) Effects of fire on properties of

forest soils: a review. Oecologia 143, 1-10.

Clemente AS, Rego FC, Correia O (2007) Seed

bank dynamics of two obligate seeders, Cistus

monspeliensis and Rosmarinus officinalis, in

relation to time since fire. Plant Ecology 190,

175-188.

Cohen M, Cuiñas P, Diez C, Fernandes P,

Guijarro M, Moro C (2003) Wildland fuel

particles characterisation: database content

(Deliverable D6-03-A1). Fire Star: a decision

support system for fuel management and fire

hazard reduction in Mediterranean wildland -

urban interfaces, Project no. EVG1-CT-2001-

00041, European Commission. Accessed

September 15, 2009 at

http://www.eufirestarpro.org

Conard SG, Hartzell T, Hilbruner MW, Zimmerman

GT (2001) Changing fuel management

strategies - The challenge of meeting new

information and analysis needs. International

Journal of Wildland Fire 10, 267-275.

Cornelissen JHC, Lavorel S, Garnier E, az S,

Buchmann N, Gurvich DE, Reich PB, Steege

Ht, Morgan HD, Heijden MGA, Pausas JG,

Poorter H (2003) A handbook of protocols for

standardised and easy measurement of plant

functional traits worldwide. Australian Journal

of Botany 51, 335-380.

Davies GM, Legg CJ, Smith AA, MacDonald AJ

(2009) Fire rate of spread in Calluna vulgaris-

dominated moorlands. Journal of Applied

Ecology 46, 1054-1063.

Davies GM, Smith AA, MacDonald AJ, Bakker D,

Legg CJ (2010) Fire intensity, fire severity and

ecosystem response in heathlands: factors

affecting the regeneration of Calluna vulgaris.

Journal of Applied Ecology 47, 356-365.

De Luis M, Baeza MJ, Raventós J, González-

Hidalgo JC (2004) Fuel characteristics and fire

behaviour in mature Mediterranean gorse

shrublands. International Journal of Wildland

Fire 13, 79-87.

De Luis M, Raventós J, González-Hidalgo JC

(2005) Factors controlling seedling

germination after fire in Mediterranean gorse

shrublands. Implications for fire prescription.

Journal of Environmental Management 76,

159-166.

Dimitrakopoulos AP (2001) A statistical

classification of Mediterranean species based

on their flammability components. International

Journal of Wildland Fire 10, 113-118.

Dimitrakopoulos AP, Panov PI (2001) Pyric

properties of some dominant Mediterranean

vegetation species. International Journal of

Wildland Fire 10, 23-27.

Duguy B, Alloza JA, Röder A, Vallejo R, Pastor F

(2007) Modelling the effects of landscape fuel

treatments on fire growth and behaviour in a

Mediterranean landscape (eastern Spain).

International Journal of Wildland Fire 16, 619-

632.

Elvira LM, Hernando C (1989) Inflamabilidad y

energía de las especies de sotobosque.

Colección Monografías INIA, nº 68. Madrid.

Fernandes PA (2001) Fire spread prediction in

shrub fuels in Portugal. Forest Ecology and

Management 144, 67-74.

Fernandes PA, Botelho H (2003) A review of

prescribed burning effectiveness in fire hazard

reduction. International Journal of Wildland

Fire 12, 117-128.

Fernandes P (2009) Combining forest structure

data and fuel modelling to classify fire hazard

in Portugal. Annals of Forest Science 66, 415

Hartford RA, Frandsen WH (1992) When it's hot,

it's hot... or maybe it's not! (surface flaming

may not portend extensive soil heating).

International Journal of Wildland Fire 2, 139-

144.

Page 60: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

51

Johnson EA (1992) Fire and vegetation dynamics:

studies from the North American boreal forest.

(Cambridge University Press: Cambridge)

Keeley J.E. (2009) Fire intensity, fire severity and

burn severity: a brief review and suggested

usage. International Journal of Wildland Fire

18, 116-126.

Keeley JE, Fotheringham CJ, Baer-Keeley M

(2005) Determinants of post-fire recovery and

succession in Mediterranean-climate

shrublands of California. Ecological

Applications 15, 1515-1534.

Keeley JE, McGinnis TW (2007) Impact of

prescribed fire and other factors on cheatgrass

persistence in a Sierra Nevada ponderosa

pine forest. International Journal of Wildland

Fire 16, 96-106.

Molina MJ, Llinares JV (2001) Temperature-time

curves at the soil surface in maquis summer

fires. International Journal of Wildland Fire 10,

45-52.

Moreno JM, Oechel WC (1991) Fire intensity

effects on germination of shrubs and herbs in

southern California chaparral. Ecology 72,

1993-2004.

Morvan D, Dupuy JL (2004) Modeling the

propagation of a wildfire through a

Mediterranean shrub using a multiphase

formulation. Combustion and Flame 138, 199-

210.

Mouillot F, Field CB (2005) Fire history and the

global carbon budget: a 1º x 1º fire history

reconstruction for the 20th century. Global

Change Biology 11, 398-420.

Odion DC, Davis FW (2000) Fire, soil heating, and

the formation of vegetation patterns in

Chaparral. Ecological Monographs 70, 149-

169.

Paula S, Arianoutsou M, Kazanis D, Tavsanoglu,

Lloret F, Buhk C, Ojeda F, Luna B, Moreno

JM, Rodrigo A, Espelta JM, Palacio S,

Fernández-Santos B, Fernandes PM, Pausas

JG, Michener WK (2009) Fire-related traits for

plant species of the Mediterranean Basin.

Ecology 90, 1420.

Papió C, Trabaud L (1991) Comparative study of

the aerial structure of five shrubs of

Mediterranean shrublands. Forest Science 37,

146-159.

Pausas JG (2004) Changes in fire and climate in

the eastern Iberian peninsula (Mediterranean

Basin). Climatic Change 63, 337-350.

Pereira JM, Sequeira NM, Carreiras JM (1995)

Structural properties and dimensional relations

of some Mediterranean shrub fuels.

International Journal of Wildland Fire 5, 35-42.

Pérez B, Moreno JM (1998) Methods for

quantifying fire severity in shrubland-fires.

Plant Ecology 139, 91-101.

Philpot CW (1970) Influence of mineral content on

the pyrolysis of plant materials. Forest Science

16, 461-471.

Rothermel RC (1972) A mathematical model for

predicting fire-spread in wildland fuels. United

States Department of Agriculture, Forest

Service, Intermountain Forest and Range

Experiment Station. Research paper INT-115.

(Ogden, Utah)

Santana VM, Baeza MJ, Marrs RH, Vallejo VR

(2010). Old-field secondary succession in SE

Spain: can fire divert it? Plant Ecology 211,

337-349.

Savadogo P, Zida D, Sawadogo L, Tiveau D,

Tigabu M, Odén PC (2007) Fuel and fire

characteristics in savanna-woodland of West

Africa in relation to grazing and dominant

grass type. International Journal of Wildland

Fire 16, 531-539.

Saura-Mas S, Paula S, Pausas JG, Lloret F

(2010) Fuel loading and flammability in the

Mediterranean Basin woody species with

different post-fire regenerative strategies.

Page 61: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

52

International Journal of Wildland Fire 19, 783-

794.

Scarff FR, Westoby M (2006) Leaf litter

flammability in some semi-arid Australian

woodlands. Functional Ecology 20, 745-752.

Schimmel J, Granström A (1996) Fire severity and

vegetation response in the boreal Swedish

forest. Ecology 77, 1436-1450.

Schwilk DW (2003) Flammability is a niche

construction trait: canopy architecture affects

fire intensity. The American Naturalist 162,

725-733.

Sun L, Zhou X, Mahalingam S, Weise DR (2006)

Comparison of burning characteristics of live

and dead chaparral fuels. Combustion and

flame 144, 349-359.

Troumbis AS, Trabaud L (1989) Some questions

about flammability in fire ecology. Acta

Oecologica-Oecologia Plantarum 10, 167-175.

Valette JC, Gomendy V, Maréchal J, Houssard C,

Gillon D (1994) Heat transfer in the soil during

very low-intensity experimental fires: the role

of duff and soil moisture content. International

Journal of Wildland Fire 4, 225-237.

van Wilgen BW, Higgins K, Bellstedt D (1990) The

role of vegetation structure and fuel chemistry

in excluding fire from forest patches in the fire-

prone fynbos shrublands of South Africa.

Journal of Ecology 78, 210-222.

Westerling AL, Hidalgo HG, Cayan DR, Swetnam

TW (2006) Warming and Earlier Spring

Increase Western U.S. Forest Wildfire Activity.

Science 313, 940-943.

Wright BR, Clarke PJ (2008) Relationships

between soil temperatures and properties of

fire in feathertop spinifex (Triodia schinzii

(Henard) Lazarides) sandridge desert in

central Australia. The Rangeland Journal 30,

317-325.

Page 62: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

53

Apéndice fotográfico

Foto 1. Data logger para el registro de temperaturas Foto 2. Quema experimental de Onil

Foto 3. Quema experimental de Pardines Foto 4. Quema experimental de Ayora

Foto 5. Detalle de una quema experimental Foto 6. Parcela de estudio después de la quema

Foto 7. Parcela de estudio anterior a la quema Foto 8. Estructura del combustible en Ulex parviflorus

Page 63: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

54

Page 64: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

55

CAPÍTULO 4-

ESTABLECIMIENTO SUCESIONAL DE PLÁNTULAS EN

MATORRALES MEDITERRÁNEOS DOMINADOS POR

GERMINADORAS OBLIGADAS

RESUMEN: Las plántulas son particularmente sensibles a las condiciones ambientales en el momento de su establecimiento. Dentro de la sucesión, las condiciones ambientales varían en el tiempo y las especies tendrán una mejor posibilidad de regenerar en un punto concreto dependiendo de las características intrínsecas que determinan su nicho de regeneración. En un matorral mediterráneo, determinamos el nicho de regeneración y el patrón de establecimiento de plántulas a lo largo de la sucesión en las principales especies (Cistus albidus, Rosmarinus officinalis y Ulex parviflorus). El establecimiento de plántulas fue seguido durante tres años utilizando cohortes estacionales y en tres diferentes etapas a lo largo del gradiente sucesional (post-fuego, joven y maduro). Hubo un incremento del establecimiento inmediatamente después del fuego en todas las especies. Posteriormente, las especies experimentaron un declive en su establecimiento según la sucesión progresa, hasta que prácticamente no se encontró establecimiento en las etapas maduras. La gruesa capa de restos orgánicos y la probable competencia con individuos adultos impidió el establecimiento de plántulas. El establecimiento de Cistus estuvo muy ligado a ambientes post-fuego, mientras que Rosmarinus y Ulex también se establecieron en etapas jóvenes. En contraste a los estudios de otros matorrales mediterráneos, el establecimiento en nuestra área no está restringida solamente a etapas post-fuego, y las especies de matorral también se establecieron como oportunistas cuando hubo espacios abiertos a lo largo de la sucesión. Las diferencias en los micro-sitios preferidos para el establecimiento sugiere una diferenciación en los nichos de regeneración y unas condiciones ambientales particulares donde las diferentes especies son particularmente más competitivas a lo largo de la sucesión. Cistus estaría altamente ligada a ambientes perturbados, mientras Ulex y Rosmarinus podrían verse beneficiados por periodos entre fuegos más largos. Este capítulo reproduce el siguiente manuscrito: Santana VM, Baeza MJ, Maestre FT (enviado) Successional seedling establishment in Mediterranean shrublands dominated by obligate seeders.

Page 65: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

56

Page 66: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

57

Successional seedling establishment in Mediterranea n

shrublands dominated by obligate seeders

Victor M. SantanaA , M. Jaime BaezaA, B , Fernando T. Maestre C

AFundación de la Generalitat Valenciana Centro de Estudios Ambientales del

Mediterráneo (CEAM). Parque Tecnológico Paterna. C/Charles Darwin, 14.

46.980 Valencia. Spain. BDepartamento de Ecología, Universidad de Alicante. Ap. 99. 03080 Alicante.

Spain. CDepartamento de Biología y Geología, Área de Biodiversidad y Conservación,

Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey

Juan Carlos, C/ Tulipán s/n, E-28933 Móstoles, Spain.

Abstract Seedlings are expected to be particularly sensitive to the environmental conditions at the time of establishment. Within succession, environmental conditions vary over time and a species will have a better chance to regenerate on a particular place depending on the intrinsic traits that determine its regeneration niche. In a Mediterranean shrubland, we determined the regeneration niche and the pattern of seedling establishment along succession of the main species (Cistus albidus, Rosmarinus officinalis and Ulex parviflorus). The establishment of species was monitored for three years using seasonal cohorts in three different stages along a successional gradient (post-fire, building, mature). There was a flush of establishment immediately after fire in all species. Then, the species experienced a declining establishment phase as succession progresses, until practically no seedling establishment was found at mature stages. Both the thick litter layer and the likely competition with adult plants precluded seedling establishment. The establishment of Cistus was very closely tied to the post-fire environment, while recruitment of Rosmarinus and Ulex also occurred in the building stage. In contrast to what has been reported in other Mediterranean shrublands, recruitment at our study area was not restricted solely to post-fire stages, and shrubs also recruited as opportunistic species when open gaps in the canopy were available along succession. The differences in preferred micro-sites for the establishment suggest a differentiation in regeneration niches and a particular set of environmental conditions where the different species would be particularly competitive through succession. Cistus would be tied to highly perturbed environments, whereas Ulex and Rosmarinus could be benefited in longer inter-fire periods.

Keywords: Competition; fire severity; open gaps; population dynamics; regeneration niche.

Page 67: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

58

1. Introduction

In plant community dynamics, succession is

basically governed by adult decline and seedling

establishment (Harper, 1977). Seedlings are

expected to be particularly sensitive to the

environmental conditions at the time of

establishment, when they are most vulnerable

(Meyer, 1986; Kitajima and Fenner, 2000), and

their dynamics drive the potential replacement of

adults in future stages (Steven, 1991; Kellman and

Kading, 1992). Within successional gradients,

environmental conditions vary over time and,

consequently, a species will have a better chance

to regenerate on a particular place depending on

the intrinsic traits that determine its regeneration

niche (Grubb, 1977; Pickett and Bazazz, 1978;

Bazzaz, 1979; Fowler, 1988). Therefore,

approaches covering a broad range of

environmental conditions within the successional

gradient are basic for understanding both the

requirements for establishment of a species and

the role of seedling dynamics in driving population

patterns.

The occurrence of fires is a key factor driving

plant population patterns in Mediterranean

shrublands (Pierce and Cowling, 1991; Roy and

Sonié, 1992; Pausas, 1999; DeSimone and

Zedler, 1999; Keeley et al., 2006). In fact, the

persistence of obligate seeders relies completely

on seeds stored in the seed bank, as these

species are very sensitive and most individuals die

from the effects of fire (Pausas et al., 2004). In

these shrublands, the regeneration of species with

soil seed banks is almost completely tied to the

flush of seedling emergence and establishment

promoted by direct (e.g., heat, smoke, charred

wood) and indirect fire effects, which change the

environmental conditions and trigger the

availability of resources (e.g., increases in nutrient

levels, increases in light, decreases in

competition, shifts in daily soil temperature

regime) during the first stages after the

perturbation (Keeley, 1991; Bell et al., 1993;

Thanos and Rundel, 1995; DeBano et al., 1998;

Moreira et al., 2010; Santana et al., 2010a). These

fire effects break seed dormancy and enhance

seedling survival and, as a result, the regenerated

population is almost totally composed of even-

aged individuals (Keeley, 1992). Later

successional stages without fire provide

opportunities to regenerate the populations of

species that do not depend exclusively on fire to

become established; however, these regeneration

processes are very scarce and are mainly

attributed to bird-dispersed resprouting species

(Keeley, 1992; Keeley, 1995; Siles et al., 2008).

Probably for this reason, most studies on seedling

dynamics in Mediterranean shrublands have been

centred on early post-fire successional stages,

neglecting later stages (Moreno and Oechel,

1992; Quintana et al., 2004; De Luis et al., 2008).

Nevertheless, it has been suggested that the

establishment of seeder species in the

Mediterranean Basin may not be so closely tied to

fire events and that, in some cases, new

individuals could become established during inter-

fire periods (Clemente et al., 1996; Lloret, 1998;

Lloret et al. 2005). Therefore, accurate knowledge

on what are suitable micro-habitats for the

recruitment of these species and whether there is

a particular set of environmental conditions in

which the different species would be more

competitive during succession, remains to be

specifically assessed in Mediterranean

shrublands.

In the Mediterranean Basin, ecosystems

dominated by obligate seeders are mainly linked

to landscapes with long histories of perturbations

caused by human exploitation (old-fields and

livestock) and/or fire recurrence (Baeza et al.,

2007). These ecosystems stay in early

successional stages and are dominated by

pioneering species with persistent soil seed-banks

(Verdú, 2000; Pausas et al., 2004). In addition,

these species accumulate large amounts of

standing dead fine fuels on the plant structure,

making them one of the most problematic

vegetation types in terms of fire-risk (Duguy et al.,

2007; Saura-Mas et al., 2010). Species

composition in these ecosystems is highly

Page 68: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

59

influenced by the fire regime; the fire-return

interval can, in fact, drive shifts in species

dominance (Pausas, 1999; Eugenio and Lloret,

2006; Baeza et al., 2007). Thus, the determination

of the ecological factors driving successional

seedling dynamics could be a key step in

designing new fuel-management strategies that

direct vegetation dynamics towards a desired

state or successional trajectory with lower

accumulations of dead fuel. Moreover, this issue

also has a special relevance in the light of climate

change, where shifts in fire regimes are predicted

(Pausas, 2004), and the presence of these

species could be enhanced (Verdú and Pausas,

2007).

The aim of this paper was to determine

seedling dynamics in Mediterranean Basin

shrublands dominated by obligate seeders at

different successional stages after fire. In addition,

we identified a series of biotic and abiotic factors

that could potentially drive the availability of

suitable micro-habitats for seedling regeneration.

Our initial hypothesis was that fire triggers the

availability of micro-habitats needed for seedling

establishment, and that this occurs mainly at the

immediate post-fire stage; at later successional

stages, micro-habitat availability decreases and

seedling establishment is restricted. To test this

hypothesis, we used shrublands with three

markedly different stages within the successional

gradient: an immediate post-fire stage, a building

stage where the community was composed of

individuals in a growth phase (10-12 years after

fire), and a mature stage where the community

was composed of individuals at a mature or

senescent phase (22-27 years after fire). Then,

during a three-year period, we monitored seedling

emergence and survival of the three dominant

obligate seeders (Cistus albidus L., Rosmarinus

officinalis L. and Ulex parviflorus Pourr.) at these

successional stages using seasonal cohorts.

2. Methods

2.1. Study area and site selection

The study was carried out in the interior of the

Valencia region (south-east Spain) on three sites:

Onil (38º39’N-0º39’W), Pardines (38º40’N-0º39’W)

and Ayora (39º07’N-0º57’W). The study sites were

in all cases old-field terraces that had been

abandoned ca. 50-60 years ago and had a well-

documented history of exploitation and fire

occurrence (Santana et al. 2010b). Their altitude

range between 900 and 1050 m.a.s.l. and their

climate is typically Mediterranean. Mean annual

rainfall ranges between 466 mm (Onil) to 537 mm

(Ayora). There is a pronounced summer drought

from June to August, with no more than 65 mm of

rain at any site. The mean annual temperature is

approximately 14ºC, and the mean maximum

temperature for the hottest month (July) is 30ºC.

To minimise environmental variability between

sites, all sites were oriented north, located on

marls and their soils were Regosols (FAO,

1988). At the onset of the study, the vegetation

consisted of shrublands (ca. 1-1.5 m in height)

dominated by nanophanerophytes at different

successional stages. The obligate seeders

Cistus, Rosmarinus and Ulex dominated the

vegetation, whereas resprouting shrubs such as

Quercus coccifera L. and Juniperus oxycedrus L.

were scarce. The grass Brachypodium retusum

(Pers.) Beauv. was the main herbaceous species.

Each site consisted of three sub-areas that

had been burned in different years and that we

assumed to be at different successional stages

after fire. In 1984, two different wildfires burned

the Onil and Pardines sites; then, in 1994, an

experimental fire was performed at each site over

part of the area burned before (see Baeza et al.,

2002 for details). The Ayora site was affected

by a wildfire in 1979, and, subsequently, part

of this area was burned again by another

wildfire in 1996. Finally, in June of 2006, an

experimental fire treatment was applied to

reburn part of the areas that had already

been burned twice. This fire history allowed us

to define three different stages within the

successional gradient at each site: first an

Page 69: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

60

Axis 1 (48.8%)-30 -20 -10 0 10 20 30

Axi

s 2

(19.

9%)

-30

-20

-10

0

10

20

30

Post-fire

Building

Mature

Shrub and litter cover

Rosmarinus proximity C

istu

s an

d U

lex

prox

imity

Figure 1. Principal-coordinate analysis (PCO) of the

environmental conditions characterising the different

successional stages. Data represent means ± SE

(n=60).

immediately post-fire stage resulting from the

experimental burnings in 2006 (post-fire,

hereafter); second, a 10-12 year-old building stage

resulting from the 1994-1996 fires, in which the

vegetation consisted of individuals in the growth

phase (building, hereafter); and third, a 22-27

year-old mature stage resulting from the first fires

in 1979 and 1984, where the vegetation was

mainly composed of individuals in the mature or

senescent phase (mature, hereafter). On each

site, the three different successional stages were

located no farther than 500 m from each other.

We acknowledge that the recurrent fires at

short intervals experienced by the vegetation on

our study sites could have led to alterations in

seed bank composition and species abundance

during their post-fire and building stages (Santana

et al., 2010b). However, we accepted this

drawback because our aim was to determine

seedling dynamics with respect to three

contrasted environments within the succession,

and not to compare species abundance.

2.2. Characterisation of the successional stages

We studied the seedling dynamics of the three

dominant species (Cistus, Rosmarinus, and Ulex).

Together, these species had a relative cover

greater than 75% in the shrub layer at every

successional stage. To assess the factors

influencing seedling emergence at each

successional stage, we considered a series of

biotic and abiotic factors that characterise suitable

micro-habitats for this emergence. For doing this,

a 10 x 10 m plot was laid out within each

successional stage, and 20 points within this plot

were randomly chosen from a 1 x 1 m grid. At

each point, we set twenty 0.5 x 0.5 m quadrats for

monitoring seedling dynamics. In June 2006, we

visually estimated at each quadrat the percentage

cover for shrubs, herbs, stones (larger than 2 cm

in diameter) and litter (> 2 cm deep). Stones larger

than 2 cm in diameter and litter accumulations

with depth greater than 2 cm were considered

unsuitable microhabitats for seedling emergence

because the mean height of seedlings of our study

species was less than 2 cm (Lloret, 1998).

Proximity to the nearest adult plant of Cistus,

Rosmarinus and Ulex was also measured for each

quadrat as a proxy of seed availability. In the post-

fire stage, an additional index of fire severity,

based on Ryan and Noste (1985) was estimated.

This index was intended to infer soil temperatures

reached during the passage of fire, and it ranged

from 0 (low) to 5 (high). Concretely, the levels of

severity were estimated as follows: 0) unburned-

plant parts green and unaltered, no direct effect

for heat; 1) very low- more than 50% of plants and

litter remained unburned; 2) low- between 10 and

50% of plants and litter remained unburned, 3)

moderate- less than 10% remained unburned; 4)

high- only stems >5 mm in diameter remained,

black ash deposition; 5) very high- all plants and

litter practically consumed, white ash deposition.

Finally, changes in shrub composition during

succession were evaluated at each stage with

three perpendicular 20 m long transects spaced 7

m apart across the maximum slope. A metal rod

was used to record contacts with individual

species, and measurements were taken

Page 70: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

61

Table 1. Micro-plot characteristics and correlation matrix with the first two axes of the principal coordinate analysis (PCO). Data represent means ± SE (n = 60). The highest correlation coefficients (ρ ≥ 0.6) and their P values are shown in bold type.

Micro-plot characteristics Successional stage Axis 1 Axis2

Post-fire Building Mature Spearman's ρ P Spearman's ρ P

Litter (%) 37.8 ± 3.2 46.3 ± 4.4 90.1 ± 2 -0.756 <0.001 -0.166 0.026

Stones (%) 12.7 ± 1.7 11.3± 1.5 3.7 ± 1.7 0.507 <0.001 0.178 0.017

Herbs (%) 1.3 ± 0.2 31.3± 3.1 13.2 ± 2.7 -0.237 0.001 0.328 <0.001

Shrubs (%) 10.4 ± 1.4 59.5± 4.1 76± 3.8 -0.772 <0.001 0.202 0.007 Cistus albidus proximity (cm) 32.8 ± 4.9 30.5± 2.9 144 ± 15.4 -0.406 <0.001 -0.622 <0.001 Rosmarinus officinalis proximity (cm) 177 ± 13.1 125.8 ± 12.2 36.5± 5.6 0.898 <0.001 -0.17 0.023 Ulex parviflorus proximity (cm) 54.3 ± 6.27 32.7± 3.5 104,3 ± 9.7 -0.319 <0.001 -0.665 <0.001

Severity (1-5) 2.5 ± 0.2 - - - - - -

every 20 cm along the transects (100 points per

transect).

2.3. Seedling monitoring

Seedling monitoring started in October 2006.

Seedling emergence and survival was monitored

in the quadrats previously described every two

months until June 2009. To facilitate their

identification during subsequent samplings,

seedlings were tagged with colour-coded rings

indicating the time of germination, and their

coordinates within the quadrat were recorded. The

fate of each seedling was tracked over the whole

study period. Germination of Mediterranean Basin

shrubs occurs preferentially in the wet seasons of

autumn and spring, whereas it is negligible in

summer (Lloret, 1998; Quintana et al., 2004; De

Luis et al., 2008). Therefore, and to simplify the

analyses of our data, we pooled the emergent

seedlings into 2 annual cohorts according to their

time of emergence. Seedlings emerging in the

October and December samplings were

considered autumn cohorts, whereas those

emerging in February, April and June were pooled

in the spring cohort of the respective years. The

last monitoring for the survival of previously

emerged seedlings was performed in September

2009 (after the last summer drought period).

2.4. Statistical analyses

To evaluate whether environmental conditions

(cover of shrubs, herbs, litter and stones, and

proximity to adult individuals) differed globally

between successional stages (post-fire, building

and mature), the semi-parametric multivariate

analysis of variance (PERMANOVA) developed by

Anderson (2001) was performed. For this analysis,

we used site as a random variable and

successional stage as a nested variable within

site. In addition, we conducted a principal

coordinates analysis (PCO) to identify the

particular environmental variables responsible for

the multivariate patterns observed. The first two

axes were correlated with the environmental

conditions measured using the Spearman’s

correlation coefficient. PERMANOVA and PCO

were performed using the programs

PERMANOVA 1.6 (Anderson 2005) and CAP

(Anderson 2004), respectively (both can be freely

downloaded from http://www.stat.auckland.ac.nz/

~mja/Programs.htm). For these analyses, we used

Bray-Curtis distance (appropriate for the dataset

containing a miscellaneous mixture of variables

and numerous zeros; Quinn and Keough, 2002)

and 4999 permutations (permutation of raw data;

Anderson and Ter Braak, 2003).

Differences in the number of emerged

seedlings between cohorts of the same

successional stage were checked with one-way

ANOVA. Post-hoc HSD Tukey tests were

performed when differences were observed

Page 71: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

62

between the different cohorts. The data were log-

transformed when necessary to achieve a normal

distribution of the residuals and ensure

homoscedasticity.

Redundancy Analysis (RDA) was used to

explore the relationships between emerged

seedlings and micro-site characteristics for each

successional stage. We performed this analysis

with the autumn 2006 cohort, which was the most

representative of the flush of emergence in the

post-fire stage and the closest in time to the

sampling of micro-site characteristics.

Redundancy Analysis was performed using the

Vegan 1.9 package (Oksanen et al., 2007) in the

R software environment (version 2.6.1; R

Development Core Team, Vienna, Austria,

http://www.r-project.org/). The number of

emerging seedlings in each quadrat for each

species was used as dependent variables in the

ordination. These data were loge(x+1)

transformed. The forward selection procedure in

the Vegan package using the AIC statistic

(Oksanen et al., 2007) was used to select the

model with the most significant explanatory

variables determining seedling emergence.

Concretely, the explanatory variables used were:

shrub, herb, litter and stone cover, proximity to

adult individuals and fire severity (in the case of

the post-fire stage only). The significance of both

the model selected and the explanatory variables

axes was tested using a permutation test

(n=1000). We used site as a conditional variable

(covariable) in the analyses to remove its possible

effect.

Seedling survival at the different successional

stages for each species was analysed with the

Survival package (Crawley, 2007) in the R

software environment. We estimated the survival

curves of each cohort with the non-parametric

Kaplan-Meier analysis. We regarded as censored

data the seedlings alive at the end of the study

and those checked as alive at intermediate

samplings but not detected in later samplings.

Then, the shape differences in survival curves

between successional stages were tested by log-

rank tests (Pyke and Thompson, 1986). Since all

cohorts were not equally abundant, the statistical

analyses were carried out only when the density of

the respective cohort was at least 1 individual m-2

(Quintana et al., 2004). Therefore, for this

analysis, seedlings for the three sites in the same

census were pooled. The analysis could only be

performed in autumn cohorts, which were the

most abundant. However, even in some autumn

cohorts of Rosmarinus and Ulex, the analysis

could not be carried out due to their low individual

densities at some successional stages.

3. Results

3.1. Successional gradient after fire

Environmental conditions differed between

successional stages (PERMANOVA, d.f = 6, F =

21.49, P < 0.001). Moreover, there were

significant differences among sites

(PERMANOVA, d.f. = 2, F = 5.59, P < 0.001). The

first two PCO axes explained approximately 68%

of the variation observed in the data, and clearly

separated the three successional stages along

axis 1 (Figure 1). All the environmental conditions

measured were significantly correlated with the

first two axes, but we emphasize only those

variables with correlation coefficients (ρ) ±≥ 0.6.

Litter and shrub cover were the most important

variables changing environmental conditions along

the successional gradient and they were

negatively correlated with the first ordination axis

(Figure 1, Table 1). The proximity of Rosmarinus

to the seedling monitoring quadrats was positively

correlated with the first axis of the PCO, indicating

a greater proximity in mature stages (Figure 1,

Table 1). Those of Cistus and Ulex were

negatively correlated with axis 2, indicating a

slighter proximity in building stages (Figure 1,

Table 1). The post-fire stage experienced

intermediate values of severity according to our

index (Table 1). The shrub stratum was clearly

dominated by our three study species in all

successional stages, although its abundance was

variable. At the post-fire stage, vegetation cover

was low and it was dominated mainly by dead

Page 72: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

63

individuals of Ulex and Cistus as a consequence

of fire (Table 2). At the building stage, Cistus and

Ulex were co-dominant, whereas Rosmarinus was

scarce. However, at mature stages Rosmarinus

became dominant and Cistus and Ulex

experienced a senescent phase, since most of

their individuals were found dead (Table 2).

Table 2. Shrub cover of stands at different successional stages. Data represent means ± SE (n = 3).

Successional stage

Shrub cover (%) Post-fire Building Mature

C. albidus 0.2 ± 0.2 30.1 ± 2.3 2.7 ± 1.9

R. officinalis 0.1 ± 0.1 2.2 ± 0.5 55.3 ± 4.7

U. parviflorus 0 21 ± 5.8 5.1± 1.1

C. albidus dead 7.3 ± 1.7 3.2 ± 1.9 0.2 ± 0.2

U. parviflorus dead 5.2 ± 0.9 2.7 ± 1.2 42 ± 4.3

Other shrubs 3.2 ± 1.3 20.8 ± 5.5 16.7 ± 4

3.2. Suitable micro-habitats for seedling

emergence

During the three years of the study, a total of 3664

seedling emergences were recorded. The most

abundant was Cistus (3003), followed by Ulex

(471) and Rosmarinus (190). Seedling emergence

for the three species was generally higher in

autumn than in spring cohorts (Table 3).

In the post-fire stage, the three species

showed a flush of germination in the first wet

season after fire (autumn 2006), with values

significantly higher than the subsequent cohorts

(approximately 112, 2 and 7 individuals·m-2 for

Cistus, Rosmarinus and Ulex, respectively; Table

3). After this, germination decreased in time until it

became practically inexistent three years after fire.

Cistus germination was approximately one order

of magnitude greater in number than the other

species in all the cohorts sampled (Table 3).

Seedling emergence was slightly correlated with

high-severity micro-habitats for Cistus and Ulex,

although the effect of this variable was not

significant within the model selected (Figure 2A).

In contrast, Rosmarinus was negatively affected

by fire severity, and was positively correlated with

the proximity of adult individuals of the same

species (Figure 2A).

In the building stage, the number of emerged

seedlings was closely similar among cohorts of

the same season. The most numerous cohorts

(autumn) were considerably fewer than the post-

fire flush of emergence in both Cistus (19-11

individuals·m-2) and Rosmarinus (1 individual·m-2;

Table 3). Ulex experienced a maximum of

emergence in the autumn 2008 cohort (10-11

individuals·m-2; Table 3), which was even higher

than the post-fire flush. In the other autumn

cohorts, emergence ranged between 3 and 4

individuals·m-2. Cistus and Ulex preferably emerg-

ed on open microsites since they were negatively

Table 3. Mean of emerged seedling cohorts (ind m-2; SE in brackets, n=3) throughout the three years of study. Means that are in the same row but are significantly different (one-way ANOVA, P<0.05, HSD Tukey test) are indicated with different letters.

Cohort Species and successional

stage Autumn 06 Spring 06 Autumn 07 Spring 08 Autumn 08 Spring 09 F P

Cistus albidus

Post-fire 112.2 ± 26.8 a 4.8 ± 3.5 bc 16.8 ± 3 ab 1.6 ± 0.4 cd 12.4 ± 3.1 b 0.3 ± 0.2 d 23.32 <0.001

Building 19.3 ± 10.2 a 1.6 ± 0.7 abc 10.7 ± 3.9 a 0.8 ± 0.4 bc 11.1 ± 4.9 ab 0.4 ± 0.1 c 7.49 0.002

Mature 2.1 ± 1.1 0.4 ± 0.2 2.8 ± 1.8 0.4 ± 0.3 2.1 ± 1.1 0.1 ± 0.1 2.36 0.147

Rosmarinus officinalis

Post-fire 1.9 ± 0.5 a 1.3 ± 0.3 ab 0.1 ± 0.1 b 0.2 ± 0.2 b 0.2 ± 0.2 b 0.1 ± 0.1 b 6.57 0.004

Building 1 ± 0.4 0.2 1.5 ± 0.9 0.5 ± 0.3 0.7 ± 0.6 0.2 ± 0.1 1.08 0.417

Mature 1.3 ± 0.3 0.3 ± 0.2 2.5 ± 2.1 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 0.63 0.681

Ulex parviflorus

Post-fire 6.6 ± 4 a 0.8 ± 0.2 ab 1.1 ± 0.1 ab 0.3 ± 0.2 b 0.5 ± 0.2 b 0.1 ± 0.1 b 7.03 0.005

Building 3.5 ± 2.2 0.5 ± 0.3 3.5 ± 2.2 0.4 ± 0.3 10 .6 ± 5 0.6 ± 0.3 2.68 0.075

Mature 1.6 ± 0.3 a 0.13 ± 0.1 b 0.8 ± 0.3 ab 0.1 ± 0.1 b 0.5 ± 0.1 b 0.2 ± 0.1 b 7.56 0.002

Page 73: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

64

influenced by shrub and herb cover (Figure 2B). In

contrast, Rosmarinus was not so linked to open

spaces, and preferred micro-sites near adult

plants (Figure 2B).

Germination in the mature stages was the

lowest for all successional stages and species, as

it varied between 1 and 3 individuals m-2 (Table 3).

Seedling emergence for all three species was

negatively correlated with litter cover >2 cm deep

(Figure 2C). The germination of Cistus was slightly

influenced by the proximity of adult individuals

(Figure 2C).

3.3. Seedling survival and establishment

In all three species, mortality was generally

highest shortly after germination, and clearly so

during the very early establishing phase (winter-

spring). After that, mortality was more sustained,

showing some peaks in summer periods (Figure

3).

The percentages of survival in Cistus were the

lowest of the three species studied, ranging from

5-15% in all successional stages at the end of our

study. However, there was one exception, the first

post-fire cohort (autumn 2006), which reached

26% survival (Table 4). The Log-Rank

comparisons of survival curves for the autumn

2006 cohort showed that survival in the post-fire

stage was significantly different from that in the

other successional stages (Table 4). However, this

difference disappeared in subsequent cohorts,

and only subtle differences were found between

the post-fire and the building stages in the autumn

2008 cohort (Table 4). Consequently, Cistus

establishment was practically confined to the initial

post-fire cohort of 29 individuals·m-2, since neither

in subsequent post-fire cohorts nor in other

successional stages did Cistus establishment

reach more than 1 individual·m-2.

Rosmarinus seedlings had percentages of

survival ranging from 33 to 61% in the post-fire

and building stages, respectively. In this species,

no significant differences in the survival curves

were found between these two stages (Figure 3,

Table 4). However, the survival curves in the

Figure 2 . Redundancy analysis (RDA) showing the relationships between emerging seedlings and micro-plot characteristics for the Autumn 2006 cohort. A) the model selected for the Post-fire stage (F= 0.136, P= 0.032) explained 29% of the total variance, axes 1 and 2 explained 5% and 2% and the conditional variable explained 22% of the variance; B) the model for the Building stage (F= 0.643, P< 0.005) explained 49% of the total variance, axes 1 and 2 explained 31% and 2% and the conditional variable explained 16%; C) Model for Mature stage (F= 0.403, P< 0.005) explained 22% of the total variance, axes 1 and 2 explained 21% and 1% and the conditional variable had no effect. Grey arrows are predictor variables, whilst emergent seedlings of the different species are shown in black. The numbers in brackets are P-values (permutation test with 1000 iterations).

Page 74: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

65

Table 4. Number of emerged seedlings, percentage of survival and number of seedlings established at the end of the study for Autumn cohorts. The effect of the successional stage on the survivorship of seedlings of each species was compared by Log-Rank tests (P<0.05 are shown in bold).

Cohort Emerged Survival Established Log-rank

comparison

(individuals) (%) (individuals m-2) Post-fire Building

Cistus albidus

Autumn 2006

Post-fire 1665 26.3 29.2

Building 290 4.5 0.9 <0.001

Mature 32 6.2 0.1 0.008 0.395

Autumn 2007

Post-fire 252 11.3 1.9

Building 161 8.7 0.9 0.683

Mature 42 14.3 0.4 0.444 0.309

Autumn 2008

Post-fire 188 7.4 0.9

Building 166 4.8 0.5 0.004

Mature 32 15.6 0.3 0.742 0.221

Rosmarinus officinalis

Autumn 2006

Post-fire 28 35.7 0.7

Building 15 33.3 0.3 0.939

Mature 19 5.3 0.1 0.023 0.049

Autumn 2007

Post-fire 0 - -

Building 23 60.9 0.9 -

Mature 38 34.2 0.9 - 0.041

Autumn 2008

Post-fire 3 - -

Building 11 - - -

Mature 6 - - - -

Ulex parviflorus

Autumn 2006

Post-fire 99 36.4 2.4

Building 52 26.9 0.9 0.489

Mature 24 25 0.4 0.307 0.551

Autumn 2007

Post-fire 17 47.1 0.5

Building 52 34.6 1.2 0.706

Mature 12 - - - -

Autumn 2008

Post-fire 7 - -

Building 158 40.5 4.3 -

Mature 7 - - - -

mature stages were significantly different from

those in both the post-fire and the building stages

in all the cohorts studied (Figure 3, Table 4); in the

autumn 2006 cohort, mature-stage survival was

highly reduced to 5%, and in the autumn 2007

cohort it was reduced to 34% (note that for the

building stage it was 61%). The cohort from

autumn 2008 was very scarce, making it

impossible to perform any analysis.

The percentage of survival for Ulex seedlings

ranged from 25% to 47% for all cohorts and

successional stages. Environmental conditions at

the different successional stages did not affect

seedling survival in this species, as no differences

Page 75: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

66

Autumn 2006

Autumn 2007

Season

Autumn 2006

Autumn 2007

Autumn 2008

Season

Autumn 2006

0,0

0,2

0,4

0,6

0,8

1,0

MatureBuildingPost-fire

Autumn 2007

See

dlin

g su

rviv

al

0,0

0,2

0,4

0,6

0,8

1,0

Autumn 2008

Season

0,0

0,2

0,4

0,6

0,8

1,0

Cistus Rosmarinus Ulex

AU

T06

SP

R07

AU

T07

SP

R08

AU

T08

SP

R09

Sep

09

AU

T06

SP

R07

AU

T07

SP

R08

AU

T08

SP

R09

Sep

09A

UT

06

SP

R07

AU

T07

SP

R08

AU

T08

SP

R09

Sep

09

Figure 3 . Kaplan-Meier survival curves for the cohorts with the most abundant seedlings. AUT = Autumn, SPR = Spring, and Sep = September. in survival curves were found between any

successional stage in any cohort (Figure 3, Table

4). There was a flush of establishment in the first

post-fire cohort (autumn 2006) of approximately 2

individuals·m-2, whilst establishment in the

subsequent cohorts was negligible. However, we

should highlight that, in the building stage,

notorious establishments between 1-4

individuals·m-2 per year were found. Establishment

in the mature stages was virtually nil.

4. Discussion

Obligate seeder shrubs experienced a declining

pattern of emergence and establishment as

succession progressed; this suggests a reduction

in the availability of suitable micro-habitats for their

regeneration through time. In the three species

studied there was a flush of germination in the

immediate post-fire cohort, which, in addition, had

the highest levels of survival and establishment.

The regeneration that occurs at this first stage

may be the main determinant of community

composition through time, until senescence

processes take place in adult individuals. This kind

of regeneration pattern may be in agreement with

the tolerance mechanism proposed by Connell

and Slatyer (1977). However, some shifts in

species composition with respect to the initial

regenerated community can occur: in our case,

establishment was not restricted to the immediate

post-fire stages and was found in some species

(i.e., Ulex and Rosmarinus) at least until the

building stages (10-12 years after fire). In fact,

seedling recruitment processes of seeder species

in inter-fire periods have previously been observed

in Mediterranean Basin shrublands; Lloret (1998)

found patterns of seedling establishment in a

similar shrubland in NE Spain 10 years after fire,

and Clemente et al. (1996) observed significant

recruitment of new individuals in fire-free periods

Page 76: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

67

in Rosmarinus shrublands in Portugal.

Nevertheless, our results suggest that, over the

course of time, this recruitment will decrease with

the decline in micro-habitats suitable for seedling

establishment, until it practically ends in mature

stages (22-27 years after fire). In a similar

direction, Siles et al. (2008) found in shrublands in

S Spain that the time required to reach a steady

community dominated by Rosmarinus was at least

18 years. The ability of our study shrubs to recruit

in inter-fire periods agrees with results reported for

some suffrutescent species from the chaparral

(Keeley et al., 2006) and subshrubs in the

Californian coastal sage scrub (DeSimone and

Zedler, 1999), which are also able to establish

uneven-aged populations after fire with

recruitment linked to open gaps. These species

may be classified as ‘opportunistic’ species that

germinate and establish on open sites or disturbed

soil following fire and/or non-fire disturbance

(Ackerly, 2004). However, it is worth noting that

the recruitment patterns detected in our study

contrast with those described for most obligate

seeder shrubs in Mediterranean regions, where

germination and recruitment depend entirely on

fire cues and are found almost exclusively during

the first year post-fire (Pierce and Cowling, 1991;

Bell et al., 1993; Keeley, 1992, 1995).

The subtle differences detected in the

preferential micro-habitats for germination and

establishment of each species suggested a

differentiation in their regeneration niche (Grubb,

1977). These differences may imply that the

chance of establishment and coexistence of

species varies over time because of the changing

environmental conditions within succession

(Bazzaz, 1979). In this context, we propose a

conceptual scheme that shows how the

establishment patterns vary during succession for

each species and in relation to canopy

development (Figure 4). Immediately after fire, the

availability of resources and/or factors needed for

the regeneration of species reaches its optimum.

Direct fire-effects (i.e., soil temperatures and/or

smoke) can enhance germination in soil-stored

seeds (Bell et al., 1993; Keeley, 1995; Moreira et

al., 2010), and our study species probably

responded to these effects. However, the

responses varied between species. The

germination of species with hard-coated seeds

broken by heat, such as Cistus and Ulex (Roy and

Sonié, 1992; Baeza and Roy, 2008), was

positively correlated with high fire severity micro-

sites. Note that the severity of our fires was

generally intermediate, and the micro-sites with

higher-severity fires probably experienced

optimum temperatures for breaking the seed coat

without reaching deleterious temperatures.

Rosmarinus, in contrast, is a soft-seeded species

that shows some sensitivity to high temperatures

(Trabaud and Casal, 1989; Moreira et al., 2010)

and had a negative correlation with fire severity;

however, the fact that its germination is stimulated

by smoke (Moreira et al., 2010) could partly

explain its enhanced germination after fire. In

addition, other indirect fire-effects such as the

consumption of vegetation and the opening of

large gaps in the canopy can also promote

species regeneration. The incidence of solar

radiation can lead to higher daily fluctuations in

soil temperature and contribute to rendering hard-

seeded species permeable. Furthermore, the high

red to far-red ratio in the light spectrum reaching

the soil surface can also enhance germination. In

fact, these two germination cues have previously

been observed for Ulex, Cistus and other fire-

prone species (Roy and Arianoutsou-Faraggitaki,

1985; Roy and Sonié, 1992; Baeza and Roy,

2008; Santana et al., 2010a). In post-fire

environments, seedling survival is expected to be

enhanced both by increasing the availability of soil

nutrients through ash deposition and by increasing

soil water availability due to a lack of competition

(Thanos and Rundel, 1995; DeBano et al., 1998).

Although these soil resources were not directly

measured, we can infer that this effect took place

only in the first post-fire cohort of Cistus. The other

species did not need these resources to

experience higher survival rates in the post-fire

stage than in the later successional stages.

Page 77: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

68

Figure 4 . Conceptual scheme showing A) canopy development along succession for the three main species, and B) patterns of seedling establishment.

In the subsequent building stage, the

availability of suitable micro-habitats for species

regeneration declines as the direct and indirect

fire-effects decrease through time. Open gaps in

the canopy left among the building individuals, and

the absence of a thick litter layer, are the main

requirements for achieving germination in hard-

coated seeds (i.e., Cistus and Ulex). The seeds

that remain ungerminated in the soil after fire or

those produced by the new individuals can be

stimulated by the high levels of light and radiation

affecting the soil in open gaps. However, the

existence of seedling emergence did not translate

into establishment for all species; emerging

seedlings of Cistus had high mortality rates and

there was practically no Cistus establishment in

the building stages. This suggests that the

regeneration of Cistus could be tied to

environments immediately post-disturbance,

where the high availability of soil resources is the

only way to counterbalance its high mortality rate.

In fact, this high mortality rate has also been found

for C. salvifolius and C. villosus (ca. 90%) in

unburned stands of the Greek maquis (Troumbis

and Trabaud, 1987). Ulex was the only species

with a significant recruitment in open gaps in our

study. In contrast, the germination of Rosmarinus

differed from that of the hard-seeded species in

that it was more related to the proximity of adult

individuals than to canopy gaps. This may have

several explanations. For example, the fact that

the abundance of Rosmarinus individuals was

scarce (low seed availability) could mean that this

species has a low dispersion ability. It is also

possible that Rosmarinus germination and

establishment are not so linked to open gaps as to

safer sites next to parent plants (Ellner and

Shmida, 1981; Escudero et al., 1999). Rosmarinus

had a low number of established individuals in the

building stages, but this was probably due to its

low number of emergent seedlings since it showed

high survival rates. Our findings contrast with

Lloret (1998), who did not find any relationship

between seedling germination and open gaps; this

could be the result of the analyses conducted by

this author, who analysed all the species together.

As the succession progresses towards mature

stages (22-27 year after fire), the established

individuals grow and the availability of resources

needed for germination, such as light and space,

declines. The annual leaf release and the

individuals of short-lived species in senescent

phases can increase the cover and thickness of

the litter layer, impeding seedling emergence. In

Page 78: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

69

fact, litter depth can influence recruitment by

decreasing the surface suitable for germination

(Facelli and Pickett, 1991; Lloret, 1998; Baeza and

Roy, 2008). In addition, a high density of adults

may have a negative effect on seedling

establishment of these pioneering species

because of competition for light and soil resources

(Aguiar et al., 1992; Veenendaal et al., 1995). This

could explain the high mortality rates experienced

in Rosmarinus seedlings at mature stages in

comparison with previous stages. Thus, the

combination of all these factors can eliminate the

availability of suitable micro-habitats for

regeneration in our study species at mature

stages.

Traditionally, obligate seeder species in the

Mediterranean basin have been globally regarded

as pioneer species of early successional stages

due to their high production of small seeds, their

high dispersion ability and their high growth rates

(Verdú, 2000; Pausas et al., 2004). Nevertheless,

our findings suggest that the differences in the

regeneration niches of these species may point to

the existence of tradeoffs that make them more

competitive in a particular set of environmental

conditions during succession (Parrish and Bazzaz,

1982; Silvertown, 2004). Some species generate a

large number of seeds whose establishment is

very dependent on post-fire conditions (i. e., heat,

open gaps, high soil resource levels). This seems

to be the case of Cistus and other short-lived

subshrubs that generate a large offspring after fire

and become dominant in recurrently perturbed

environments (Roy and Sonié, 1992; Pausas,

1999; Baeza et al., 2007; Santana et al., 2010b).

In contrast, species like Ulex, whose recruitment is

not so linked to fire, may take advantage of

building stages to colonise open gaps and expand

their abundance through time. Therefore, although

the response of a species to post-fire

environmental conditions (i.e., sensitivity to fire

severity, dispersion and distribution of the

seedbank, survival ability) would be the main

factor determining species establishment and

possible spatial coexistence (Moreno and Oechel,

1992; Quintana et al., 2004; De Luis et al., 2008),

the ability of a species to establish in inter-fire

periods may also be an important factor driving

seeder-species coexistence through the

successional process in the western

Mediterranean Basin.

Acknowledgements

We thank J. Scheiding for the revision of the

English text and the Font Roja Natura-UA

Scientific Station for fieldwork support. V.M.

Santana was supported by a FPU grant awarded

by the Spanish Ministry of Education and Science.

F. T. Maestre is supported by the European

Research Council under the European

Community's Seventh Framework Programme

(FP7/2007-2013)/ERC Grant agreement n°

242658 (BIOCOM). This research was carried out

within the FIREMED (AGL200/8-04522/FOR) and

Consolider-Ingenio 2010 (GRACCIE CSD2007-

00067) projects. CEAM is supported by the

Generalitat Valenciana and Fundación Bancaja.

References

Ackerly, D. 2004. Functional strategies of

chaparral shrubs in relation to seasonal water

deficit and disturbance. Ecological

Monographs 74, 25-44.

Aguiar, M.R., Soriano, A., Sala, O.E. 1992.

Competiton and facilitation in the recruitment

of seedlings in Patagonian steppe. Functional

Ecology 6, 66-70.

Anderson, M.J. 2001. A new method for non-

parametric multivariate analysis of variance.

Austral Ecology 26, 32-46.

Anderson, M.J. 2004. CAP: a FORTRAN

computer program for canonical analysis of

principal coordinates. Department of Statistics,

University of Auckland.

Anderson, M.J. 2005. PERMANOVA: a FORTRAN

computer program for permutational analysis

Page 79: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

70

of variance. Department of Statistics,

University of Auckland.

Anderson, M.J., Ter Braak, C.J.F. 2003.

Permutation tests for multi-factorial analysis of

variance. Journal of Statistical Computation

and Simulation 73, 85-113.

Baeza, M.J., De Luis, M., Raventós, J., Escarré,

A. 2002. Factors influencing fire behaviour in

shrublands of different stand ages and the

implications for using prescribed burning to

reduce wildfire risk. Journal of Environmental

Management 65, 199-208.

Baeza, M.J., Valdecantos, A., Alloza, J.A., Vallejo,

V.R. 2007. Human disturbance and

environmental factors as drivers of long-term

post-fire regeneration patterns in

Mediterranean forests. Journal of Vegetation

Science 18, 243-252.

Baeza, M.J., Roy, J. 2008. Germination of an

obligate seeder (Ulex parviflorus) and

consequences for wildfire management. Forest

Ecology and Management 256, 685-693.

Bazzaz, F.A. 1979. The physiological ecology of

plant succession. Annual Review of Ecology

and Systematics 10, 351-371.

Bell, D.T., Plummer, J.A. & Taylor, S. K. 1993.

Seed germination ecology in southwestern

western Australia. Botanical Review 59, 24-73.

Clemente, A.S., Rego, F.C., Correia, O. 1996.

Demographic patterns and productivity of post-

fire regeneration in Portuguese Mediterranean

maquis. International Journal of Wildland Fire

6, 5-12.

Crawley, M.J. 2007. The R book. John Wiley &

Sons, Ltd, Chichester.

Connell, J.H., Slatyer, R.O. 1977. Mechanisms of

succession in natural communities, and their

role in the community stability and

organization. The American Naturalist 111,

1119-1144.

De Luis, M., Raventos, J., Wiegand, T., González-

Hidalgo, J.C. 2008. Temporal and spatial

differentiation in seedling emergence may

promote species coexistence in Mediterranean

fire-prone ecosystems. Ecography 31, 620-

629.

DeBano, L.F., Neary, D.G., Ffolliott, P.F. 1998.

Fire’s effects on Ecosystems. John Wiley &

Sons, New York.

DeSimone, S.A., Zedler, P.H. 1999. Shrub

seedling recruitment in unburned Californian

coastal sage scrub and adjacent grassland.

Ecology 80, 2018-2032.

Duguy, B., Alloza, J.A., Röder, A., Vallejo, R.,

Pastor, F. 2007. Modelling the effects of

landscape fuel treatments on fire growth and

behaviour in a Mediterranean landscape

(eastern Spain). International Journal of

Wildland Fire 16, 619-632.

Ellner, S., Shmida, A. 1981. Why are adaptations

for long-range seed dispersal rare in desert

plants? Oecologia 51, 133-144.

Escudero, A., Somolinos, R.C., Olano, J.M.,

Rubio, A. 1999. Factors controlling the

establishment of Helianthemum squamatum,

an endemic gypsophile of semi-arid Spain.

Journal of Ecology 87, 290-302.

Eugenio, M., Lloret, F. 2006. Effects of repeated

burning on Mediterranean communities of the

northeastern Iberian Peninsula. Journal of

Vegetation Science 17, 755-764.

Facelli, J.M., Pickett, S.T.A. 1991. Plant litter: its

dynamics and effects on plant community

structure. The Botanical Review 57, 1-32.

FAO 1988. Soil map of the world. Revised legend.

World soil resources report, 60. 99 pp. Rome.

Fowler, N.L. 1988. What is a safe site?:

neighbour, litter, germination date, and patch

effects. Ecology 69, 947-961.

Grubb, P.J. 1977. The maintenance of species-

richness in plant communities: the importance

Page 80: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

71

of the regeneration niche. Biological Reviews

52, 107-145.

Harper, J.L. 1977. Population biology of plants.

Academic press, London.

Keeley, J.E. 1991. Seed germination and life

history syndromes in the California chaparral.

The Botanical Review 57, 81-116.

Keeley J.E. 1992. Recruitment of seedlings and

vegetative sprouts in unburned chaparral.

Ecology 73, 1194-1208.

Keeley J.E. 1995. Seed-germination patterns in

fire-prone Mediterranean-climate regions. In:

Arroyo, M.T.K., Zedler, P.H., Fox, M.D. (Eds.)

Ecology and biogeography of Mediterranean

ecosystems in Chile, California and Australia.

Springer-Verlag, New York. pp. 239-273.

Keeley, J.E., Fotheringham, C. J., Baer-Keeley, M.

2006. Demographic patterns of postfire

regeneration in Mediterranean-climate

shrublands of California. Ecological

Monographs 76, 235-255.

Kellman, M., Kading, M. 1992. Facilitation of tree

seedling establishment in a sand dune

succession. Journal of Vegetation Science 3,

679-688.

Kitajima, K., Fenner, M. 2000. Ecology of seedling

regeneration. In: Fenner, F. (Ed.) Seeds: the

ecology of regeneration in plant communities.

CAB international, Wallingford. pp. 331-359.

Lloret, F. 1998. Fire, canopy cover and seedling

dynamics in Mediterranean shrubland of

northeastern Spain. Journal of Vegetation

Science 9, 417-430.

Lloret, F., Peñuelas, J., Estiarte, M. 2005. Effects

of vegetation canopy and climate on seedling

establishment in Mediterranean shrubland.

Journal of Vegetation Science 16, 67-76.

Meyer, S.E. 1986. The ecology of gypsophile

endemism in the eastern Mojave desert.

Ecology 67, 1303-1313.

Moreira, B., Tormo, J., Estrelles, E., Pausas, J. G.

2010. Disentangling the role of heat and

smoke as germination cues in Mediterranean

Basin flora. Annals of Botany 105, 627-635.

Moreno, J.M., Oechel, W.C. 1992. Factors

controlling postfire seedling establishment in

southern California chaparral. Oecologia 90,

50-60.

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B.,

Henry, M., Stevens, H. 2007. Vegan:

Community Ecology Package. R package

version 1.8-7. http://cran.r-project.org,

http://cc.oulu.fi/fi/~jarioksa/. Accessed 12

September 2007.

Parrish, J.A.D., Bazzazz, F.A. 1982. Responses of

plants from three successional communities to

a nutrient gradient. Journal of Ecology 70, 233-

248.

Pausas, J.G. 1999. Response of plant functional

types to changes in the fire regime in

Mediterranean ecosystems: A simulation

approach. Journal of Vegetation Science 10,

717-722.

Pausas, J.G. 2004. Changes in fire and climate in

the eastern Iberian peninsula (Mediterranean

Basin). Climatic Change 63, 350.

Pausas, J.G., Bradstock, R.A., Keith, D.A.,

Keeley, J.E., GCTE. 2004. Plant functional

traits in relation to fire in crown-fire

ecosystems. Ecology 85, 1085-1100

Pickett, S.T.A., Bazzaz, F.A. 1978. Organization of

an assemblage of early successional species

on a soil moisture gradient. Ecology 59, 1248-

1255.

Pierce, S.M., Cowling, R.M. 1991. Dynamics of

soil-stored seed banks of six shrubs in fire-

prone dune fynbos. Journal of Ecology 79,

731-747.

Pyke, D.A., Thompson, J.N. 1986. Statistical

analysis of survival and removal rate

experiments. Ecology 67, 240-245.

Page 81: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

72

Quinn , G.P., Keough, M.J. 2002. Experimental

design and data analysis for biologists.

Cambridge University Press, Cambridge.

Quintana, J.R., Cruz, A., Fernandez-Gonzalez, F.,

Moreno, J.M. 2004. Time of germination and

establishment success after fire of three

obligate seeders in a Mediterranean shrubland

of central Spain. Journal of Biogeography 31,

241-249.

Roy, J., Arianoutsou-Faraggitaki, M. 1985. Light

quality as the environment trigger for the

germination of the fire-promoted species

Sarcopterium spinosum L. Flora 177, 345-349.

Roy, J., Sonié, L. 1992. Germination and

population dynamics of Cistus species in

relation to fire. Journal of Applied Ecology 29,

647-655.

Ryan, K.C., Noste, N.V. 1985. Evaluating

prescribed fires. In: Lotan, J.E., Kilgore, B.M.,

Fischer, W.C., Mutch, R.W. (Eds.)

“Proceedings, symposium and workshop on

wilderness fire”15-18 November 1983,

Missoula, MT. USDA Forest Service,

Intermountain forest range experimental

station, General technical report INT-182.

Missoula. pp. 230-238.

Santana, V.M., Bradstock, R.A., Ooi, M.K.J.,

Denham, A.J., Auld, T.D., Baeza, M.J. 2010a.

Effects of soil temperature regimes after fire on

seed dormancy and germination in six

Australian Fabaceae species. Australian

Journal of Botany 58, 539-545.

Santana, V.M., Baeza, M.J., Marrs, R.H., Vallejo,

V.R. 2010b. Old-field secondary succession in

SE Spain: can fire divert it? Plant Ecology 211,

337-349.

Santana, V.M., Baeza, M.J., Vallejo, V.R. in press.

Fuel structural traits modulating soil

temperatures in different species-patches of

Mediterranean Basis shrublands. International

Journal of Wildland Fire

Saura-Mas, S., Paula, S., Pausas, J.G., Lloret, F.

2010. Fuel loading and flammability in the

Mediterranean Basin woody species with

different post-fire regenerative strategies.

International Journal of Wildland Fire 19, 783-

794.

Siles, G., Rey, P.J., Alcántara, J.M., Ramírez, J.M.

2008. Assessing the long-term contribution of

nurse plants to restoration of Mediterranean

forests through Markovian models. Journal of

Applied Ecology 45, 1790-1798.

Silvertown, J. 2004. Plant coexistence and the

niche. Trends in Ecology and Evolution 19,

605-611.

Steven, D.D. 1991. Experiments on mechanisms

of tree establishment in old-field succession:

seedling survival and growth. Ecology 72,

1076-1088.

Thanos, C.A., Rundel, P.W. 1995. Fire-followers in

chaparral: nitrogenous compounds trigger

seed germination. Journal of Ecology 83, 207-

216.

Trabaud, L., Casal, M. 1989. Réponses des

semences de Rosmarinus officinalis à

différents traitments simulant une action de

feu. Acta Oecologica 10, 355-363.

Troumbis, A., Trabaud, L. 1987. Dynamique de la

banque de graines de deux espèces de Cistes

dans les maquis grecs. Acta Oecologica 8,

167-179.

Veenendaal, E. M., Swaine, M. D., Agyeman, V.

K., Blay, D., Abebrese, I. K., Mullins, C. E.

1995. Differences in plant and soil water

relations in and around a forest gap in west

Africa during the wry season may influence

seedling establishment and survival. Journal of

Ecology 84, 83-90.

Verdú, M. 2000. Ecological and evolutionary

differences between Mediterranean seeders

and resprouters. Journal of Vegetation

Science 11, 265-268.

Page 82: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

73

Verdú, M., Pausas, J.G. 2007. Fire drives

phylogenetic clustering in Mediterranean Basin

woody plant communities. Journal of Ecology

95, 1316-1323

Page 83: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

74

Apéndice fotográfico

Foto 1. Cuadro de muestreo Foto 2. Plántulas de Cistus albidus

Foto 3. Plántulas de Rosmarinus officinalis Foto 4. Plántula de Ulex parviflorus

Foto 5. Etapa post-incendio Foto 6. Matorral joven

Foto 7. Matorral en una etapa sucesional madura

Page 84: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

75

CAPÍTULO 5- LA RECURRENCIA DE INCENDIOS Y EL TIEMPO DESDE EL INCENDIO COMO CONDUCTORES DE LA INFLAMABILIDAD EN MATORRALES MEDITERRÁNEOS RESUMEN: Diferencias en la inflamabilidad de las especies y su habilidad regenerativa post-fuego pueden ser un factor clave en el estableciendo vínculos entre el régimen de incendios y la dinámica de la vegetación. Nosotros formulamos la hipótesis de que las especies leñosas que acumulan una mayor cantidad de de combustible muerto y tienen un reclutamiento estimulado por el fuego se verían beneficiadas por un incremento de la recurrencia de incendios y, por lo tanto, establecerían un bucle de de retroalimentación positiva con el fuego. Para ello, comparamos dos series de matorrales quemados una y dos veces. Además, valoramos el cambio en la estructura del ecosistema durante la sucesión post-fuego (25 años) determinando el cambio en formas vitales, especies, combustible muerto y presencia de herbáceas. Encontramos que, a nivel de comunidad, las especies de matorral de las etapas iniciales de la sucesión son las más inflamables como consecuencia de su mayor crecimiento y acumulación de combustible muerto. Como consecuencia, la función de riesgo de incendio a lo largo del tiempo basada en el combustible leñoso tiene forma jorobada, debido a la sustitución sucesional por especies menos inflamables. Sin embargo, la acumulación de combustible muerto no se encuentra bajo una selección positiva a causa de fuegos recurrentes, ya que un segundo fuego en el periodo de máximo riesgo de incendio promovió una comunidad con menor cantidad de combustible muerto. Este hecho sugiere la falta de una retroalimentación positiva fuego-combustible muerto acumulado. En contra, bajo el régimen de incendio estudiado, el sistema se ve desplazado hacia comunidades de bajo porte y herbáceas. Este capítulo reproduce el siguiente manuscrito: Santana VM, Baeza MJ, Marrs RH (en preparación) Fire recurrence and time-since-fire as flammability drivers in Mediterranean Basin shrublands.

Page 85: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

76

Page 86: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

77

Fire recurrence and time-since-fire as flammability drivers in

Mediterranean Basin shrublands

Victor M. SantanaA, M. Jaime BaezaA,B, Rob H. MarrsC

AFundación de la Generalitat Valenciana Centro de Estudios Ambientales del

Mediterráneo (CEAM). Parque Tecnológico Paterna. C/Charles Darwin, 14.

46.980 Valencia. Spain

BDepartamento de Ecología, Universidad de Alicante. Ap. 99. 03080 Alicante.

Spain

CApplied Vegetation Dynamics Laboratory, School of Environmental Sciences,

University of Liverpool, Liverpool, L69 3GP, UK.

Abstract Differences in both the flammability of species and their post-fire regenerative abilities can be the key for establishing a mutual link between fire regime and vegetation dynamics. We hypothesised that woody species that accumulate the greatest amount of dead fuel and have fire-stimulated recruitment would be benefited by increasing fire recurrence and, thus, establish a positive fire-vegetation’s flammability feedback. For this, we compared two seres of shrublands burned once and twice. In addition, we assessed the change in ecosystem structure during the post-fire succession (25 years) by assessing the change in life-forms, species, dead fuel load and the presence of herbaceous species. We found that, at community level, early successional shrubs are the most flammable species as consequence of their higher growth and accumulation of dead fuel. As consequence, the fire-risk function through time of woody combustible is hump-shaped due to the successional replacement with less flammable species. However, the accumulation of dead fuel is not under positive selection by recurrent fires, since a second fire in the period of maximum fire risk promote a community with less amount of dead fuel. This fact suggest the lack of positive fire-dead fuel accumulation feedback. In contrast, under the studied fire regime, the systems are displaced to grass-scrublands. Keywords: Dead fuel, feedback, HOF models, succession, vegetation structure

Page 87: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

78

1. Introduction

Differences in both the flammability of species and

their post-fire regenerative abilities can be the key

for establishing a mutual link between fire regime

and vegetation dynamics; for example, a positive

fire-feedback may occur if the more flammable

species also show more successful regenerative

trends after fire (Wilson and Agnew 1992). In this

sense, traits that enhances species flammability,

for example the accumulation of dead fuel within

the vegetation structure, have been proposed as

niche construction traits in fire-prone

environments; i.e, they modify the environment,

either increasing fire recurrence and/or fire

severity, and provide fire-cleared gaps that benefit

the more flammable species (Odling-Smee et al.

1996; Schwilk 2003). Moreover, it have been

suggested that traits enhancing the flammability of

plants may be subjected to positive selective

pressures in fire-prone environments (Mutch 1970;

Bond and Midgley 1995; Kerr et al. 1999; Gagnon

et al. 2010) and they can exhibit an evolutionary

correlation with fire-dependent seedling

recruitment (Schwilk and Ackerly 2001). This may

be the case for pyrogenic species where seed

germination is stimulated by fire cues, or where

seed is released from serotinous cones after heat

exposure (Schwilk and Ackerly 2001; Schwilk

2003). Resprouting species, such as herbs and

grasses, can also expand under recurrent fire

regimes as consequence of their high flammability

(e.g. fine texture and very low moisture in

summer) and high regeneration ability (Menaut et

al. 1990; Vilà et al. 2001). In fact, it has been

suggested that many ecosystems around the

world that could develop into forest are instead

occupied by stable pyrogenic vegetation

maintained by fire, for example savanna

grasslands (Bond et al. 2005; Grigulis et al. 2005;

Hoffman et al. 2009) and shrublands (Mermoz et

al. 2005; Bowman et al. 2007; Warman and Moles

2009; Odion et al. 2010).

Among the major factors that have been

reported to determine the flammability of

vegetation are the amount of dead fuel held in the

vegetation and the quantity of herbaceous species

(Bradstock and Gill 1993; Baeza et al. 2002).

Dead wood, especially if it has a very fine

structure, confers high ignitability to fuels as it

usually has a very low moisture content (Bond and

van Wilgen 1996). Once this dead wood catches

fire, it acts as a primary first heat source in the

initial stages of the fire and contributes to the

secondary combustion of green fuel, thus helping

to propagate the fire and enhancing fire severity

(Johnson 1992; Sun et al. 2006; Schwilk 2003;

Santana et al. in press). Herbaceous species, on

the other hand, can produce a continuous

horizontal and vertical structure of fine fuel

(Bradstock and Gill 1993; Vilà et al. 2001), which

combined with the fact that they have a very fine

structure and they become very dry in

Mediterranean summer conditions may also result

in increasing the ignitability and spread of fires

(Cheney et al. 1993; Vilà et al. 2001). In fact, the

dead-to-live fine fuel ratio has been suggested as

an effective indicator of fire-risk in fire-prone

ecosystems (Bond and van Wilgen 1996; De Luis

et al. 2004), and its assessment through time after

fire may be crucial in helping to forecast future fire

occurrence (Minnich and Chou 1997).

In the western Mediterranean Basin, previous

studies have showed that seeding species with

fire-stimulated recruitment (i.e., soil stored seed

with dormancy broken by heat and/or smoke;

Moreira et al. 2010) exhibit traits that heighten

flammability; for example they have a high fine

fuel proportion, a high dead-to-live fuel ratio and

low ignition temperatures (Saura-Mas et al. 2010).

These observations suggest a link between post-

fire regenerative and flammability traits, resulting

in a possible fitness advantage for more

flammable species. In this case, an understanding

of factors that affect fire and any potential positive

feedbacks will be a key step in understanding

ecosystem function where there is recurrent fires.

It will clearly have relevance in the future, where

as consequence of projected climate change (with

longer, hotter and drier summers), an increased

fire occurrence in this region have been predicted

Page 88: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

79

(Pausas 2004). In south-east Spain large areas of

former agricultural land was abandoned in the last

half of the twentieth century, and these areas have

been colonized almost exclusively by species with

these traits (Lloret et al. 2002, Baeza et al. 2007).

Consequently, the presence of these new fire-

adapted ecosystems increase the likelihood of fire

occurrence within the area, link forested areas and

increase both the size and frequency of fires

(Pausas 2004).

It has been hypothesised that the

accumulation of dead fuel in the canopy structure

would be driven by biological mechanisms linked

to plant succession (Odum 1969). Dead fuel

accumulation would be the consequence of

ontogenetic shifts in the flammability properties of

species and the turnover of species with different

flammability traits (Baeza et al. in press). In this

sense, the response of species and fuel types with

respect to time-since-fire may lead to different

functions of flammability depending on these

processes (McCarthy et al. 2001), for example:

flammability may (a) remain unchanged through

time, (b) increase constantly, (c) increase to an

asymptote, and (d) exhibit a humped-shaped

response where intermediate time periods

produce the greatest probability of fire and long

intervals a reduced probability (see Rothermel and

Philpot 1973; Bond and van Wilgen 1996; Díaz-

Delgado et al. 2004; Keane at al. 2004; Mermoz et

al. 2005; Baeza et al. 2006; Odion et al 2010;

Baeza et al. in press for some examples).

However, in spite of the importance in modelling

all of these factors to predict fire-risk, there is no

information available on the changing response of

species and fuel load in shrublands dominated by

seeding species in the western Mediterranean

Basin.

In this paper therefore, we report a study of the

successional response of the main species and

vital forms in terms of flammability in shrublands

dominated by seeding species within the western

Mediterranean Basin. We addressed three

questions: (1) How do the ecosystem structure

change during the post-fire succession? This

question was answered thought assessing the

change in life-forms, species, dead fuel load and

the presence of herbaceous species during a 25

year period. (2) How does recurrent fires alter

ecosystem structure? This question was answered

by comparing a post-fire succession after one fire

to a post-fire succession where there were two

fires. (3) Would those woody species that

accumulate the greatest amount of dead fuel be

benefited by increasing fire recurrence?, i.e. a

positive fire-vegetation’s flammability feedback

effect. This question was answered by comparing

the amount of dead fuel accumulated in vegetation

structure after one and two fires.

2. Methods

2.1 Study area

The study was carried out in the interior of the

Valencia region in the south-east of Spain (UTM

coordinates: 676400E - 4332099N, upper left

corner; 744675E - 4283954N, lower right corner)

over an area of approximately 4000 km2. The

region has a dry Mediterranean climate with an

annual rainfall range of 450-600 mm and a mean

annual temperature range of 13-16ºC. The study

plots were all located between 800 to 1050

m.a.s.l., and the bedrock were either marls or

marls mixed with limestone. The landscape is a

mountainous mosaic composed of Pinus

halepensis forests, agricultural land and

abandoned fields where shrubland and woodland

have regenerated naturally (nomenclature follows

Bolòs 1993). The potential vegetation of the area

would be a broad-leaved sclerophyllous forest of

Quercus ilex; this community is, however

extremely scarce at present due to past

deforestation and other exploitation, and is

confined to valley bottoms and other very limited

areas. Fire is an important factor shaping this

landscape and parts of this region are burned

almost every summer.

Eight sites were used in this study; they were

all P. halepensis forests that had colonized crop-

fields abandoned in the 1940s (Santana et al.

Page 89: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

80

Table 1. Fire history description of the two seres at eight study sites. Sere

# Site nº fires 1st Fire 2nd Fire X UTM Y UTM Sampling date

1 Guadalest 1 1991 - 744675 4283954 1994, 1998, 2003 Banyeres 1 1991 - 704587 4289588 1994, 1998, 2003 Confrides 1 1991 - 738829 4285347 1994, 1998, 2003 Onil 1 1984 - 703392 4280698 1994, 1998, 2003, 2006, 2009 Pardines 1 1984 - 711302 4283187 1994, 1998, 2003, 2006, 2009 Ayora 1 1979 - 676400 4332099 2002, 2006, 2009 La Torre 1 1984 - 725918 4276893 1994, 1998, 2003 Fontanars 1 1978 - 697715 4293747 2009

2 Onil 2 1984 1994* 703339 4280706 1997, 1998, 2003, 2006, 2009 Pardines 2 1984 1994* 711215 4283194 1997, 1998, 2003, 2006, 2009 Ayora 2a 1979 1996 676684 4332010 2002, 2006, 2009 Ayora 2b 1979 1991 676537 4322175 2002, 2009 Ayora 2c 1979 1985 682077 4339697 2009 Ayora 2d 1979 1984 687777 4308441 2002, 2009 La Torre 2 1984 1994* 725936 4276847 1997, 1998, 2003 Fontanars 2 1978 1984 696615 4294317 2009

*= an experimental fire; Different letters in fire frequency means independent fires within the first fire. 2010), and had been subjected to a different fires

histories over the last 30 years (Table 1). At

present, their vegetation is dominated by shrub

species, which are mainly obligate seeders with

soil seedbanks and fire-enhanced recruitment

(Baeza and Vallejo 2006; Moreira et al. 2010),

such as Ulex parviforus, Cistus albidus and

Rosmarinus officinalis. There are also sparse

individuals of P. halepensis, a tree with serotinous

cones and a canopy seedbank. The resprouting

grass Brachypodium retusum dominates the

herbaceous strata. These sites were selected with

the aim of reducing environmental variability to a

minimum in that they experienced similar

morphological characteristics and land-use history

(Table 1). The only exception was the Guadalest

site, which unlike the others, had a southerly

aspect.

2.2 Design of the study

We studied two different seres of post-fire

succession covering a span of approximately 25

years. This was done using vegetation

assessments carried out between 1994 to 2009 to

build a sequence of vegetation dynamics for

vegetation either burned once (Sere 1) or twice

(Sere 2) (detailed in Baeza 2001; Baeza et al.

2007; Santana et al. 2010). Sere 1 was an

assessment of the response of the vegetation

after a single wildfire; one large patch was

available at each of the eight sites, and they were

sampled at 3-5 year intervals. The complete

history of fire occurrence and vegetation sampling

of this sere is summarised in Table 1. Sere 2 was

composed of sub-patches within the original

burned areas at each site (Sere 1) where a

secondary burn had occurred. The secondary

burn was either a second wildfire or an

experimental burn (Table 1, Baeza et al. 2002);

most sites had just one secondary burn but the

Ayora site had four independent fires within the

area burned once. These recurrent fires occurred

at time intervals ranging for 5 to 17 years after the

first fire (Table 1).

All together there were 16 sampling plots

(Table 1) and this design allowed us to depict a

period of successional time period of between 3

and 31 years for plots burned once, and a period

from 3 to 25 to plots burned twice. However, in

order to make comparisons between the two fire

recurrences, we only considered the first 25 years

of Sere 1.

2.3. Vegetation sampling

The vegetation was sampled in a standard

manner throughout. In each plot, between three

Page 90: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

81

and five transects (3-7 m apart) were laid out and

the cover of all vascular species assessed using

the point-intersect method (Greig-Smith 1983).

Because the data were obtained from different

studies, the length of transects were variable

between 10-20 m, but the total sum of all transects

was always 50 m. A metal rod was used to record

contact with individual species, and

measurements were taken every 20 cm along the

transect (250 points per site). In addition, contacts

with dead woody fuel standing in vegetation

structure were also recorded.

2.3. Statistical analysis

Huisman-Olff-Fresco (HOF) models (Huisman et

al. 1993) were used to describe the response of

individual species to time-since-fire and fire

recurrence. HOF models are a means of

describing species response to environmental

gradients (here time) and intra- and inter-specific

interactions (Lawesson and Oksanen 2002). An

hierarchical series of five response models are

fitted, ranked by their increasing complexity

(Model I, no species trend; Model II, increasing or

decreasing trend; Model III, increasing or

decreasing trend below maximum attainable

response; Model IV, symmetrical response curve;

Model V, skewed response curve; Huisman et al

1993). In this study a Poisson error distribution

was used and the resultant equations are

presented in S1 in the Electronic Supplementary

Material). The AIC statistic (Akaike 1973) was

used to select the most parsimonious model for

species in each sere. For those species with

unimodal responses, the HOF procedure

estimated (1) the location of the maximum cover

reached during the succession (top), (2) the point

in time where this maximum cover is reached

(optimum) and (3) the niche width (based on the t-

intervals, t=tolerance, Huisman et al. 1993). In the

case of symmetric unimodal response (Model IV),

the lower and upper t-intervals around the

optimum are identical, whereas with the skewed

model (Model V), the t-intervals are unequal.

These model parameters (top, optimum and niche

width) were used to help interpret the post-fire

species response.

In addition, the species were divided into two

functional groups depending on their fuel type: i.e.

woody species and herbaceous species; these

were further subdivided as follows: woody species

into scrub (< 50 cm tall), shrubs ( 50 cm < X > 150

cm tall) and trees (>150 cm tall), and herbaceous

species into grasses and forbs. Classification of

species was made following Paula et al. (2009)

and authors’ personal observations. HOF models

were derived for each functional type. The

parameters for the selected models for both vital

forms and species are showed in the table S2 of

the ESM.

The change in the dead woody fuel was also

modelled with respect to time-since-fire by fitting

second- and third-order polynomial functions; the

reduction in the AIC statistic was used to choose

the best fit curve (2nd order for both seres).

All statistical analyses were implemented in

the R software environment (version 2.10.1; R

Development Core Team, Vienna, Austria,

http://www.r-project.org/). The HOF models were

fitted using the GRAVY package (R package

version 0.0-21, http://cc.oulu.fi/~jarioksa/softhelp/

softalist.html).

3. Results

For Sere 1, the woody vegetation was dominated

by shrubs (Figure 1), which experienced a skewed

response (model V). They reached a cover

optimum approximately 7 years after fire and,

cover was maintained at relatively high level

(>60%) throughout the sere albeit decreasing

slowly with time (Figure 1, Table 2A). Trees and

forbs increased slightly towards the end of the

sere and grasses showed an unimodal responses

peaking at approximately 13 years.

In Sere 2, the cover of the shrubs, the main

woody species, was reduced in the early stages

(Figure 1). The response model changed from V

to III and their cover in the initial stages of

succession was less than in Sere 1; however, the

shrub cover was comparable to those found in

Page 91: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

82

Shrubs

5 10 15 20 25

Scrub

5 10 15 20 25

Grasses

Years5 10 15 20 25

Res

pons

e

0,0

0,2

0,4

0,6

0,8

1,0

Forbs

Years5 10 15 20 25

Woody species

Herbaceous species

5 10 15 20 25

Res

pons

e

0,0

0,2

0,4

0,6

0,8

1,0

1 Fire2 Fires

Trees

Figure 1. HOF models for the vital forms in relation to time-since-fire in two seres, one subject to a single fire and the second subject to two fires.

Sere 1 approximately 20 years after the second

burn (Figure 1, Table 2A). The responses of the

grasses were very similar to Sere 1 but they

increased slightly in abundance and niche width

(Figure 1, Table 2A). Forbs and especially trees

remained very low throughout, and there was no

evidence of an increase in trees at the end of the

sere.

In both seres, the changes in responses of

the functional types were driven by changes in the

component species. However, there were

important differences between the two seres

(Figure 2, Table 2B). In Sere 1, U. parviflorus and

C. albidus, with unimodal responses were the

pioneer species peaking at 8.8 and 13.6 years,

followed by R. officinalis and P. halepensis still

both increasing at 25 years. R. officinalis was the

dominant species in the late stages of the

succession. In sere 2, a similar pattern was found

for the two pioneer species in that both U.

parviflorus and C. albidus had unimodal

responses, however, here the peaks were delayed

until 16.1 and 15.0 years. In addition, their

response in abundance was different between

them: U. parviflorus decreased its top (maximum

cover reached) from 0.69 to 0.28, whereas C.

albidus increased from 0.09 to 0.21. In the last

stages of the succession R. officinalis showed an

almost identical increasing pattern to sere 1 but

with a slight decrease in abundance. P.

halepensis was not found in sere 2.

For herbaceous species, the dominant

species in both seres was the grass B. retusum

which experienced an unimodal response in

relation to time-since-fire (model IV) (Figure 2,

Table 2B). This species experienced an increase

in abundance and niche width in Sere 2 (Figure 2,

Table 2B). In addition, other grasses as

Brachypodium phoenicoides also showed an

increasing trend after the second fire, changing

from a model I to a model V (Figure 2, Table 2B).

The polynomial function fitted to the

dead woody fuel in Sere 1 (second-order, p<

0.001, F2, 20= 35.86, R2= 0.78) showed a

gradual increase from 0 in the third year to

50% cover at 17 years and then a slight

decrease to 40% cover at 25 years (Figure 3).

In Sere 2, the amount of dead fuel was

always less than Sere 1 and it experienced

a gradual increase until approximately

Page 92: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

83

Table 2. HOF model parameters in relation to fire recurrence for A) vital forms and B) the main species; the estimated values for the top (maximum response), the optimum (age at which the top value is estimated) and niche width are presented. The niche width is calculated for the unimodal Model IV as 2 x the tolerance value (2xt), and for the skewed model V as the sum of the left and right tolerance values (t+t). The % reduction in deviance of the selected model relative to the null model (Model I) is presented. A)

Sere

# Functional

group Vital form

HOF model

Top Optimum 2xt t+t Deviance reduction (%)

df

1 Trees II - - - - 22,1 21

Woody species

Shrubs V 0,83 6,97 - 3,96 + 52,95 56.9 19

Scrubs I - - - - - 22

Grasses IV 0,58 12,13 16,62 - 19,3 20

Herbaceous species

Forbs II - - - - 41,4 21

2 Trees II - - - - 22,1 20

Woody species

Shrubs III - - - - 85,1 19

Scrubs I - - - - - 21

Grasses IV 0,64 13,42 17,02 - 19,7 19

Herbaceous species

Forbs I - - - - - 21

B)

Sere #

Functional group

Species Vital form

HOF model

Top Optimum 2xt t+t Deviance reduction (%)

df

1 Pinus halepensis Tr II - - - - 21,5 21

Woody species

Cistus albidus Sh IV 0,09 13,59 12,56 - 17,5 20

Rosmarinus officinalis Sh II - - - - 60,2 21

Ulex parviflorus Sh IV 0,69 8,83 13,12 - 70,8 20

Brachypodium retusum Gr IV 0,56 12,25 15,82 - 22,2 20

Herbaceous species

Brachypodium phoenicoides Gr I - - - - - 22 2

Pinus halepensis Tr - - - - - - -

Woody species

Cistus albidus Sh IV 0,21 15,03 13,24 - 37,3 19

Rosmarinus officinalis Sh II - - - - 61,6 20

Ulex parviflorus Sh IV 0,28 16,07 11,04 - 51,7 19

Brachypodium retusum Gr IV 0,61 13,51 17,10 - 18,7 19

Herbaceous species

Brachypodium phoenicoides Gr V 0,08 5,74 - 0,88 + 4,01 34,7 18 Sh= shrub, Tr= tree, Sc= scrub, Gr= grass, F= forb. 37% cover at 25 years (second-order, p< 0.001,

F2, 19= 15.19, R2= 0.61; Figure 3).

4. Discussion

4.1 Vegetation structure along succession

This paper is the first to attempt to assess the

change in species and life-history attributes in

terms of flammability during the post-fire

succession in ecosystems dominated by seeding

species with the western Mediterranean Basin.

We answered three questions. First we showed

that over a 25 year period there was an unimodal

response of both grasses and shrubs after a

single fire, increasing to a peak and then reducing.

The only groups that showed a continuing small

increase with time since burning are the forbs and

the trees. This overall pattern obscured changes

in individual species with a clear replacement of

shrub species with time (U. parviforus > C.albidus

> R. officinalis).

Page 93: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

84

P. halepensis (Tr)

Res

pons

e

0,0

0,2

0,4

0,6

0,8

1,0

1 Fire2 Fires

C. albidus (Sh) R. officinalis (Sh)

U. parviflorus (Sh)

5 10 15 20 25

Res

pons

e

0,0

0,2

0,4

0,6

0,8

1,0

B. retusum (Gr)

Years5 10 15 20 25

B. phoenicoides (Gr)

Years5 10 15 20 25

Figure 2. HOF models for the main species in relation to time since fire in two Seres, one subject to a single fire and the second subject to two fires. Sh= shrub, Tr= tree, , Gr= grass, F= forb.

Second, we showed that a second fire

changed the post-fire dynamics, the main results

being that grasses and shrubs peaked slightly

later than subject to a single fire. Moreover, there

were almost no forbs or trees after a second fire.

The order of shrub turnover remained similar to

the single-burn sere in shrubs, however, their

abundance was quite reduced. The response to a

recurrent fire was variable depending on the

species but their balance was negative. The

largest shrubs U. parviflorus declined with a

second fire but other species, such as C. albidus,

were enhanced.

Third we showed that dead wood was

accumulated immediately after fire but as

polynomial responses were detected for both

seres this implies a decline in the later stages of

the succession. After a single fire the dead wood

accumulation increased to 17 years and then here

was a reduction up to the 25 years sampled. After

a second fire, the response was delayed, and

although a polynomial was fitted the dead wood

was always inferior to the one single fire sere.

Therefore, for these systems, our initial

hypotheses that there was a positive fire-mediated

switch for the shrubby species with higher

accumulation of dead fuel and fire-enhanced

recruitment throughout the succession (sensu

Wilson and Agnew 1992) is rejected. This

suggests that these ecosystems are not a stable

self-maintaining community with respect to

successive fires within the fire-return interval

studied here, although more fire recurrences are

needed to test this hypothesis.

In addition to the change in woody fuels we

also found an increase in herbs (i.e., grasses and

forbs) and scrub during the succession. Although

these life-forms do not accumulate large amounts

of dead woody fuel they do impact on flammability

at community level. They are small and short-lived

species and produce a very fine, dry fuel load that

can produce a continuous horizontal fuel bed

throughout the community. Most of the species in

this strata have effective strategies for

regeneration after disturbance. Scrub species

ripen and produce seeds very early after fire (1-3

years) and some species regenerate by

resprouting (facultative species sensu Pausas et

al. 2004). Grasses also show high fire-tolerance

as they resprout quickly and can prevent the

establishment of shrub and tree seedlings

(Menaut et al. 1990; Berkowitz et al. 1995 Vilà et

al 2001; Grigulis et al. 2005). In our study area we

found an increase in B. retusum and scrub

species after three fires (Santana et al. 2010), and

similar patterns have been observed for the grass

Page 94: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

85

Ampelodesmos mauritanica elsewhere in the NE

of Iberian Peninsula (Vilà et al 2001; Grigulis et al.

2005). In fact, positive feedback between grass

expansion and susceptibility to fire has been

previously described in many fire-prone

ecosystems (Hughes et al. 1991; D’Antonio and

Vitousek 1992; Bond et al. 2005; Hoffman et al.

2009), and in the case of the studied fire-return

interval studied, it may successfully establish a

positive feedback between their expansion and

susceptibility to fire.

4.1. Selection of plant traits in fire-prone

ecosystems

There is little information about the ecological

significance of retaining traits that enhance

flammability such as increasing the dead fuel load

within the vegetation. Mutch (1970) hypothesised

that these traits could be under positive selection

in fire-prone environments, i.e., fire-dependent

species burn more readily than non-fire dependent

plant ones because selection has favoured

characteristics that make them more flammable

(Bond and Midgley 1995; Zedler 1995; Kerr et al.

1999; Schwilk and Ackerly 2001). However, these

suggestions have been derived form studies of

individual-level selections, and they have been

criticized because putative flammability is an

emergent property of communites made up of

different species rather than form characteristics

of individual plants (Troumbis and Trabaud 1989;

Whelan 1995). Here, regardless of what happens

at the individual level, at the community level we

observed that the flammability enhancing trait

(retention of dead woody fuel) is not under positive

selection and hence providing a fitness

advantage. The regeneration after a recurrent fire

in approximately the period of the highest fire-risk

(5-17 years) led to a community with less amount

of dead woody fuel accummulated; the intervals of

time between fires may be too short for plants to

reach reproductive age and replenish successfully

their seedbank and, consequently, these species

can be rapidly excluded (Zedler et al. 1983;

Jacobsen et al. 2004; Eugenio and Lloret 2006;

Vilà-Cabrera et al. 2008). However, in longer

periods of time in absence of fire, when the

species may have replenished succesfully their

seedbank, the amount of dead fuel enhancing fire

probability is also reduced.

Dead wood

5 10 15 20 25

Cov

er (

%)

0

20

40

60

80

100

,3

Figure 3. Polynomial regressions for the evolution at community level of the dead woody fuels in relation to the time-since-fire. Filled dots and solid line correspond to one fire and empty dots and dashed line to two fires.

It is also possible that flammability-related

traits could be the result of physiological and

morphological responses to other selection

pressures found in Mediterranean ecosystems, for

example herbivory and seasonal changes in

temperature, drought and radiation (Snyder 1984,

Lavorel and Garnier 2002, Ackerly 2004).

Therefore, we hypothesise that the humped

function of flammability observed during the post-

fire succession, i.e., the woody fuel reached an

asymptote with time but the dead fuel

accumulation decreased after reaching a

maximum may be the result of intrinsic traits of

individual species as they occur within the

successional gradient of environmental resources.

Early-successional species from resource-rich

habitats after perturbation tend to be inherently

short-lived and fast growing with a high resource

capture and fast turnover of organs (leaves), while

the reverse would be for late-successional species

(Bazzaz 1979, Carreira and Niell 1992). Thus,

early-successional species might be expected to

have early and prolific branching which would

reduce light availability and, in certain cases,

increase the dead wood component of the lowest

branches (Schlessinger and Gill 1980, Larcher

1995). In addition, changes in resource allocation

Page 95: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

86

pattern between shoots and roots has also been

suggested as a possible determinant of dead fuel

accumulation (Schwilk and Ackerly 2005, Cowan

and Ackerly 2010). Species with a high shoot: root

ratio would be expected to be less drought tolerant

in the summer and hence there might be an

increase dieback of part of the biomass in summer

droughts (Orsham 1963, Montserrat-Martí 2004).

Thus, an increased allocation to above-ground

biomass in early-successional species combined

with an increased shoot dieback over time may

drive differences in dead fuel retention. This

hypothesis is supported in our study as the early-

successional U. parviflorus allocated less biomass

to roots (lower root:shoot ratio) that the late-

successional R. officinalis (Hernandez et al.

2010). Nevertheless, little is known about the

physiological causes of dead fuel production, and

further investigations are needed to confirm these

speculations. The fire-risk function depicted by the

woody fuels through time is in accordance with the

results found on these systems by Baeza et al. (in

press) and other fire-prone systems, where long

intervals without fire lead to a decreased

probability of fire due to the successional

replacement with less-flammable species (Bond

and van Wilgen 1996, Mermoz et al. 2005, Odion

et al 2010).

Acknowledgements

V.M. Santana was supported by a FPU grant

awarded by the Spanish Ministry of Education and

Science. This research was carried out within the

FIREMED (AGL200/8-04522/FOR) and

Consolider-Ingenio 2010 (GRACCIE CSD2007-

00067) projects. CEAM is supported by the

Generalitat Valenciana and Fundación Bancaja.

References

Ackerly DD (2004) Functional strategies of

chaparral shrubs in relation to seasonal water

deficit and disturbance. Ecol Monogr 74: 25-44

Akaike H (1973) Information theory and an

extension of the maximum likelihood principle.

In: Petrov BN, Csaki F (eds) 2nd international

symposium on information theory. Akademiai

Kiado, Budapest.

Baeza MJ (2001) Aspectos ecológicos y técnicas

de control de combustible (roza y quema

controlada) en matorrales con alto riesgo de

incendio dominados por Ulex parviflorus

(Pourr.). Ph.D thesis, Departamento de

Ecología. Universidad de Alicante.

Baeza MJ, De Luis M, Raventòs J, Escarré A

(2002) Factors influencing fire behaviour in

shrublands of different stand ages and the

implications for using prescribed burning to

reduce wildfire risk. J Environ Manag 65: 199-

208

Baeza MJ, Vallejo VR (2006) Ecological

mechanisms involved in dormancy breakage in

Ulex parviflorus seeds. Plant Ecol 183: 191-

295

Baeza MJ, Raventòs J, Escarré A, Vallejo VR

(2006) Fire risk and vegetation structural

dynamics in Mediterranean shrubland. Plant

Ecol 187: 189-201

Baeza MJ, Valdecantos A, Alloza JA, Vallejo VR

(2007) Human disturbance and environmental

factors as drivers of long-term post-fire

regeneration patterns in Mediterranean

forests. J Veg Sci 18: 243-252

Baeza MJ, Santana VM, Pausas JG, Vallejo VR

(in press) Successional trends in standing

dead biomass in Mediterranean Basin species.

J Veg Sci

Bazzaz FA (1979) The physiological ecology of

plant succession. Ann Rev Ecol Syst 10: 351-

371

Berkowitz AR, Canham CD, Kelly VR (1995)

Competition vs. facilitation of the tree seedling

growth and survival in early-successional

communities. Ecology 76: 1156-1168

Page 96: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

87

Bolòs O, Vigo J, Masalles RM, Ninot JM (1993)

Flora manual dels Països Catalans. Pòrtic,

Barcelona.

Bond WJ, Midgley JJ (1995) Kill thy neighbour: an

individualistic argument for the evolution of

flammability. Oikos 73: 79-85

Bond WJ, van Wilgen BW (1996) Fire and plants.

Chapman & Hall, London.

Bond WJ, Woodward FI, Midgley GF (2005) The

global distribution of ecosystems in a world

without fire. New Phytol 165: 525-538

Bowman DMJS, Boggs GS, Prior LD (2007) Fire

maintains an Acacia aneura shrubland- Triodia

grassland mosaic in central Australia. J Arid

Environ 72: 34-47

Bradstock RA, Gill AM (1993) Fire in semi-arid,

Mallee shrublands: size of flames from

discrete fuel arrays and their role in the spread

of fire. Int J Wildland Fire 3: 3-12

Carreira JA, Niell FX (1992) Plant nutrient

changes in a semiarid Mediterranean

shrubland after fire. J Veg Sci 3: 457-466.

Cheney NP, Gould JS, Catchpole WR (1993) The

influence of fuel, weather and fire shape

variables on fire-spread in grasslands. Int J

Wildland Fire 3: 31-44

Cowan PD, Ackerly DD (2010) Post-fire

regeneration strategies and flammability traits

of California chaparral shrubs. Int J Wildland

Fire 19: 984-989

D’Antonio CM, Vitousek PM (1992) Biological

invasions by exotic grasses, the grass-fire

cycle, and global change . Ann Rev Ecol Syst

23: 63-87

De Luis M, Baeza MJ, Raventós J, González-

Hidalgo JC (2004) Fuel characteristics and fire

behaviour in mature Mediterranean gorse

shrublands. Int J Wildland Fire 13: 79-87

Díaz-Delgado R, Lloret F, Pons X (2004)

Statistical analysis of fire frequency models for

Catalonia (NE Spain, 1975-1998) Based on

fire scar maps from Landsat MSS data. Int J

Wildland Fire 13: 89-99

Eugenio M, Lloret F (2006) Effects of repeated

burning on Mediterranean communities of the

northeastern Iberian Peninsula. J Veg Sci 7:

755-764

Gagnon PR, Passmore HA, Platt WJ, Myers JA,

Paine CET, Harms KE (2010) Does

pyrogenicity protect burning plants? Ecology

91: 3481-3486

Greig-Smith P (1983) Quantitative plant ecology.

Blackwell, Oxford.

Grigulis K, Lavorel S, Davies ID, Dossantos A,

Lloret F, Vilà M (2005) Landscape-scale

positive feedbacks between fire and expansion

of the large tussock grass, Ampelodesmos

mauritanica in Catalan shrublands. Global

Change Biol 11: 1042-1053.

Hernández E, Vilagrosa A, Pausas JG, Bellot J

(2010) Morphological traits and water use

strategies in seedlings of Mediterranean

coexisting species. Plant Ecol 207: 233-244

Hoffmann WA, Adasme R, Haridasan M, de

Carvalho MT, Geiger EL, Mireia MAB, Gotsch

SG, Franco AC (2009) Tree topkill, not

mortality, governs the dynamics of savanna-

forest boundaries under frequent fire in central

Brazil. Ecology 90: 1326-1337

Hughes F, Vitousek PM, Tunison T (1991) Alien

grass invasion and fire in the seasonal

submontane zone of Hawaii. Ecology 72: 743-

746

Huisman J, Olff H, Fresco LFM (1993) A

hierarchical set of models for species

response analysis. J Veg Sci 4: 37-46

Jacobsen AL, Davis SD, Babritius SL (2004) Fire

frequency impacts non-sprouting chaparral

shrubs in the Santa Monica Mountains of

southern California. In: Arianoutsou M,

Papanastasis VP (eds) Ecology, conservation

Page 97: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

88

and management of Mediterranean climate

ecosystems. Millpress, Rotterdam.

Johnson EA (1992) Fire and vegetation dynamics:

studies from the North American boreal forest.

Cambridge University Press, Cambridge.

Keane RE, Cary GJ, Davies ID, Flannigan MD,

Gardner RH, Lavorel S, Lenihan JM, Li C,

Rupp TS (2004) A classification of landscape

fire succession models: spatial simulations of

fire and vegetation dynamics. Ecol Model 179:

3-27.

Kerr B, Schwilk DW, Bergman A, Feldman MW

(1999) Rekindling an old flame: a haploid

model for the evolution and impact of

flammability in resprouting plants. Evol Ecol

Res 1: 807-833

Larcher W (1995) Physiological plant ecology, 3rd

edn. Springer, Berlin.

Lavorel S, Garnier E (2002) Predicting changes in

community composition and ecosystem

functioning from plant traits: revisiting the Holy

Grail. Funct Ecol 16: 545-556

Lawesson JE, Oksanen J (2002) Niche

charateristics of Danish woody species as

derived from coenoclines. J Veg Sci 13: 279-

290

Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002)

Wildfires and landscape patterns in the

eastern Iberian Peninsula. Landscape Ecol 17:

745-759

McCarthy MA, Gill AM, Bradstock RA (2001)

Theoretical fire interval distributions. Int J

Wildland Fire 10: 73-77

Menaut JC, Gignoux J, Prado C, Clobert J (1990)

Tree community dynamics in a humid savanna

of the Cote-d’Ivoire: modelling the effects of

fire and competition with grass and

neighbours. J. Biogeogr 17: 471-481

Mermoz M, Kitzberger T, Veblen T (2005)

Landscape influences on occurrence and

spread of wildfires in Patagonian forests and

shrublands. Ecology 86: 2705-2715

Minnich RA, Chou YH (1997) Wildland fire patch

dynamics in the chaparral of southern

California and northern Baja California. Int J

Wildland Fire 7: 221-248

Montserrat-Martí G, Palacio-Blasco S, Milla

Gutiérrez R (2004) Fenología y características

funcionales de las plantas leñosas

mediterráneas. In: Valladares F (ed) Ecología

del bosque mediterráneo en un mundo

cambiante. Ministerio de Medio Ambiente,

Madrid.

Moreira B, Tormo J, Estrelles E, Pausas JG

(2010) Disentangling the role of heat and

smoke as germination cues in Mediterranean

Basin flora. Ann Bot 105: 627-635

Mutch RW (1970) Wildland fires and ecosystems-

a hypothesis. Ecology 51: 1046-1051.

Odion DC, Moritz MA, DellaSala D (2010)

Alternative community states maintained by

fire in the Klamath Mountains, USA. J Ecol 98:

96-105

Odling-Smee FJ, Laland KN, Feldman MW (1996)

Niche construction. Am Nat 147: 641-648

Odum EP (1969) Strategy of ecosystem

development. Science 164: 262-270.

Orsham G (1963) Seasonal dimorphism of desert

and Mediterranean chamephytes and its

significance as a factor in their water economy.

In: Rutter AJ, Whitehead FH (eds) The water

relations of plants. Blackwell Scientific

Publications, London.

Paula S, Arianoutsou M, Kazanis D, Tavsanoglu

Ç, Lloret F, Buhk C, Ojeda F, Luna B, Moreno

JM, Rodrigo A, Espelta JM, Palacio S,

Fernández-Santos B, Fernandes PM, Pausas

JG (2009) Fire-related traits for plant species

of the Mediterranean Basin. Ecology 90: 1420

Page 98: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

89

Pausas JG (2004) Changes in fire and climate in

the eastern Iberian Peninsula (Mediterranean

Basin). Climatic Change 63: 337-350

Pausas JG, Bradstock RA, Keith DA, Keeley JE,

Network GF (2004) Plant functional traits in

relation to fire in crown-fire ecosystems.

Ecology 85: 1085-1100

Rothermel RC, Philpot CW (1973) Predicting

changes in chaparral flammability. J Forest 71:

640-643.

Santana VM, Baeza MJ, Marrs RH, Vallejo VR

(2010) Old-field secondary succesión in SE

Spain: can fire divert it? Plant Ecol 211: 337-

349

Santana VM, Baeza MJ, Vallejo VR (in press) Fuel

structural traits modulating soil temperatures in

different species patches of Mediterranean

Basin shrublands. Int J Wildland Fire

Saura-Mas S, Paula S, Pausas JG, Lloret F

(2010) Fuel loading and flammability in the

Mediterranean Basin woody species with

different post-fire regenerative strategies. Int J

Wildland Fire 19: 783-794

Schlessinger WH, Gill DS (1980) Biomass,

production, and changes in the availability of

light, water, and nutrients during the

development of pure stands of the chaparral

shrub, Ceanothus megacarpus, after fire.

Ecology 64: 781-789

Schwilk DW (2003) Flammability is a niche

construction trait: canopy architecture affects

fire intensity. Am Nat 162: 725-733

Schwilk DW, Ackerly DD (2001) Flammability and

serotiny as strategies: correlated evolution in

pines. Oikos 94: 326-336

Schwilk DW, Ackerly DD (2005) Is there a cost of

resprouting? Seedling growth rate and

tolerance in sprouting and non-sprouting

Ceanothus (Rhamnaceae). Am J Bot 92: 404-

410

Snyder JR (1984) The role of fire: Mutch ado

about nothing. Oikos 43: 404-405

Sun L, Zhou X, Mahalingam S, Weise DR (2006)

Comparison of burning characteristics of live

and dead chaparral fuels. Combust Flame

144: 349-359

Troumbis AY, Trabaud L (1989) Some questions

about flammability in fire ecology. Acta

Oecologica-Oecologia Plantarum 10: 167-175

Vilà M, Lloret F, Ogheri E, Terradas J (2001)

Positive fire-grass feedback in Mediterranean

Basin woodlands. Forest Ecol Manag 147: 3-

14

Vilà-Cabrera A, Saura-Mas S, Lloret F (2008)

Effects of fire frequency on species

composition in a Mediterranean shrubland.

Ecoscience 15: 519-528

Warman L, Moles AT (2009) Alternative stable

states in Australia’s wet tropics: a theoretical

framework for the field data and field-case for

the theory. Landscape ecol 24: 1-13

Whelan RJ (1995) The ecology of fire. Cambridge

University Press. Cambridge.

Wilson JB, Agnew ADQ (1992) Positive-feedback

switches in plant-communities. Adv Ecol Res

23: 263-336

Zedler PH (1995) Are some plants born to burn?

TREE 10: 393-395

Zedler PH, Gautier CR, McMaster GS (1983)

Vegetation change in response to extreme

events: the effect of a short interval between

fires in California chaparral and coastal scrub.

Ecology 64: 809-818

Page 99: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

90

ELECTRONIC SUPPLEMENTARY MATERIAL Table S1. The equations fitted to the 5 models in the HOF procedure; y = the species response variable; x = the gradient variable; a, b, c and d are parameters to be estimated; M = a constant and is the maximum value attainable (M = 250 in our case).

HOF Model Equation

I y = M * 1/(1+ea)

II y = M * 1/(1+ ea+bx)

III y = M * 1/(1+ ea+bx) * 1/(1+ec)

IV y = M * 1/(1+ ea+bx) * 1/(1+ec-bx)

V y = M * 1/(1+ ea+bx) * 1/(1+ec-dx) where b and d have opposite signs

Page 100: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

91

Table S2. HOF model parameters for the complete set of A) vital forms and B) species fitted. A Poisson error distribution was used to compute these values using the GRAVY package (R package version 0.0-21, http://cc.oulu.fi/~jarioksa/softhelp/softalist.html). A) Sere Functional

Model parameters # group

Vital form HOF model

a b c d

1 Trees II 4,23 -2,18 - -

Woody species

Shrubs V -1,72 0,66 -0,37 28,72

Scrub I 2,10 - - -

Grasses IV -3,01 4,46 0,69 -

Herbaceous species

Forbs II 4,59 -2,39 - -

2 Trees II 7,13 -2,63 - -

Woody species

Shrubs III 1,53 -8,30 -0,95 -

Scrub I 1,92 - - -

Grasses IV -3,57 4,60 0,78 -

Herbaceous species

Forbs I 2,85 - - - B) Sere Functional

Model parameters # group

Species Vital form

HOF model

a b c d 1

Pinus halepensis Tr II 4,22 -2,20 - -

Woody species

Cistus albidus Sh IV -1,80 5,53 3,49 -

Rosmarinus officinalis Sh II 2,83 -3,00 - -

Ulex parviflorus Sh IV -3,30 6,29 0,05 -

Brachypodium retusum Gr IV -3,00 4,62 0,85 -

Herbaceous species

Brachypodium phoenicoides Gr I 3,76 - - - 2

Pinus halepensis Tr - - - -

Woody species

Cistus albidus Sh IV -2,50 4,87 2,82 -

Rosmarinus officinalis Sh II 4,15 -4,20 - -

Ulex parviflorus Sh IV -3,60 5,89 3,35 -

Brachypodium retusum Gr IV -3,40 4,43 0,85 -

Herbaceous species

Brachypodium phoenicoides Gr V 6,65 -80,00 2,07 -3,10 Sh= shrub, Tr= tree, Sc= scrub, Gr= grass, F= forb.

Page 101: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

92

Apéndice fotográfico

Foto 1. Matorral de 3 años de edad después de un fuego Foto 2. Matorral de 9 años de edad después de 1 fuego

Foto 3. Matorral de 25 años con individuos senescentes

Foto 4. Individuos senescentes de Ulex parviflorus Foto 5. Matorral quemado 2 veces a los 10 años de edad

Page 102: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

93

CAPÍTULO 6- SUCESIÓN SECUNDARIA EN CAMPOS DE CULTIVO ABANDONADOS DEL SURESTE DE ESPAÑA: ¿PUEDE EL FUEGO DESVIARLA? RESUMEN: En la cuenca mediterránea, grandes áreas cultivadas fueron abandonadas en el pasado siglo y hoy en día se encuentran en varias etapas de sucesión. El objetivo de este trabajo es analizar las trayectorias sucesionales de estos ecosistemas, y valorar las posibles desviaciones en estas trayectorias debido a la ocurrencia de incendios en altos o bajos niveles de recurrencia. Campos de cultivo abandonados aproximadamente 50 o 100 años atrás fueron seleccionados en el sureste de España. Dentro de los campos de cultivo abandonados hace 50 años, se establecieron parcelas que habían sido quemadas por 1, 2 y 3 incendios en los últimos 25 años. Los valores de cobertura para todas las especies vasculares fueron estimados y después analizados mediante análisis multivariante. Las distancias euclídeas entre las comunidades resultantes fueron usadas como un indicador de la posible desviación de la trayectoria sucesional en ausencia de fuegos. Nuestros resultados señalan la posibilidad de que existan diferentes trayectorias sucesionales dependiendo de la ocurrencia y recurrencia de incendios. En ausencia de fuego, la vegetación es dominada por especies pioneras, principalmente Pinus. Con el paso del tiempo esta vegetación pasa a estar dominada por especies arbóreas de etapas sucesionales tardías (Quercus). Sin embargo, cuando las etapas sucesionales tempranas son afectadas por el fuego, la sucesión puede ser desviada. Un simple incendio es suficiente para cambiar bosques de Pinus en estados estables alternativos de de matorral dominado por Rosmarinus officinalis, donde la colonización de especies en etapas sucesionales posteriores puede verse impedida. La desviación se incrementa bajo un régimen de alta recurrencia de incendio, donde la vegetación cambia hacia especies de bajo porte y herbáceas. Este capítulo reproduce el siguiente manuscrito: Santana VM, Baeza MJ, Marrs RH, Vallejo VR (2010) Old-field secondary succession in SE Spain: can fire divert it? Plant Ecology 211: 337-349

Page 103: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

94

Page 104: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

95

Old-field secondary succession in SE Spain: can fir e divert it?

Victor M. Santana A, M. Jaime BaezaA, B, Rob H. MarrsC V. Ramón VallejoA

AFundación de la Generalitat Valenciana Centro de Estudios Ambientales del

Mediterráneo (CEAM). Parque Tecnológico Paterna. C/Charles Darwin, 14.

46.980 Valencia. Spain

BDepartamento de Ecología, Universidad de Alicante. Ap. 99. 03080 Alicante.

Spain CApplied Vegetation Dynamics Laboratory, School of Environmental Science,

University of Liverpool, PO Box 147, Liverpool, L69 7ZB, UK

Abstract In the Mediterranean Basin, most cultivated areas were abandoned in the last century and are now in various stages of old-field succession. The aim of this work was to analyse the successional trajectories of these ecosystems, and to assess possible deviations in these pathways due to fire occurrence at high or low recurrence levels. Old-fields abandoned either about 50 or about 100 years ago were selected in SE Spain. Within the 50-year-old abandoned fields, plots were established which had been burned by 1, 2 and 3 fires in the last 25 years. Cover values of vascular species were sampled and then analysed by means of multivariate analysis. Euclidean distances between resulting communities were used as an indicator of the possible deviation from the unburned successional pathway. Our results pointed to the possibility that different successional pathways may exist depending on fire occurrence and recurrence. In the absence of fire, the vegetation is dominated by pioneer species, mainly Pinus. With the passage of time this vegetation will become dominated by later successional tree species (Quercus). However, when early-successional communities are affected by fire, the succession can be diverted. A single fire is enough to change Pinus forests into alternative stable-states dominated by Rosmarinus officinalis shrub communities, where the colonisation of species in later-successional stages is arrested. This deviation increases in high fire-recurrence regimes where the vegetation changes to dwarf shrubs and herbs. Key words: alternative stable-state; arrested succession; CCA; fire recurrence; Mediterranean vegetation; successional pathway.

Page 105: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

96

1. Introduction

In the Mediterranean Basin, late-successional

forests are associated mainly with broad-leaved

sclerophyllous species. In fact, under mesic

conditions, Quercus ilex is often the dominant

species in eastern Spain (Barbero et al. 1992;

Zavala et al. 2000, Zavala 2003; Quézel 2004).

However, in the Mediterranean Basin, there is a

long history of exploitation and deforestation, and

most of the natural vegetation was removed

several centuries ago and the land converted to

agriculture (Blondel and Aronson 1999). More

recently, some of this agricultural land has been

taken out of production and natural regeneration

has occurred. As a result, this has produced a

series of old-field successional communities in this

region (Cramer et al. 2008). An inevitable

consequence of this successional development

has been an increased in vegetation biomass and

hence an added fire risk. This is a particular threat

when the successional patches link forested areas

together. These changes in land-use, together

with climate change (longer, hotter and drier

summers), are contributing factors to the

increased size and frequency of fires in recent

decades (Pausas 2004).

Although old-field successions in the

Mediterranean Basin have been widely studied

(Debussche et al. 1982; Tatoni and Roche 1991;

Debussche et al. 1996; Ne’eman and Izhaki 1996;

Verdú and García-Fayos 1998; Bonet and Pausas

2007), few of them cover long time periods. It is

widely accepted that when cultivation practices

have not exceeded the biotic and abiotic

degradation thresholds of the ecosystem, plant

communities assemble along a broadly repeatable

pathway to largely resemble the composition,

structure, and function of the late-successional

state that existed before clearing (Cramer et al.

2008). The transition to late stages of succession

is often slow because the propagule bank in the

soil necessary for species establishment has been

depleted or destroyed. Plant establishment is,

therefore, dependent on the dispersal and

subsequent germination of seeds from off-site

sources. This dispersal limitation is more likely to

impede colonization of the late-successional

species, which tend be slower-growing and are

dispersed by frugivores (Debussche et al. 1982,

Pons and Pausas 2007) than early–successional

species which are usually faster-growing and have

a high dispersal capacity (Grubb 1998; Bonet and

Pausas 2004).

Succession after field abandonment, where all

of the pre-existing vegetation has been removed,

differs from succession after fire, where many

propagules of the original species are left in situ.

Classically, Mediterranean systems have been

described as auto-successional after fire, i.e., the

fire-affected vegetation recovers its previous

composition with time (Hanes 1971). In this case,

fires have been viewed as processes that interrupt

succession, or delay it, by returning the system to

an earlier successional state. Nevertheless, it is

possible that disturbance can sometimes cause an

abrupt change in ecosystem function and/or

structure, diverting the succession to alternative

stable-states that differ substantially from the

original system (Friedel 1991; Laycock 1991;

Scheffer et al. 2001). In cases where the

alternative states are persistent and the

established vegetation prevents the development

of late-successional species, succession is

strongly delayed or practically stopped in an

arrested succession (Putz and Canham 1992;

Acacio et al. 2008). Factors such as the fire

disturbance regime (extent, frequency, intensity,

severity, seasonality and recurrence- see Fox and

Fox 1987), climatic conditions before, during and

after the disturbance, the previous species

composition and the previous land use can modify

the successional trajectory to follow multiple

pathways in a given environment (Picket et al.

1987; Keeley et al. 2005; Cramer et al. 2008). In

fire-prone ecosystems, deviations from the

expected successional pathways have been

proposed especially where there is a high fire

recurrence over relatively short time periods

(Noble and Slatyer 1980; Trabaud 1991; Eugenio

and Lloret 2004; Donato et al. 2008). As a

Page 106: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

97

consequence vegetation can be diverted to

communities composed mainly of small-sized

species with high proportion of fine fuels, which

can provide a positive feedback on the likelihood

of fire recurrence (Zedler et al. 1983; Haidinger

and Keeley 1993; Lloret and Vilà 2003; Lloret et al.

2003; Eugenio and Lloret 2006; Baeza et al.

2007).

In this paper, our aim was to analyse

secondary succession in old-fields in eastern

Spain in the absence, and in the presence of fire.

Our starting hypothesis was that after

abandonment, vegetation would in the long-term

resemble a late-successional woodland

community composed of sclerophyllous broad-

leaved species. To test this hypothesis, we

compared the vegetation in unburned old-fields

that had been abandoned in the medium- and

distant-past (50 and 100 years ago respectively).

In addition, we assessed the impact of fire on old-

fields abandoned in the medium term (50 years

ago). For this we used plots affected by different

fire recurrences, and we tested two hypotheses,

that: (1) after a single fire, the vegetation would be

able to return to its pre-disturbance state, thus

supporting stand self-replacement as the most

common pathway in low fire recurrence regimes

where no significant deviations from the unburned

pathway would be expected; and (2) at high fire

recurrences the vegetation would be diverted to

possible alternative states, dominated by regime-

driven species.

2. Methods

2.1 Study area and experimental design

The study was conducted in the interior of Alicante

and Valencia provinces, eastern Spain, where the

sites experience a meso-Mediterranean climate

with an annual rainfall range between 450-600

mm and a mean annual temperature range

between 13-16ºC. The bedrock was marl and soils

were Regosols. The potential vegetation is mainly

a broad-leaved sclerophyllous forest of Q. ilex,

which, except for valley bottoms and other very

localised areas, is extremely scarce at present

due to past deforestation and exploitation. The

landscape is a mountainous mosaic with

agricultural lands and abandoned fields covered

mainly by regenerated forests and shrublands with

different degrees of development and

composition. The main species are the grass

Brachypodium retusum, the shrubs Rosmarinus

officinalis, Ulex parviflorus and Quercus coccifera,

and some pine forests dominated by Pinus

halepensis and P. pinaster.

Six sites containing old-field plant communities

on former arable land were selected on the basis

of their time since abandonment. The sites, which

had already been part of previous studies, were

selected to have similar soil and topographical

characteristics with the aim of reducing to the

minimum the effect of environmental variability on

vegetation regeneration (Baeza et al. 2002). Two

time ranges were available: (1) Long-term

abandonment (LT), with three sites abandoned

approximately 100 years ago, and (2) medium-

term abandonment (MT), with three sites

abandoned approximately 50 years ago. All of

these sites have been colonised by Pinus forest.

The time since abandonment was estimated

by means of interviews with landowners and

managers. To corroborate this information, we

inspected aerial photographs from 1956, 1978 and

2000. In the 1956 photographs the 100-year-old

sites had well-developed woodlands dominated by

Pinus sp., whereas the 50-year-old sites were

dominated by shrub and herb species and were

clearly at an earlier development stage. All the

selected sites were marginal fields located near

late-successional mature forests. Therefore, we

assumed that the propagule availability of late-

successional species dispersed by birds and

mammals was not limited.

In addition, within each of the three MT sites

there were unburned areas as well as areas which

had been subjected to different fire recurrences.

The first burn on each site was a wildfire that

occurred between 22 and 26 years ago

(abandonment and burning history summarised in

Table 1); this first fire covered an area of at least

Page 107: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

98

Table 1 Site description and fire history. Experimental fires are marked with* in fire year. DIR = Direct Incident Radiation, HL = Heat Load.

Site name Latitude-Longitude Burning treatment

Time since abandonment

(years)

Fire year Altitude (m) Slope (º) Aspect DIR HL

La Venteta 38º39'N-0º35'W Unburned 100 No fire 1044 22 NE 0,74 0,71

Fontroja 38º40'N-0º30'W Unburned 100 No fire 834 32 NE 0,63 0,56

Els Plans 38º38'N-0º27'W Unburned 100 No fire 863 11 NW 0,88 0,94

38º39'N-0º39'W Unburned 50 No fire 940 47 ENE 0,51 0,34

1 fire 50 1984 940 35 NW 0,59 0,79

2 fires 50 1994* 940 35 NW 0,59 0,79

Onil

3 fires 50 2006* 940 35 NW 0,59 0,79

38º40'N-0º39'W Unburned 50 No fire 900 4 N 0,93 0,94

1 fire 50 1984 900 4 N 0,93 0,94

2 fires 50 1994* 900 4 N 0,93 0,94

Pardines

3 fires 50 2006* 900 4 N 0,93 0,94

39º07'N-0º57'W Unburned 50 No fire 763 10 SSW 1,02 1,03

1 fire 50 1979 1041 31 NNE 0,61 0,58

2 fires 50 1996 1041 23 NE 0,74 0,79

Ayora

3 fires 50 2006* 1041 23 NE 0,74 0,79

50 ha where, according to landowners and aerial

photographs, the sites were well-developed

mature Pinus forests at that time. Since then, sub-

areas of this burned area have been reburned,

either by subsequent experimental burns (Baeza

et al. 2002) or by other wildfires (e.g., the Ayora

site, Table 1). Within the area burned twice, a third

experimental burn was carried out in 2006.

Therefore, on each site we had at our disposal

four plots with similar characteristics but different

burning recurrences at distances of no more than

1km from each other. The medium-term

abandoned communities are denoted hereafter as

MTU (unburned), MT1 (burned once), MT2

(burned twice) and MT3 (burned thrice).

2.2 Vegetation sampling

The vegetation was sampled in 2006, except for

the sites burned thrice, which were sampled one

year after the fire in 2007. The cover for all

vascular species was estimated using the point-

intersect method (Greig-Smith 1983). Three

perpendicular 20 m long transects spaced 7 m

apart were evaluated on each plot across the

maximum slope. A metal rod was used to record

contact with individual species, and

measurements were taken every 20 cm along the

transect (100 points per transect). In addition, to

assess the success of late-successional species

establishment, the density of the main

sclerophyllous broad-leaved species (Q. ilex, Q.

coccifera, Olea europaea, Crataegus monogyna,

Juniperus oxycedrus and Rhamnus alaternus,

nomenclature follows Bolós et al. 1993) was

determined by counting the total number of

individuals within a 5m wide strip centred on the

transect line. We recorded all established

seedlings, saplings and trees as individuals.

At each plot, slope, aspect and elevation were

recorded, and the aspect values were used to

compute Direct Incident Radiation (DIR) and Heat

Load (HL) (McCune, 2007).

2.3 Data analysis

Species were classified according to their life-form

(Raunkiaer 1934). Because the assumption of

homogeneity of variances was not possible,

Kruskal-Wallis tests were used to test the

differences in relative cover of the dominant

species and life-forms between the different

treatments. We compared MTU cover against LT

cover to investigate species replacement during

Page 108: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

99

the secondary succession, and also compared

MTU with the different burning histories to check

the effect of the different fire recurrences.

Similarly, one-way ANOVA was performed to find

differences in the total density of the main late-

successional species. When significant

differences were observed between communities

with different burning histories, post-hoc HSD

Tukey tests were performed (Zar 1996).

Ordination methods were then used to

evaluate compositional variations in relation to the

measured plot characteristics (fire recurrence

sequence, abandonment time, slope, elevation,

DIR, HL). Only species which were present in at

least two transects were included, i.e., 53 species

out of the 70 recorded. Species cover data were

transformed (loge(x+1)) and the downweighting

option for rare species was used. All multivariate

analyses were performed using the Vegan 1.9

package (Oksanen et al. 2007) in the R

environment (R Development Core Team 2007).

Initially, the vegetation data were analysed by

unconstrained ordination using Decorana (DCA),

and the significance of the relationship between

the first two axes and the plot characteristics

assessed using a permutation test (n=1000)

stratified by site. This analysis produced a

gradient length of 2.97 for the first axis, which

justified the use of the unimodal model (ter Braak

and Smilauer 1998). The relationship between

species composition and plot characteristics was

then investigated further using constrained

Canonical Correspondence Analysis (CCA). The

forward selection procedure in the Vegan package

(Oksanen et al. 2007) using the AIC statistic was

utilized to select the most significant

environmental variables. The significance of both

the model selected and the effects of the plot

characteristics axes was tested using a

permutation test (n=1000) with stratification by

site. The results for the DCA and the CCA were

similar, therefore only the CCA results are

reported here.

The relative impact of abandonment time and

fire recurrence in the vegetation dynamics was

assessed by plotting the relative positions of each

transect x fire recurrence/abandonment time

within the derived CCA model using two-

dimensional ellipses reflecting 95% confidence

intervals (Milligan et al. 2004). Thereafter, to

assess the relative impact of fire recurrence or

abandonment time in vegetation change at the

different sites, the following two-dimensional

Euclidean distances (Manly 1986; Mitchell et al.

2000) were calculated: (1) the distance between

the centroids of the MTU sites and the LT ones, to

assess the relative success in the replacement of

early-successional species by late-species in a

possible successional pathway; (2) the distance

between the centroids of the burned sites (MT1,

MT2 and MT3) in comparison with the MTU sites,

to assess the relative effect of the fire regime on

diverting the species composition from the

unburned community, and (3) the distance

between the centroids of MT2 and MT3 from

MT1, to assess the relative effects of increasing

fire recurrence.

3. Results

3.1 Species and life-form cover

Seventy species were detected, but the vegetation

was dominated by only eight species whose

combined cover exceeded 50% on all plots, and

80% on eight of the fifteen plots studied. Pinus

halepensis was the dominant Pinus species on all

sites except Ayora where P. pinaster was

dominant. The other dominant species were B.

retusum, Cistus albidus, Q. coccifera, Q. ilex, R.

officinalis and U. parviflorus. Due to their similar

life history traits, the two Pinus species were

regarded as the same taxon (Pinus sp.) in the

subsequent analysis in order to simplify the data

analysis and the interpretation of the results.

Macro-phanerophytes were dominant at both

abandonment times (MTU and LT). The cover of

R. officinalis decreased and the cover of both

Quercus sp. increased in the older (LT) fields.

Except for the rambling phanerophytes that

showed a slight increase with time, there was no

effect of time since abandonment on life-forms

Page 109: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

100

Table 2 Relative cover of the seven most abundant species and life-forms on (a) old-fields at different abandonment times, and (b) areas of the medium-term abandoned old-fields which had been burned at different recurrences. Mean values (±SD, n=3) are presented; means in the same row that are significantly different (P<0,05 level, HSD Tukey test) are indicated with different letters.

A) Time since abandonment

50 years approx. 100 years approx.

Category

(MTU) (LT)

Significant response to time

since abandonment

Dominant species

Q. coccifera 3.7±2.9 b 11.9±9.2 a Increase

Q. ilex 0.1±0.2 b 17.6±2.4 a Increase

R. officinalis 13.4±10.8 a 0.8±1.5 b Decrease

B. retusum 18.8±14.4 15.6±4.8 None

C. albidus 0.1±0.2 0.9 ±0.8 None

Pinus sp. 47.4±11.9 34.5±5.6 None

U. parviflorus 0.9±0.9 0.8±1.3 None

Life-form

Rambling phanerophyte 0.3±0.6 b 5.5±3.4 a Increase

Macro-phanerophyte 55.4±19.1 66.5±12.1 None

Nano-phanerophyte 15.7±10.4 10±4.6 None

Chamaephyte 23.8±18.1 18±7 None

Hemi-cryptophyte 4.9±2 4.9±3.7 None

Terophyte 0.2±0.3 0 None

Geophyte 0 0.1±0.1 None

B) Burning treatment Significant response to

burning recurrence Unburned Burned x1 Burned x2 Burned x3

Category

(MTU) (MT1) (MT2) (MT3)

Dominant species

U. parviflorus 0.9±0.9 b 4.5±1.6 b 22 ±7.8 a 0.8±0.9 b Increase in x2

C. albidus 0.1±0.2 b 2.3±2.6 b 15.2±3.5 a 6±3.4 b Increase in x2

R. officinalis 13.4±10.8 b 48.6±7.8 a 3.6±3.6 c 0.4±0.7 c Increase in x1

Pinus sp. 47.4±11.9 a 4.2±6.3 b 0.4±0.7 b 0 b Decrease

B. retusum 18.8±14.4 19.9±11.1 33±11.3 47.2±.5 None

Q. coccifera 3.7±2.9 0.3±0.3 8±4.1 10±3.6 None

Q. ilex 0.1±0.2 0 0 0 None

Life-form

Nano-phanerophyte 19±7.8 b 60.9±10.4 a 52.7±10.6 a 17.6±9.9 b Increase in x1 and x 2

Hemi-cryptophyte 23.7±12.6 c 22.5±8 c 36.7±10.3 b 57.2±15.9 a Increase

Macro-phanerophyte 51.4±17.1 a 6.6±5.6 b 0.5±0.4 b 2.8±2.8 b Decrease

Chamaephyte 3.7±3.1 5.8±0.9 7.2±7.4 18.1±9.8 None

Terophyte 1.3±2.3 4±3.2 0.5±0.6 1.5±0.9 None

Geophyte 0 0 0.1±0.2 0.5±0.9 None

Rambling phanerophyte 0.3±0.6 0 0.1±0.2 0 None

(Table 2a). Burning had a much greater effect

(Table 2b). Pinus sp. had the greatest cover in the

unburned stands and they reduced by burning,

practically disappearing in the stands burned twice

and thrice. Moreover, in the stands burned once or

twice the vegetation became dominated by nano-

phanerophytes. In the once-burned treatment R.

officinalis was dominant, whereas in the twice-

burned treatment U. parviflorus and C. albidus

were dominant (Table 2b). Hemi-cryptophytes

increased in dominance with fire recurrence,

especially in thrice-burned stands. None of the

other treatments or life forms showed a significant

response to burning.

Page 110: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

101

3.2 Late-successional species density

No significant differences in the total density of

late-successional species were found (p=0,579;

F=0,364, d.f =1) between MTU (Mean=40,5;

SD=28,3) and LT (Mean=40; SD=4,7) (Fig. 1).

However, some significant differences were found

between fire recurrence treatments. The density

was significantly higher in MTU (p=0,004;

F=10,309, d.f =3) compared to MT1 (Mean=8,8;

SD=5.7), MT2 (Mean=3,4; SD=1,4) and MT3

(Mean=5; SD=1,8). By species, Q. coccifera and

Q. ilex were the most abundant species in both

unburned communities. Rhamnus alaternus

showed a marked increase in the LT communities

compared to the MTU ones. In contrast, J.

oxycedrus decrease its density in LT compared to

MTU. All late-successional species strongly

decreased their density when they were affected

by fire. Density in MT1, MT2 and MT3

communities was markedly lower than in the MTU

ones (Fig. 1).

3.3 Multivariate analysis

The selection procedure within CCA included all 6

plot characteristics as significant (F=5,09;

p<0,005). The most important were fire recurrence

(F=11,11; p<0,001) and time since abandonment

(F=7,87; p<0,001), followed by DIR (F=3,73;

p<0,001), HL (F=3,01; p=0,002) elevation (F=2,93;

p=0,002) and slope (F=1,93; p=0,018). The

eigenvalues for the first four axes of the significant

CCA analysis were λ1=0,41, λ2=0,29, λ3=0,10 and

λ4=0,09. The total inertia was 2,31 and the first

two axes explained 70% of species-environment

variables.

The biplot relating species composition to the

environmental variables (Fig. 2a) showed that

late-successional species (e.g., Q. ilex, C.

monogyna and R. alaternus) and rambling

phanerophytes (e.g., Lonicera implexa and Rubia

peregrina) were associated positively with axis 1

and abandonment time. Pinus sp. was also

associated positively with axis 1 and age of

abandonment but less so than the

R. alaternus

MT3 MT2 MT1 MTU LT

Den

sity

(in

d. 1

00m

-2)

0

5

10

15

20

25

30

J. oxycedrus

MT3 MT2 MT1 MTU LT

Den

sity

(in

d. 1

00m

-2)

0

5

10

15

20

25

30

Q. ilex

MT3 MT2 MT1 MTU LT

Den

sity

(in

d. 1

00m

-2)

0

5

10

15

20

25

30

Q. coccifera

MT3 MT2 MT1 MTU LTD

ensi

ty (

ind.

100

m-2

)0

5

10

15

20

25

30

Others

MT3 MT2 MT1 MTU LT

Den

sity

(in

d. 1

00m

-2)

0

5

10

15

20

25

30

Figure. 1 Density of the main late-successional species in Long-term abandoned communities (LT), Medium-term abandoned unburned communities (MTU), Medium-term abandoned communities burned once (MT1), burned twice (MT2) and burned thrice (MT3). Mean values are presented. Error bars show standard error.

Page 111: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

102

A)

B)

Figure. 2 Biplots derived from the CCA analysis of burned and successional stages in SE Spain. (a) Species biplot with significant environmental variables; all species are shown, but the 23 most abundant species are denoted with the larger symbols and with species codes. (b) Sites biplot with significant environmental variables, ellipses show 95% confidence intervals of communities with different abandonment and burning history; Symbols: ● = Long-term abandoned communities (LT), □ = Medium-term abandoned communities (MTU), = Medium-term abandoned communities burned once (MT1), ■ =Medium-term abandoned communities burned twice (MT2), ◊ =Medium-term abandoned communities burned thrice (MT3). Species code: Ahu= Atractylis humilis, Bfr= Bupleurum fruticosum, Bph= Brachypodium phoenicoides, Bre= Brachypodium retusum, Cal= Cistus albidus, Ccl= Cistus clusii, Dgn=Daphne gnidium, Dpe= Dorycnium pentaphyllum, Ech= Euphorbia characeas, Gsc= Genista scorpius, Hma= Helianthemum marifolium, Hfi= Helictotrichion filifolium, Jox= Juniperus oxycedrus, Lim= Lonicera implexa, Psp= Pinus sp., Qco= Quercus coccifera, Qil= Quercus ilex, Ral= Rhamnus alaternus, Rof= Rosmarinus officinalis, Rpe= Rubia peregrina, Sdu= Stahelina dubia, Sof= Stipa offneri, Upa= Ulex parviflorus.

late-successional species group (Q. ilex, C.

monogyna and R. alaternus). Pinus sp. was

associated with species that appear in the MTU,

e.g., Stahelina dubia and Bupleurum fruticosum.

The species associated with a single burn 22-26

years ago (MT1) had a negative score on axis 1

Page 112: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

103

and this group included R. officinalis, Cistus clusii,

Helictotrichion filifolium and J. oxycedrus. A group

of species was highly correlated with high fire

recurrence, and this species group included, the

chamaephytes and hemi-cryptophytes:

Helianthemum marifolium, Atractylis humilis,

Euphorbia characeas, Dorycnium pentaphyllum,

and the nano-phanerophytes: C. albidus, Genista

scorpius and U. parviflorus.

The plot positions reflected a change in

species dominance and composition in long-time

secondary succession with a clear separation

between MTU and LT along axis 1 (Fig. 2b). The

effect of fire had a major influence on site position

on axis 2. MT1 was relatively close to MTU, but

with increasing fire recurrence (MT2, MT3) were

placed towards the negative end of both axes.

When figure 2b is further decomposed to show

the relative impact of fire recurrence or

abandonment time on vegetation change on the

three medium-term abandoned sites, subtle

differences become apparent (Fig. 3). The Onil

and Ayora MTU are closer to the LT than the

Pardines site (Table 3). With respect to fire

recurrence, two important site-specific effects

were noted. The first is that at the Pardines site,

the community with a single burn (MT1) was the

least diverted on species composition, it was

relatively close to the MTU. In contrast, the others

MT1 sites, of Onil and Ayora, were more different

to MTU (Table 3). A possible explanation for this

might be that the Pardines MTU community is less

well developed than the other sites; however, field

observations and data inspection (12.6% for

Pardines site, and 1.3% and 0 for Onil and Ayora

sites respectively in percentage of Pinus sp.

cover) showed that vegetation development of

MT1 at Pardines is moving towards regeneration

of the Pinus community from seeds released by

burned cones, whereas at the Onil and Ayora sites

the vegetation has become dominated by R.

officinalis, C. clusii and H. filifolium. Second, with

increasing fire recurrence, the vegetation has

been diverted to more negative values on both

axes of the CCA plot (Fig. 3), into the lower-left

quadrant associated with C. albidus, U.

parviflorus, D. pentaphyllum, G. scorpius, H.

cinereum, A. humilis, E. characeas, Daphne

gnidium and B. retusum. MT2 and MT3

communities of the three sites moved away from

the MTU and MT1. The site most affected by

increasing fire recurrence was Pardines. In

contrast, the distances between MT2 and MT3

were short in all three sites (Fig. 3; Table 3).

4. Discussion

4.1 Succession in Mediterranean old-fields

If undisturbed, successions on abandoned old-

fields developed along a predictable pathway,

involving the change of the dominant species. The

communities abandoned ca. 50 years ago were

dominated by P. halepensis or P. pinaster, which

were substituted in dominance on the plots

abandoned ca. 100 years ago by sclerophyllous

broad-leaved species, e.g., Q. ilex, C. monogyna

and R. alaternus. This late-successional

community resembled the expected late-

successional forest typical of this region (Quézel

2004). Our results confirm models proposed for

other Mediterranean P. halepensis forests, where

Pinus forests are replaced by Q. ilex forests in

mesic conditions where there has been an

absence of perturbations (Zavala et al. 2000;

Zavala 2003; Capitanio and Carcaillet 2008).

In the case of secondary succession on

abandoned fields, few propagules of forest

species are left on the site. Thus, various

successional mechanisms must be responsible for

this change in species abundance through time. In

an initial phase, species establishment will depend

on the ability to input propagules from the

surroundings (Platt and Connell 2003). Pinus

halepensis and P. pinaster are wind-dispersed

species with a high capacity to colonise open

spaces (Nathan et al. 2000), whereas late-

successional species are usually bird-dispersed

and their colonisation would be expected to be

more gradual in time (Bonet and Pausas 2004).

However, we found no differences in the density of

the main late-successional species established at

Page 113: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

104

the two abandonment times. Previous

observations in other Mediterranean old-fields

(Debussche et al. 1982; Ne’eman and Izhaki

1996; Verdú and García-Fayos 1998; Bonet and

Pausas 2007) indicated that the density of bird-

dispersed species was surprisingly important in

the first years of abandonment. Recently

abandoned fields are often used by the European

jay (Garrulus glandarius) to cache acorns in SE

Spain (Pons and Pausas 2007). Therefore, in our

study, it is possible that most of the late-

successional individuals colonized early in the

succession, when Pinus was also colonising. They

then increased in their importance as Pinus

declined, essentially following the tolerance model

of Connell and Slatyer (1977). Late-successional

species have been characterised by their lower

growth, longer life-span and shade-tolerance with

regard to early-successional species (Verdú 2000;

Zavala et al. 2000). However, it is worth noting

that the facilitation model (Connell and Slatyer

1977) might also operate under Pinus forests in

some Mediterranean ecosystems where there is a

greater colonization and establishment of late-

successional (especially Quercus) species. This

improved seedling establishment has been

attributed to modified shade, moisture and

temperature conditions (Lookingbill and Zavala

2000; Gómez 2004; Pons and Pausas 2006,

2007).

Therefore, in this study which only compares

two ages, we were able to show the existence of a

change to a late-successional community

dominated by broad-leaved species.

Nevertheless, in our study the colonisation of the

main late-successional species took place mainly

in the first phase of succession. To investigate

which successional mechanism is more important,

facilitation or tolerance (sensu Connell and Slatyer

1977), further investigations are needed.

4.2 Failure of stand self-replacement after fire

When the secondary succession in the

communities abandoned 50 years ago was burned

by a single wildfire about 25-30 years after

Figure. 3 Biplots derived from the CCA analysis of burned and successional stages in the Valencia Region, separated to show the distribution of the burning recurrences of medium-term abandoned communities at each site in relation to the long-term abandoned communities. Ellipses show 95% confidence intervals of communities with different abandonment and burning history. Symbols: ● = Long-term abandoned communities (LT), □ = Medium-term abandoned communities unburned (MTU), = Medium-term abandoned communities burned once (MT1), ■ = burned twice (MT2) and ◊ = burned thrice (MT3)

abandonment, there was little evidence of stand

self-replacement after a further 22-27 years. The

burned Pinus forest was replaced by shrub

communities dominated mainly by R. officinalis.

Thus, in spite of the fact that P. halepensis and P.

pinaster are considered good regenerators after

Page 114: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

105

fire (Vega 2003), their regeneration on our study

sites was poor or nil. This suggests that other

factors were responsible for this low regeneration.

Perhaps this low regeneration was because the

fires on our study plots were exceptionally severe,

there were unusual climatic conditions for the

establishment of seedlings at the time after

burning or other pre- or post-fire plot

characteristics. The variability in Pinus

regeneration success in eastern Spain has been

linked to: post-fire micro-environmental conditions

created by the amount of unburned branches lying

on the soil, plot topographic characteristics like

aspect and slope, and pre-fire tree density

(Pausas et al. 2004). However, to our knowledge,

in the Mediterranean Basin there are no studies

that clearly demonstrate the biotic and/or abiotic

factors involved in the null or massive

regeneration of Pinus sp. after fire.

Table 3 Euclidean distances between the centroids of medium-term abandoned (MTU) and long-term abandoned (LT) communities, and between the centroids of medium-term abandoned communities with different fire recurrences (MT1, MT2 and MT3) and unburned communities.

Euclidean distance Onil Pardines Ayora

MTU and LT 1,99 2,52 1,96 MTU and MT1 1,16 0,77 1,59 MTU and MT2 1,42 2,49 1,67 MTU and MT3 2,19 3,58 2,44 MT1 and MT2 1,22 1,80 1,95 MT1 and MT3 2,23 2,90 2,94 MT2 and MT3 1,01 1,1 0,98

Multivariate analysis identified the possible

deviation of the post-fire communities from the

unburned secondary successional pathway, and

measurement of the Euclidean distances between

the unburned and burned communities provided a

comparative quantitative measure of this

deviance. Our results showed that a large change

in species composition was brought about by a

single fire at the Onil and Ayora sites, suggesting

a deviation towards possible alternative

communities. Only one site (Pardines) showed

signs of recovery, with a trajectory towards the

unburned communities and with some Pinus

regeneration.

In addition, the density of the main late-

successional species was reduced considerably

compared to the unburned community. There are

several possible causes for this. For example,

although these species have the ability to survive

after fire and resprout from buds (Verdú 2000), it

is possible that if the fire was very severe they

would be killed. It is also possible that their

colonization might be restricted because of the

development of an arrested succession; this

process has been demonstrated in similar

Mediterranean shrub communities dominated by

pioneer species (Acacio et al. 2007; Siles et al.

2009). This process involved in restricting

colonization might include an unattractiveness to

birds, and hence a reduced seed dispersal, or a

reduction in success of seedling establishment

because of competition from the established

vegetation (Gómez 2004; Pons and Pausas 2006,

2007).

Thus, even a single fire can impact on old-field

succession in the Mediterranean region. It is

possible that the communities will recover, but it is

also possible that the successional trajectory will

be modified and an alternative state, dominated by

R. officinalis will be produced. Where R. officinalis

shrub communities develop it is likely that they will

remain in this state for a long time, i.e, essentially

(at least in human terms) an alternative stable

state.

4.3 High fire recurrences divert succession

Despite the fact that the different ages of the

burned communities (22-27 years for MT1, 10-12

years for MT2 and 1 year for MT3) to some

degree affect species composition, especially in

short-lived species, the Euclidean distances

between the communities could suggest

deviations in the successional pathways. Where

fires occurred at relatively short intervals, the

deviation from the unburned successional

pathway could increase. The Euclidean distances

were greater after the second and third fire

Page 115: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

106

compared to either the unburned or single fire

communities. In addition, the short Euclidean

distances found between communities burnt twice

or thrice could suggest the establishment of a new

community with an auto-successional character

promoted by these fire regimes. This change

would also be accompanied by a changed

vegetation structure. Low stature species,

including many dwarf shrub, herbs and forbs, and

particularly those with rapid maturation and

shorter lived tissues, responded positively to the

short interval fires. These communities were

dominated by nano-phanerophytes (mainly U.

parviflorus and C. albidus), hemi-cryptophytes

(mainly B. retusum) and chamaephytes. This

change in community composition was enhanced

by the local extinction of some species as a

consequence of the recurrent fires. It is possible

that the recurrent fires exhausted the seed bank

and/or bud-bank of propagules; the fire interval is

too short and the species have not had time to

replenish these propagule stores between fires

(Zedler et al. 1983). In our study, the extinction of

Pinus was most relevant; P. halepensis needs 7-

10 years to reach the reproductive stage, and

about 15 years to produce a consistent canopy

seed bank (Eugenio et al. 2006; Eugenio and

Lloret 2006).

The altered species composition after

recurrent fires, with different spectra of life history

types, may lead to distinct post-fire assemblages

and alternative successional pathways compared

to regimes with a lower fire recurrence or no fire

(Noble and Slatyer 1980; Johnston and Chapin

2006; Donato et al. 2008). Furthermore, the re-

establishment of locally lost species will depend

on the input of propagules from undisturbed

zones, and re-establishment success will depend

on the size and severity of the fire, along with the

capacity of these species to colonise (Platt and

Connell 2003).

Our results agree with the conceptual model

proposed by Baeza et al. (2007), which suggested

that stable communities composed of C. albidus

and U. parviflorus would become established in

old-fields of SE Spain when the fire intervals were

less than 10 years. Hence, our work evidences

that old-field successions could behave like other

Mediterranean ecosystems; where fire recurrence

is high the dominance of small-size shrubs and

herbs is promoted (Zedler et al. 1983; Haidinger

and Keeley 1993; Lloret and Vilà 2003; Lloret et

al. 2003; Eugenio and Lloret 2006; Baeza et al.

2007).

5. Conclusions

Different successional pathways can exist in

abandoned old-fields of SE Spain depending on

fire occurrence and recurrence. In the absence of

fire, the vegetation in early-stages of succession is

dominated by pioneer tree species, mainly Pinus.

Nevertheless, this vegetation with the passage of

time and if the input of propagules from external

vegetation is not limited, will become dominated

by species of later-successional forests, such as

Quercus sp.

However, if the vegetation is burned during

these early-stages of succession, the succession

could be diverted. This deviation is accompanied

by a change in species composition and structure.

A single fire is enough to change Pinus forests

into alternative stable-states dominated by R.

officinalis, where the colonisation of species of

later successional stages may be prevented. This

deviation could increase in regimes with high fire

recurrence, enhancing the change in species

composition to low-size shrubs and herbs even

more.

Acknowledgements

We thank J. Scheiding for revision of the English

text and the Font Roja Natura-UA Scientific

Station for fieldwork support. We also thank the

two referees whose suggestions greatly improved

the previous drafts of this study. V.M. Santana

was supported by a FPU grant awarded by the

Spanish Ministry of Education and Science. This

research was carried out within the FIREMED

(AGL200/8-04522/FOR) and Consolider-Ingenio

2010 (GRACCIE CSD2007-00067) projects.

Page 116: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

107

CEAM is supported by the Generalitat Valenciana

and Bancaixa.

References

Acacio V, Holmgren M, Jansen P, Schrotter O

(2007) Multiple recruitment limitation causes

arrested succession in Mediterranean oak

systems. Ecosystems 10: 1220-1230.

Baeza MJ, De Luís M, Raventós J, Escarré A

(2002) Factors influencing fire behaviour in

shrublands of different stand ages and the

implications for using prescribed burning to

reduce wildfire risk. J Environ Manage 65:

199-208.

Baeza MJ, Valdecantos A, Alloza JA, Vallejo VR

(2007) Human disturbance and environmental

factors as drivers of long-term post-fire

regeneration patterns in Mediterranean

forests. J Veg Sci 18: 243-252.

Barberó M, Loisel R, Quézel P (1992)

Biogeography, ecology and history of

Mediterranean Quercus ilex ecosystems.

Vegetatio 99-100: 19-34.

Blondel J, Aronson J (1999) Biology and Wildlife

of the Mediterranean Region. Oxford

University Press, New York

Bolòs O, Vigo J, Masalles RM, Ninot JM (1993)

Flora Manual dels Països Catalans. Pòrtic,

Barcelona

Bonet A, Pausas JG (2004) Species richness and

cover along a 60-year chronosequence in old-

fields of southeastern Spain. Plant Ecol 174:

257-270.

Bonet A, Pausas JG (2007) Old field dynamics on

the dry side of the Mediterranean Basin:

patterns and processes in semiarid Southeast

Spain. In: Cramer VA, Hobbs RJ (eds) Old

fields: dynamics and restoration of

abandoned farmland, Island press,

Washington, pp 247-264

Capitanio R, Carcaillet C (2008) Post-Fire

Mediterranean vegetation dynamics and

diversity: A discussion of succession models.

For Ecol Manage 255: 431-439.

Connell JH, Slatyer RO (1977) Mechanisms of

succession in natural communities and their

role in community stability and organization.

Am Nat 111: 1119-1144.

Cramer VA, Hobbs RJ, Standish RJ (2008) What's

new about old fields? Land abandonment and

ecosystem assembly. Trends Ecol Evol 23:

104-112.

Debussche M, Escarré J, Lepart J (1982)

Ornitichory and plant succession in

Mediterranean orchards. Vegetatio 48: 255-

66.

Debussche M, Escarré J, Lepart J, Houssard C,

Lavorel S (1996) Changes in Mediterranean

plant succession: old-fields revisited. J Veg

Sci 7: 519-526.

Donato DC, Fontaine JB, Robinson WD, Kauffman

JB, Law BE (2009) Vegetation response to a

short interval between high-severity wildfires

in a mixed-evergreen forest. J Ecol 97: 142-

154.

Eugenio M, Lloret F (2004) Fire recurrence effects

on the structure and composition on

Mediterranean Pinus halepensis communities

in Catalonia (northeast Iberian Peninsula).

Ecoscience 11: 446-454.

Eugenio M, Lloret F (2006) Effects of repeated

burning on Mediterranean communities of the

northeastern Iberian Peninsula. J Veg Sci 7:

755-764.

Eugenio M, Verkaik I, Lloret F, Espelta JM (2006)

Recruitment and growth decline in Pinus

halepensis populations after recurrent

wildfires in Catalonia (NE Iberian Peninsula).

For Ecol Manage 231: 47-54.

Fox MD, Fox BJ (1987) The role of fire in

scleromorphic forests and shrublands of

Eastern Australia. In: Trabaud L (ed) The role

Page 117: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

108

of fire in ecological systems, SPB, the Hague,

pp 23-48

Friedel MH (1991) Range condition assessment

and the concept of thresholds: a viewpoint. J

Range Manage 44: 422-426

Gómez JM (2004) Importance of microhabitat and

acorn burial on Quercus ilex early

recruitment: non-additive effects on multiple

demographic processes. Plant Ecol 172: 287-

297.

Greig-Smith P (1983) Quantitative Plant Ecology.

Blackwell, Oxford

Grubb PJ (1998) A reassessment of the strategies

of plants which cope with shortages of

resources. Perspect Plant Ecol Evol Syst 1: 3-

31.

Haidinger TL, Keeley JE (1993) Role of high fire

frequency in destruction of mixed chaparral.

Madroño 40: 141-147

Hanes TL (1971) Succession after fire in the

chaparral of Southern California. Ecol

Monogr. 41: 27-52.

Johnstone J, Chapin F (2006) Fire interval effects

on successional trajectory in boreal forests of

Northwest Canada. Ecosystems 9: 268-277.

Keeley JE, Fotheringham CJ, Baer-Keeley M

(2005) Determinants of postfire recovery and

succession in Mediterranean-climate

shrublands of California. Ecol Appl 15: 1515-

1534.

Laycock WA (1991) Stable states and thresholds

of range conditions on North American

rangelands: a view point. J Range Manage

44: 427-433

Lloret F, Vilà M (2003) Diversity patterns of plant

functional types in relation to fire regime and

previous land use in Mediterranean

woodlands. J Veg Sci 14 : 387-398.

Lloret F, Pausas JG, Vilà M (2003) Responses of

Mediterranean plant species to different fire

frequencies in Garraf Natural Park (Catalonia,

Spain): field observations and modelling

predictions. Plant Ecol 167: 213-225.

Lookingbill TR, Zavala MA (2000) Spatial pattern

of Quercus ilex and Quercus pubescens

recruitment in Pinus halepensis dominated

woodlands. J Veg Sci 11: 607-612.

Manly BFJ (1986) Multivariate Statistical Methods.

Chapman and Hall, London

McCune B (2007) Improved estimates of incident

radiation and heat load using non-parametric

regression against topographic variables. J

Veg Sci 18: 751-754.

Milligan AL, Putwain PD, Cox ES, Ghorbani J, Le

Duc MG, Marrs RH (2004) Developing an

integrated land management strategy for the

restoration of moorland vegetation on Molinia

caerulea-dominated vegetation for

conservation purposes in upland Britain. Biol

Conserv 119: 371-387.

Mitchell RJ, Auld MHD, Le Duc MG, Marrs RH

(2000) Ecosystem stability and resilience: a

review of their relevance for the conservation

management of lowland heaths. Perspec Plant

Ecol Evol Syst 3: 142-160.

Nathan R, Safriel UN, Noy-Meir I, Schiller G (2000)

Spatiotemporal variation in seed dispersal and

recruitment near and far from Pinus halepensis

trees. Ecology 81: 2156-2169.

Ne’eman G, Izhaki I (1996) Colonization in an

abandoned East-Mediterranean vineyard. J

Veg Sci 7: 465-472.

Noble I, Slatyer RO (1980) The use of vital

attributes to predict successional changes in

plant communities subject to recurrent

disturbances. Vegetatio 43: 5-21.

Oksanen J, Kindt R, Legendre P, O’Hara B, Henry

M, Stevens H (2007) Vegan: Community

Ecology Package. R package version 1.8-7.

http://cran.r-project.org, http://cc.oulu.fi/fi/

~jarioksa/. Accessed 12 September 2007

Page 118: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

109

Picket STA, Collins SL, Armesto JJ (1987) A

hierarchical consideration of causes and

mechanisms of succession. Vegetatio 69: 109-

114.

Pausas JG (2004) Changes in fire and climate in

the eastern Iberian Peninsula (Mediterranean

Basin). Clim Change 63: 337-350.

Pausas JG, Ribeiro E, Vallejo VR (2004) Post-fire

regeneration variability of Pinus halepensis in

the eastern Iberian Peninsula. For Ecol

Manage 203: 251-259.

Pons X, Pausas JG (2006) Oak regeneration in

heterogeneous landscapes: The case of

fragmented Quercus suber forests in the

eastern Iberian peninsula. For Ecol Manage

231: 196-204.

Pons X, Pausas JG (2007) Acorn dispersal

estimated by radio-tracking. Oecologia 153:

903-911.

Platt WJ, Connell JH (2003) Natural disturbances

and directional replacement of species. Ecol.

Monogr 73: 507-522.

Putz FE, Canham CD (1992) Mechanisms of

arrested succession in shrublands: root and

shoot competition between shrubs and tree

seedlings. For Ecol Manage 49: 267-75

Quézel P (2004) Large-scale post-glacial

distribution of vegetation structure in the

Mediterranean region. In: Mazzoleni S, Di

Pasquale G, Mulligan M, Di Martino P, Rego F

(eds) Recent dynamics of the Mediterranean

vegetation and landscape, J. Wiley & Sons,

Chichester, pp 3-12

R Development Core Team (2007) R: A language

and environment for statistical computing. R

Foundation for Statistical Computing, Vienna,

Austria. ISBN 3-900051-07-0, URL

http://www.R-project.org. Accessed 12

September 2007

Raunkiaer C (1934) The life form of plants and

statistical plant geography. Clarendon Press,

Oxford

Scheffer M, Carpenter S, Foley JA, Folke C,

Walker B (2001) Catastrophic shifts in

ecosystems. Nature 413: 591-6.

Siles G, Rey PJ, Alcántara JM, Ramírez JM

(2008) Assessing the long-term contribution of

nurse plants to restoration of Mediterranean

forests through Markovian models. J Appl Ecol

45: 1790-1798.

Tatoni T, Roche P (1994) Comparison of old-field

and forest revegetation dynamics in Provence.

J Veg Sci 5: 295-302.

Ter Braak CJF, Smilauer P (1998) CANOCO

reference manual user’s guide to Canoco for

Windows: Software for Canonical community

ordination (version 4.5), Micro-computer

Power, Ithaca, New York

Trabaud L (1991) Fire regimes and phytomass

growth dynamics in a Quercus coccifera

garrigue. J Veg Sci 2: 307-314.

Vega JA (2003) Regeneración del género Pinus

tras incendios. Cuadernos Sociedad Española

de Ciencias Forestales 15: 59-68

Verdú M (2000) Ecological and evolutionary

differences between Mediterranean seeders

and resprouters. J Veg Sci 11: 265-268.

Verdú M, García-Fayos P (1998) Old-field

colonization by Daphne gnidium: seedling

distribution and spatial dependence at

different scales. J Veg Sci 9: 713-718.

Zar JH (1996) Biostatistical analysis. Prentice

May, Upper Saddle River, New Jersey

Zavala MA (2003) Dinámica y sucesión en

bosques mediterráneos: modelos teóricos e

implicaciones para la selvicultura. In: Rey-

Benayas JM, Espigares T, Nicolau JM (eds)

Restauración de ecosistemas mediterráneos,

Universidad de Alcalá, Madrid, pp 43-63

Page 119: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

110

Zavala MA, Espelta JM, Retana J (2000)

Constraints and trade-offs in Mediterranean

plant communities: The case of holm oak-

Aleppo pine forests. Bot Rev 66: 119-149.

Zedler PH, Gautier CR, McMaster GS (1983)

Vegetation change in response to extreme

events: the effect of a short interval between

fires in California chaparral and coastal scrub.

Ecology 64: 809-818.

Page 120: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

111

Apéndice fotográfico

Foto 1. Campo abandonado 50 años atrás Foto 2. Campo abandonado 100 años atrás

Foto 3. Zona con 1 incendio dominado por R. officinalis Foto 4. Zona con 2 incendios dominado por Cistus y Ulex

Foto 5. Disposición de las parcelas de estudio Foto 6. Parcela quemada 3 veces con 1 año de edad

Foto 7. Parcela quemada 3 veces Foto 8. Colonización de Quercus coccifera

Page 121: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

112

Page 122: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

113

CAPÍTULO 7- EFECTO DEL RÉGIMEN DE TEMPERATURA DESPUÉS DEL FUEGO EN LA DORMANCIA Y GERMINACIÓN DE SEMILLAS DE SEIS ESPECIES DE FABACEAE AUSTRALIANAS RESUMEN: Además de efectos directos del fuego como el calor, el humo y la madera carbonizada, el paso del fuego conlleva indirectamente cambios en las condiciones ambientales capaces de romper la dormancia física de las especies con semillas de cubierta dura. Después de un fuego, la apertura de la cubierta vegetal y el material quemado tendido sobre la superficie alteran las propiedades térmicas del suelo, creando elevadas temperaturas del suelo durante largos periodos de tiempo. Nosotros simulamos los regímenes de temperatura diarios experimentados a diferentes profundidades del suelo después de un fuego de verano. Nuestro objetivo fue determinar si estos regímenes de temperaturas junto con la duración de la exposición (5, 15 y 30 días) desempeñan un papel importante rompiendo lo dormancia física en seis leguminosas del sureste de Australia. Nuestros resultados mostraron que las temperaturas simuladas rompen la dormancia de las semillas. Este efecto es especialmente pronunciado en temperaturas que son esperadas que ocurran cerca de la superficie del suelo (de 0 a 2 cm. de profundidad). El tiempo de exposición interactúa con la temperatura para romper la dormancia, con los mayores valores de germinación alcanzados después de las exposiciones más largas y temperaturas más altas. Sin embargo, la respuesta varió entre especies. Por lo tanto, este efecto indirecto del fuego podría jugar un rol importante en la regeneración de las comunidades vegetales, ya que podría estimular la emergencia de plántulas independientemente de los efectos directos del fuego así como en interacción con ellos. Este capítulo reproduce el siguiente manuscrito: Santana VM, Bradstock RA, Ooi MKJ, Denham AJ, Auld TD,Baeza MJ (2010) Effects of soil temperature regimes after fire on seed dormancy and germination in six Australian Fabaceae species. Australian Journal of Botany 58: 539-545

Page 123: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

114

Page 124: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

115

Effects of soil temperature regimes after fire on s eed dormancy

and germination in six Australian Fabaceae species

Victor M. SantanaA,, Ross A. BradstockB, Mark K. J. OoiC,D, Andrew J.

DenhamC, Tony D. AuldC, M. Jaime BaezaA,E

AFundación de la Generalitat Valenciana Centro de Estudios Ambientales del

Mediterráneo (CEAM). Parque Tecnológico Paterna. C/ Charles Darwin, 14.

46980 Valencia. Spain. BCentre for Environmental Risk Management of Bushfires, Institute for

Conservation Biology and Environmental Management, University of

Wollongong, NSW 2522, Australia. CDepartment of Environment, Climate Change and Water NSW, PO Box 1967,

Hurstville NSW 2220, Australia. DDepartment of Animal & Plant Sciences, University of Sheffield, Sheffield S10

2TN, UK. EDepartamento de Ecología, Universidad de Alicante. Ap 99. 03080 Alicante.

Spain

Abstract In addition to direct fire cues such as heat, smoke and charred wood, the passage of fire leads indirectly to changes in environmental conditions which may be able to break physical dormancy in hard-coated seeds. After a fire, the open canopy and the burnt material lying on the surface alter the thermal properties of the soil, resulting in elevated soil temperatures for long periods of time. We simulated daily temperature regimes experienced at different depths of soil profile after a summer fire. Our aim was to determine whether these temperature regimes and the duration of exposure (5, 15 and 30 days) play an important role breaking physical seed dormancy in six legumes from south-eastern Australia. Our results showed that simulated temperature regimes break seed dormancy. This effect is specially pronounced at temperatures that are expected to occur near the soil surface (0 to 2 cm depth). The duration of exposure interacts with temperature to break dormancy, with the highest germination rates reached after the longest duration and highest temperatures. However, the germination response varied among species. Therefore, this indirect post-fire cue could play a role in the regeneration of plant communities, and could stimulate seedling emergence independent of direct fire cues as well as in interaction with direct cues.

Page 125: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

116

1. Introduction

A flush of seedling emergence occurs immediately

after fire in many fire-prone environments around

the world (Kruger and Bigalke 1984; Auld 1986;

Keeley 1991; Trabaud 1994; Carrington and

Keeley 1999). Heat and smoke released during

the passage of fire are considered to be the most

important fire cues that break dormancy or

promote germination in soil stored seeds.

Temperatures reached during the passage of fire

can break physical dormancy of hard-coated

seeds, allowing subsequent water imbibition and

germination when environmental conditions are

suitable (Keeley 1991; Auld and O’Connell 1991;

Cocks and Stock 1997; Bell 1999). In addition,

smoke can also affect the physiology of seeds and

directly stimulate germination (Brown 1993; Dixon

et al. 1995; Keeley and Fotheringham 1998; Van

Staden et al. 2000; Moreira et al. 2010) or act in

combination with heat (Keeley 1991; Keith 1997;

Morris 2000; Thomas et al. 2003). Other direct

fire-cues, such as charred wood, can also act to

stimulate seed germination in some species

(Keeley 1987). These factors all play a key role in

determining vegetation recovery after fire,

especially in ecosystems dominated by obligate

seeders.

Most management strategies used to control

fuel load and/or maintain biodiversity in fire-prone

ecosystems throughout the world are dependent

on a good understanding of the relationship

between direct fire cues and germination

(Bradstock and Auld 1995; Baeza and Roy 2008),

and for this reason, they have been widely studied

both in field and laboratory experiments. In

particular, the relationship between high but short-

term temperature conditions experienced by

seeds during fire have been tested, identifying

optimal and lethal temperature thresholds for a

range of species (e.g. Keeley 1987; Auld and

O’Connell 1991; Baeza and Vallejo 2006; Paula

and Pausas 2008 and references therein).

However, the passage of fire also leads

indirectly to changes in environmental conditions,

particularly those experienced by seeds on or

within the soil. After fire, the layer of black ash and

the partially burnt organic material lying on the soil

surface can alter the thermal properties of the soil

(Walker et al. 1986), particularly where an opening

in the canopy has occurred and increased solar

radiation reaches the soil surface. As a

consequence, a shift in the range of daily soil

temperatures may occur (Sharrow and Wright

1977; Raison et al. 1986), in some cases

exceeding the thresholds for breaking physical

seed dormancy (Auld and Bradstock 1996).

This indirect fire cue may acquire special

relevance after summer fires, when daily soil

temperatures reach high levels and fluctuate most

widely. These high temperatures can be sustained

for significant lengths of time (i.e. up to several

hours a day) in comparison to the high

temperatures induced by the fire itself, which only

remain for a few minutes or hours (Bradstock and

Auld 1995). Furthermore, regimes of high daily

temperatures may continue for several weeks

post-fire. In Mediterranean ecosystems, this

indirect fire cue may be quite important, ensuring

that a flush of germination in some hard-seeded

species occurs in the wet season after summer,

irrespective of the season of fire. This germination

strategy has been proposed as an adaptive trait,

as it avoids germination and subsequent seedling

establishment failures during the dry period

(Baeza and Roy 2008).

The role that daily soil temperature regimes

play as an indirect fire cue for breaking seed

dormancy has been scarcely studied. However,

the implications for population dynamic processes

in fire-prone regions are potentially significant.

Additionally, soil temperatures after fire are

strongly correlated with air temperatures (Auld and

Bradstock 1996; Ooi et al. 2009) and climate

change forecasts predict significant increases in

air temperatures over the next few decades

throughout the world (IPCC 2007). To both inform

management and help to predict the long-term

consequences of climate change, it is necessary

to link future environmental changes to

Page 126: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

117

mechanisms that can control population

processes.

The aim of our work is to therefore test

whether regimes of daily soil temperatures,

experienced by seeds after the passage of fire,

play an important role in breaking seed dormancy.

An understanding of this will provide insight into

the potential impact that changing climatic

conditions will have on germination patterns

promoted by this indirect-fire cue. We simulated

this indirect fire cue in the laboratory and

examined its effect on germination in six

Australian Fabaceae species commonly found in

fire-prone vegetation in south eastern Australia.

More specifically, we asked two questions: (i) Can

the daily variations in temperatures that occur

post-fire, at different depths in the soil, break

physical dormancy in six different Fabaceae

species? and (ii) Does the amount of time seeds

are exposed to such regimes of temperature (in

terms of days) affect seed dormancy?

2. Materials and methods

The six study species are typical shrubs or

subshrubs from the Fabaceae family, a significant

understorey component of sclerophyll vegetation

in the Sydney region (Australia). These species

are characterized by having soil stored seed

banks and by having seeds with physical

dormancy which is broken by heat (Auld and

O’Connell 1991; Ooi 2007). The study species

used were Acacia suaveolens (Sm.) Willd.,

Bossiaea obcordata (Vent.) Druce, Bossiaea

rhombifolia Sieber ex DC., Dillwynia retorta (J.C.

Wendl.) Druce, Gompholobium grandiflorum Sm.

and Pultenaea ferruginea Rudge.

Seeds of the six study species were collected

from the Blue Mountains National Park (33º48’S,

150º35’E) at some 200 m elevation, near the

western outskirts of Sydney. Vegetation ranges

from open heath to open forest, with the

overstorey dominated by Eucalyptus/Corymbia

species. Soils are derived from Hawkesbury

sandstone. Average annual rainfall for the nearby

Glenbrook Bowling Club Meteorological station is

approximately 971 mm distributed throughout the

year, with a peak in summer. Average summer

temperatures (max/min) for Springwood Bowling

Club Meteorological station (some 7 km W of

Glenbrook) are 29/17ºC and average winter

temperatures 16/6ºC. Field collections were made

in summer during December of 2007. Several

hundred ripe fruits were collected from at least 30

plants in each population. Seeds were stored in

paper bags at laboratory temperatures (approx.

22ºC) until they were processed for treatment

applications in August 2008.

The direct effects of fire in breaking physical

dormancy of most of our study species have been

previously studied in laboratory experiments by

Auld and O’Connell (1991). The most important

factor breaking dormancy was temperature,

whereas the time of exposure had variable effects

(1-120 min). All species experienced their

maximum of germination (ca. 90%) after

treatments of 80-100ºC. Further increases in

temperature had deleterious effects on seed

viability. However, the threshold of temperature for

enhanced germination (cf. untreated seeds)

differed between species. Seed dormancy was

broken in G. grandiflorum after seeds were

exposed to 40ºC, whereas for the rest of our study

species seed dormancy was largely unaffected at

this temperature. Bossiaea obcordata, B.

rhombifolia and D. retorta had seed dormancy

broken from 60ºC. One population of A.

suaveolens had seed dormancy broken at 60ºC,

while a second did not respond until 80ºC. The

species P. ferruginea was not studied; however,

the response of seven species of the same genus

was variable, with four species having seed

dormancy broken at 40ºC and three species at

60ºC.

Our experiment was designed to test the

effects of regimes of post-fire daily temperature in

the soil on physical dormancy. We used soil

temperatures measured in the Sydney region after

a summer fire (Auld and Bradstock 1996) to

determine the range of temperatures to be

applied. Auld and Bradstock (1996) found that the

Page 127: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

118

soil temperatures exceeded 40ºC in burnt areas

over summer, down to a depth of 4.5 cm, with the

highest temperatures of above 60ºC recorded

near the soil surface, at 0.4 cm depth. Thus,

temperatures reached after the passage of a fire

may in some cases exceed the thresholds for

breaking physical seed dormancy of the study

species (Auld and O’Connell 1991). In contrast,

soil temperatures after a winter fire or in unburned

vegetation during summer did not rise above

40ºC. Thus, we simulated daily temperature

regimes using approximate summer conditions

from three different depths down the soil profile.

Two incubators and two ovens were set up to

apply dry heat at 12h/12h maximum/minimum

temperature cycles. Three temperature ranges

were chosen: 40/18ºC, 50/18ºC, 60/18ºC. In order

to test the effect of exposure time, temperature

treatments were factorially combined with three

durations of exposure: 5, 15 and 30 days. A fourth

temperature range of 28/18ºC, simulating

unburned vegetation conditions during summer,

was set up as a control (Auld and Bradstock

1996). Temperatures within each chamber were

measured with a thermocouple and recorded

every 15 minutes with a data logger. Although we

attempted to achieve temperature regimes of

50/18ºC and 60/18ºC, due to technical difficulties

the regimes we achieved were 47/16ºC and

61/16ºC. While the temperature regimes that were

applied do not exactly mimic actual temperature

fluctuations within a soil profile (i.e. in the field

fluctuations of temperatures may occur throughout

the day and the exposure to maximum

temperatures can be variable depending on the

depth of soil) the treatments can provide insight

about the additive effect of post-fire temperatures

regimes.

The control and the 30 day treatment started

first, the 15 day treatment started 15 days later

and the 5 day treatment started 25 days after the

first one. This was done so that germination could

start simultaneously for all treatments with

identical elapsed time from the end of the pre-

treatments.

For each species, 60 seeds were divided into

three replicates and used for each combination of

temperature and duration during the experiment.

Seeds were placed on one layer of filter paper in 9

cm Petri dishes. For the 15 and 5 day treatments,

dishes were placed into the control incubator until

their treatment started. For two species the

number of treatments was limited by seed

availability. For B. rhombifolia only the 30 day

treatments were possible while for B. obcordata,

the only treatment possible was 47/16ºC for 30

days.

In order to estimate the potential maximum

germination of seeds of each species, three

additional replicates were established with no heat

treated seeds individually scarified using a scalpel.

For germination assessment, all seeds were kept

in two germination chambers at 25ºC day

temperature and 18ºC night temperature in

darkness. Seeds were checked every four days

for the first month, then once a week in the second

month and only once in the third month. Petri

dishes were watered with distilled water when

required. A seed with a 1 mm long radicle was

scored as a germinant and removed.

Proportional data (number of germinants as a

fraction of the total number of viable seeds per

dish) were analysed using a one-way ANOVA. We

used the results of the scalpel treatment to

estimate the number of viable seeds per dish.

Duncan’s post-hoc tests were used to detect any

pair-wise differences among treatments (α = 0.05)

for each species. The data were checked for

normality using the Kolmogorov-Smirnov test and

for homogeneity of variances by the Levene’s test

and arcsine transformed when necessary. We

used a two-way ANOVA to determine the

significance of the two fixed factors (temperature

fluctuation ranges and exposure time) on

germination percentage for each species. This

analysis was only possible for the four species

with the complete set of treatments.

To examine the variation in germination

between temperature treatments with regard to

increasing time of exposure, we applied a

Page 128: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

119

regression to the germination data for each

temperature treatment (40/18ºC, 47/16ºC and

61/16ºC) against the numbers of days of exposure

(5, 15 and 30 days) for each species. Then, we

compared the slopes of the regressions using an

F-test. Only regressions with slopes significantly

different from zero were compared. Germination

values from the Control treatment were used as

common starting point (0 days of exposure) in all

regressions.

3. Results

The mechanical scarification treatment showed

that viability and potential maximum germinability

of seeds used in the experiment was very high

(96.7% for A. suaveolens, 100% for G.

grandiflorum, and 98.3% for D. retorta and P.

ferruginea). Only B. obcordata and B. rhombifolia

had lower values (83.3 and 86.7% respectively).

Table 1. Results from the two-way ANOVAs for the four species with complete experimental design

Variable d.f Mean

Square F P

A.suaveolens

Time 2 0.008 0.964 0.4

Temperature 2 0.023 3 0.075

Time*Temperature 4 0.01 1.29 0.312

Residual 18 0.008

D. retorta

Time 2 0.155 8.92 0.002

Temperature 2 0.175 10.11 0.001

Time*Temperature 4 0.026 1.53 0.236

Residual 18 0.017

G. grandiflorum

Time 2 0.115 6.37 0.008

Temperature 2 0.209 11.63 0.001

Time*Temperature 4 0.047 2.63 0.068

Residual 18 0.018

P. ferruginea

Time 2 0.223 17.735 <0.001

Temperature 2 0.319 25.301 <0.001

Time*Temperature 4 0.065 5.18 0.006

Residual 18 0.013

The response to heat treatments differed

depending on the species. Daily temperature

regimes and exposure duration influenced

germination response in all species, except for A.

suaveolens (Table 1, Fig.1). Neither of these

factors significantly affected germination in A.

suaveolens (Table 1), where germination values

were low for all treatments. The control treatment

reached 5% germination, whilst the maximum in

any treatment was 22.4% (Fig. 1).

The output from the one-way ANOVA showed

that germination in D. retorta was significantly

greater than the control (11.9% germinated) at

61/16ºC after 15 and 30 days, reaching 37.3 and

62.7% respectively, but was not influenced by

lower temperatures or 5 days exposure at 61/16ºC

(Fig. 1). The slope of the relationship between

germination and exposure duration at 61/16ºC

temperature regime was considerably greater than

one, suggesting that further exposure may further

increase germination (Table 2).

A similar pattern was apparent for G.

grandiflorum, with significantly greater germination

than the control treatment (23.3% germinated) at

47/18ºC-30 days treatment (50% germinated), and

at 61/16ºC after 15 and 30 days of exposure, with

values of 53.3 and 80% respectively (Fig. 1). The

regression slope for the 47/18ºC treatment was

less than one, while at 61/16ºC with the regression

slope was almost 2 times higher and comparable

to D. retorta at this temperature regime (Table 2).

There was a significant interaction between

temperature and exposure duration for P.

ferruginea (Table 1). For all treatments,

germination increased with exposure duration

(Fig. 1), but the greatest effect was found at

61/16ºC, with a regression slope approximately 5

times higher than at 40/18ºC and 47/18ºC (Table

2). One-way ANOVA showed that germination

was significantly enhanced over the control

(10.2% germinated) at 61/16ºC after 15 and 30

days of exposure, reaching values of 37.3 and

88.1% respectively (Fig. 1).

Although all treatments were not possible for

B. obcordata and B. rhombifolia, both species also

showed a trend of enhanced germination in

relation to increasing daily temperatures (Fig. 1).

One-way ANOVA for B. rhombifolia showed

significant differences for all temperature

Page 129: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

120

D. retorta

0

20

40

60

80

100

P. ferruginea

0

20

40

60

80

100

B. obcordata

0

20

40

60

80

100

a

b

a

Control47/16ºC 28/18ºC

30

bc

b

bc

c c cbc

bc

bc

bc

c

bc bc

c

c cc

Control40/18ºC 47/16ºC 61/16ºC28/18ºC

5 15 30 5 15 30 5 15 30

Control40/18ºC 47/16ºC 61/16ºC28/18ºC

5 15 30 5 15 30 5 15 30

B. rhombifolia

Ger

min

atio

n (%

)

0

20

40

60

80

100

a

b

c

b

Control40/18ºC 47/16ºC 61/16ºC28/18ºC

303030

A. suaveolens

Ger

min

atio

n (%

)

0

20

40

60

80

100

Control40/18ºC 47/16ºC 61/16ºC28/18ºC

5 15 30 5 15 30 5 15 30

G. grandiflorum

Ger

min

atio

n (%

)

0

20

40

60

80

100a

d dd

bcb

bcdbcdcd bcd

Control40/18ºC 47/16ºC 61/16ºC28/18ºC

5 15 30 5 15 30 5 15 30

Figure 1. Effect of treatments simulating daily soil temperature regimes in summer burned stands upon the germination of some Australian legumes. Different lower case letters above columns indicate significant differences between treatments (Duncan post-hoc test, p<0.05). Error bars indicate standard error. Control= 28/18ºC treatment with 30 days of exposure, simulating soil temperature regime under unburnt vegetation. The numbers 5, 15 and 30 beneath columns indicate the different heat exposure periods (in days) used in the experiment.

treatments compared to the control, reaching

germination of 69.2% for the 61/16ºC-30 day

treatment, while B. obcordata showed no

significant increase in germination after exposure

to 47/16 ºC for 30 days.

4. Discussion

Soil temperature regimes after summer fires could

play a key role in breaking physical seed

dormancy, independently of temperatures

experienced during fire. We observed a significant

increase in germination for several legume

species after treatment at a range of temperatures

representative of soil conditions in open post-fire

Page 130: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

121

Table 2. Results of linear regression approach between percent germination and duration of heat treatments (5, 15 and 30 days) for the different species and daily temperature regimes

Species Treatment Slope Intercept r2 F P n A. suaveolens

40/18ºC 0.01 7.55 0.01 0.006 0.940 12

47/16ºC -0.15 12.19 0.03 0.350 0.567 12

61/16ºC 0.31 11.61 0.14 1.672 0.225 12 D. retorta

40/18ºC 0.23 8.19 0.06 0.641 0.442 12

47/16ºC 0.7 8.59 0.22 2.81 0.125 12

61/16ºC 1.77 9.68 0.83 47.665 <0.001 12 G. grandiflorum

40/18ºC 0.27 29.13 0.08 0.875 0.372 12

47/16ºC 0.92 16.83 0.39 6.413 0.03 12

61/16ºC 1.79 26.75 0.86 61.449 <0.001 12 P. ferruginea

40/18ºC 0.46 8.55 0.37 5.982 0.035 12

47/16ºC 0.57 9.36 0.4 6.614 0.028 12

61/16ºC 2.51 8.87 0.84 53.98 <0.001 12

areas. This effect would be especially pronounced

on seeds present in shallow or sandy soil profiles,

where temperatures reach their widest ranges

(Auld and Bradstock 1996).

Although few studies have investigated the

effect of post-fire soil temperature regimes on

native Australian species, there is evidence from

other regions that have shown similar responses

by members of the Fabaceae. In European heath

in the Mediterranean, daily temperature cycles

occurring in vegetation gaps promoted

germination in the gorse U. parviflorus (Baeza and

Roy 2008). In temperate European ecosystems,

Van Assche et al. (2003) found that slight

seasonal changes in daily temperature

fluctuations were key to breaking physical

dormancy of many herbaceous legumes. Other

evidences have been highlighted from studies on

invasive species, such as the gap recruitment

displayed by the tropical shrub Mimosa pigra

(Lonsdale 1993) and the European gorse, U.

europaeus in New Zealand (Ivens 1983). Several

studies in agricultural systems found that the hard

seeds of clover, Trifolium subterraneum, softened

in response to daily temperature regimes between

30ºC and 60ºC, if treated for several weeks or

months (Hagon 1971; Taylor 1981).

Auld and O’Connell (1991) observed that

many leguminous species from south-eastern

Australia had their physical dormancy broken to

varying degrees by temperatures experienced

during fire. The most important factor breaking

dormancy was temperature, with a few species

reaching significant germination levels after

treatment at 40ºC and 60ºC, but most reaching

their maximum germination after treatment at 80-

100ºC. The duration of exposure did not

significantly change the effect on dormancy,

however, it should be noted that temperatures

maintained in the soil during fire are short and

exposure duration was tested over a scale of only

minutes (Bradstock and Auld 1995). In contrast,

daily temperature regimes over the threshold for

breaking dormancy can remain after a summer fire

for weeks or months (Raison 1986; Auld and

Bradstock 1996). Our work has shown that

duration of treatment (5 to 30 days) interacts with

temperature to break physical seed dormancy in

some species, with the highest germination levels

reached after the longest treatment durations in

some cases. The strength of this interaction

increased with increasing temperature ranges. Not

surprisingly, the germination response to heat

treatments varied between species. For example,

A. suaveolens, a species whose physical

Page 131: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

122

dormancy is broken from 60-80ºC (Auld and

O’Connell 1991), was not influenced by any of the

temperature ranges or duration tested; it is

unlikely that seeds would experience longer

durations of exposure to the treatment

temperatures in a natural setting, so germination

and recruitment of this species may be more

tightly bound to direct fire cues. In contrast, for

other species with a lower threshold for breaking

physical dormancy (40-60ºC), such as G.

grandiflorum, D. retorta, P. ferruginea, B.

obcordata and B. rhombifolia (Auld and O’Connell

1991), germination has the potential to be

determined by both direct and indirect cues.

Our results suggest that indirect fire cues

could have more influence than expected on the

germination response of some physically dormant

species, especially after summer fires.

Additionally, the influence of post-fire temperature

regimes within the soil may behave in an additive

and/or synergistic way with the direct fire cues

heat and smoke in overcoming seed dormancy.

For example, low intensity fires may not provide

adequate heat to break dormancy in seeds, with

temperatures greater than 40ºC reached only in

the upper 2 cm of the soil profile, and

temperatures of 60-70ºC occurring for only a few

minutes at 1 cm depth (e.g., Auld 1986; Bradstock

and Auld 1995). However, significant post-fire

germination levels could still be reached if the litter

layer was consumed and daily soil temperature

regimes were enhanced. Other indirect fire cues

such as the removal of canopy vegetation could

increase both soil temperatures and the red:far-

red light ratio, which can also promote germination

in leguminous species (Baeza and Roy 2008). The

combination of these factors may explain the

higher than expected emergence of Acacia

seedlings observed after fires studied in south-

eastern Australia (Monk et al. 1981; Auld 1986;

Bradstock and Auld 1995). It is nevertheless true

that high intensity fires and the opening of litter

and canopy gaps are highly corrrelated (Bradstock

and Auld 1995; Whight and Bradstock 1999).

Thus, the rupture of physical dormancy both via

fire temperatures or via daily temperature regimes

after fires are probably conflated and further field

studies taking into consideration both effects are

needed to put our experimental findings into

context. This mechanism, in addition, could play a

key role in inter-fire recruitment, promoting shrub

regeneration in gaps opened in the canopy

vegetation. In fact, other studies in fire prone-

ecosystems have contrasted these cues on

seedling establishment by comparing cleared with

burned plots, and observed, for example, that in

California chaparral germination was more tied to

direct effects of fire (Tyler 1995) whereas in other

Mediterranean Basin shrublands indirect effects

may increase their significance (Baeza and Roy

2008; Santana, unpublished data).

Enhanced germination resulting from summer

daily temperature regimes could be considered

adaptive for many physically dormant species in

Mediterranean fire-prone vegetation. This may

ensure that a flush of germination occurs

predominantly in autumn, independently of fire

season, avoiding germination during the summer

drought (Trabaud 1994; Bell 1999; Baeza and Roy

2009). While a strong seasonal pattern of rainfall

does not occur in south-eastern Australia, time

periods with adequate soil moisture to allow

seedling germination and emergence are much

more common in the cooler seasons (Bradstock

and Bedward 1992). Seeds with released physical

dormancy germinate, independently of season, as

soon as moisture conditions are suitable

(Hodgkinson 1991; Bell 1999). Therefore, there is

also the potential for an adaptive advantage in

these non-seasonal rainfall habitats. Probably,

advantages of this mechanism on these habitats

could be determined by the spreading germination

over time. Rupture of dormancy several weeks or

months after fire could be an advantage avoiding

unsuitable conditions in the immediate post-fire

period which could limit the success of seedling

establishment or survival (Frazer and Davis 1988;

Carrington 1999; De Luis et al. 2005). Hodgkinson

(1991) found in semiarid woodland with no

seasonal rainfall pattern in inner south-eastern

Page 132: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

123

Australia higher germination and survival rates for

leguminous species regenerated after spring and

summer fires than in winter fires.

The rupture of seed dormancy by the soil

temperature regime could have implications on

seeds and seed bank dynamics within the

framework of predicted impacts of climate change,

where significant increases in mean air

temperature are forecast for the latter half of the

21st century (IPCC 2007; CSIRO 2007). In south-

eastern Australia, Auld and Bradstock (1996)

found that daily soil temperatures were

significantly related to air temperature at all soil

depths tested after a summer fire. In addition, Ooi

et al. (2009) found a relationship between

maximum air temperature and soil temperature in

bare soils in arid environments, where an air

temperature increase of 4ºC resulted in an

increase of approximately 10ºC in soil

temperature. Predicted increases in temperatures

may therefore promote germination in soil seed

banks that otherwise would persist ungerminated

after fire. Persistent seed banks play a

fundamental role minimising the risk of decline or

local extinction in plants for the cases where the

fire-free intervals are less than the primary juvenile

periods of the species (Auld and Denham 2006).

Acknowledgements

We thank Fiona Thomson for providing seeds for

this experiment. V.M. Santana was supported by a

FPU grant awarded by the Spanish Ministry of

Education and Science and by the Consolider-

Ingenio 2010 (GRACCIE CSD2007-00067) and

FIREMED (AGL2008-04522/FOR) projects. CEAM

is supported by the Generalitat Valenciana and

Fundación Bancaja.

References

Auld TD, O’Connell MA (1991) Predicting patterns

of post-fire germination in 35 eastern

Australian Fabaceae. Australian Journal of

Ecology 16, 53-70

Auld TD, Bradstock RA (1996) Soil temperatures

after the passage of a fire: Do they

influence the germination of buried

seeds? Australian Journal of Ecology 21, 106-

109

Auld TD (1986) Population dynamics of the shrub

Acacia suaveolens (Sm.) Willd.: fire and the

transition to seedlings. Australian Journal of

Ecology 11, 373-385

Auld TD, Denham AJ (2006) How much seed

remains in the soil after a fire? Plant Ecology

187, 15-24

Baeza MJ, Vallejo VR (2006). Ecological

mechanisms involved in dormancy breakage

in Ulex parviflorus seeds. Plant Ecology 183,

191-205

Baeza MJ, Roy J (2008) Germination of an

obligate seeder (Ulex parviflorus) and

consequences for wildfire management.

Forest Ecology and Management 256, 685-

693

Bell DT (1999) Turner Review No. 1. The process

of germination in Australian species.

Australian Journal of Botany 47, 475-517

Bradstock RA, Auld TD (1995) Soil temperatures

during experimental bushfires in relation to

fire intensity: consequences for legume

germination and fire management in south-

eastern Australia. Journal of Applied Ecology

32, 76-84.

Bradstock RA, Bedward M (1992) Simulation of

the effect of season of fire on post-fire

seedling emergence of two Banksia species

based on long-term rainfall records. Australian

Journal of Botany 40, 75-88

Brown NAC (1993) Promotion of germination of

fynbos seeds by plant-derived smoke. New

Phytologist 123, 575-583

Carrington ME (1999) Post-fire seedling

establishment in Florida sand pine scrub.

Journal of Vegetation Science 10, 403-412

Carrington ME, Keeley JE (1999) Comparison of

post-fire seedling establishment between

Page 133: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

124

scrub communities in mediterranean and non-

mediterranean climate ecosystems. Journal of

Ecology 87, 1025-1036

Cocks MP, Stock WD (1997) Heat stimulated

germination in relation to seed characteristics

in fynbos legumes of the Western Cape

Province, South Africa. South African Journal

of Botany 63, 129-132.

CSIRO (2007) Climate change in Australia.:

Technical Report 2007. CSIRO, Australia

De Luis M, Raventos J, Gonzalez-Hidalgo JC

(2005) Fire and torrential rainfall: effects on

seedling establishment in Mediterranean

gorse shrublands. International Journal of

Wildland Fire 14, 413-422

Dixon KW, Roche S, Pate JS (1995) The

promotive effect of smoke derived from burnt

native vegetation on seed germination of

Western Australian plants. Oecologia 101,

185-192

Frazer JM, Davis SD (1988) Differential survival of

chaparral seedlings during the first summer

drought after wildfire. Oecologia 76, 215-21

Hagon MW (1971) The action of temperature

fluctuations on hard seeds of subterranean

clover. Australian Journal of Experimental

Agriculture 11, 440-443

Hodgkinson K.C. (1991) Shrub recruitment

response to intensity and season of fire in a

semi-arid woodland. Journal of Applied

Ecology 28, 60-70.

IPCC (2007) Climate Change 2007 Synthesis

Report. An assessment of the

Intergovernmental Panel on Climate Change,

Geneva.

Ivens GW (1983) The influence of temperature on

germination of gorse (Ulex europaeus L.).

Weed Research 23, 207-216

Keeley JE (1991) Seed germination and life

history syndromes in the California chaparral.

The Botanical Review 57, 81-116

Keeley JE (1987) Role of fire in seed germination

of woody taxa in California chaparral. Ecology

68, 434-443

Keeley JE, Fotheringham CJ (1998) Smoke-

induced seed germination in California

chaparral. Ecology 79, 2320-2336.

Keith DA (1997) Combined effects of heat shock,

smoke and darkness on germination of

Epacris stuartii Stapf., an endangered fire-

prone Australian shrub. Oecologia 112, 340-

344

Kruger FJ, Bigalke RC (1984) Fire in fynbos. In

“Ecological effects of fire in south African

ecosystems” (Eds P de Van Booysen, NM

Tainton) pp. 69-94 (Springer-Verlag, Berlin)

Lonsdale WM (1993) Losses from the seed bank

of Mimosa pigra: soil micro-organisms vs.

temperature fluctuations. Journal of Applied

Ecology 30, 654-660.

Monk D, Pate JS, Loneragan WA (1981) Biology

of Acacia pulchella R.Br. with special

reference to symbiotic nitrogen fixation.

Australian Journal of Botany 29, 579-592

Moreira B, Tormo J, Estrelles E, Pausas JG

(2010). Disentangling the role of heat and

smoke as germination cues in Mediterranean

Basin flora. Annals of Botany 105, 627-635

Morris EC (2000) Germination response of seven

east Australian Grevillea species

(Proteaceae) to smoke, heat exposure and

scarification. Australian Journal of Botany 48,

179-189

Ooi MKJ (2007) Dormancy classification and

potential dormancy-breaking cues for shrub

species from fire-prone south-eastern

Australia. In “Seeds: Biology, Development

and Ecology” (Eds SW Adkins, S Ashmore,

SC Navie) pp. 205-216 (C.A.B. International,

Wallingford, UK)

Ooi MKJ, Auld TD, Denham AJ (2009) Climate

change and bet-hedging: interactions

Page 134: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

125

between increased soil temperatures and

seed bank persistence. Global Change

Biology 15, 2375-2386

Paula S, Pausas JG (2008) Burning seeds:

Germinative response to heat treatments in

relation to resprouting ability. Journal of

Ecology 96, 543 - 552

Raison RJ, Woods PV, Jakobsen BF, Bary GAV

(1986) Soil temperatures during and following

low-intensity prescribed burning in a

Eucalyptus pauciflora forest. Australian

Journal of Soil Research 24, 33-47

Sharrow SH, Wright HA (1977) Effects of fire, ash,

and litter on soil nitrate, temperature, moisture

and tobosagrass production in the Rolling

Plains. Journal of Range Management 30,

266-270.

Taylor GB (1981) Effect of constant temperature

treatments followed by fluctuating

temperatures on the softening of hard seeds

of Trifolium subterraneum L. Australian

Journal of Plant Physiology 8, 547-558

Thomas PB, Morris EC, Auld TD (2003)

Interactive effects of heat shock and smoke

on germination of nine species forming soil

seed banks within the Sydney region. Austral

Ecology 28, 674-683

Trabaud L (1994) Postfire plant community

dynamics in the Mediterranean basin. In “The

Role of Fire in Mediterranean-type

Ecosystems” (Eds JM Moreno, WC Oechel)

pp. 1-15 (Springer-Verlag, New York, USA).

Tyler CM (1995) Factors contributing to postfire

seedling establishment in chaparral: direct

and indirect effects of fire. Journal of Ecology

83, 1009-1020.

Van Assche JA, Debucquoy KLA, Rommens WAF

(2003) Seasonal cycles in the germination

capacity of buried seeds of some

Leguminoseae (Fabaceae). New Phytologist

158, 315-323

Van Staden J, Brown NAC, Jäger AK, Jonson TA

(2000) Smoke as germination cue. Plant

Species Biology 15, 167-178

Walker J, Raison RJ, Khanna PK (1986) Fire. In

“Australian soils: the human impact” (Eds JS

Russell, RF Isbell) pp. 185-216 (University of

Queensland Press, Brisbane)

Whight S, Bradstock RA (1999) Indices of fire

characteristics in sandstone heath near

Sydney, Australia. International Journal of

Wildland Fire 9, 145-153

Page 135: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

126

Apéndice fotográfico

Foto 1. Semillas de Acacia suaveolens Foto 2. Semillas de Dillwynia retorta

Foto 3. Semillas de Gompholobium gradiflorum Foto 4. Semillas de Pultenaea ferruginea

Foto 5. Semillas de Bossiaea rhombifolia Foto 6. Semillas de Bossiaea obcordata

Foto 7. Semillas germinadas Foto 8. Especies leguminosas en su hábitat

Page 136: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

127

CAPÍTULO 8- DISCUSIÓN GENERAL

Page 137: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

128

Page 138: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

129

CAPÍTULO 8 - DISCUSIÓN GENERAL

- Regeneración de especies germinadoras obligadas

Sin duda, el paso del fuego promueve la germinación y establecimiento de las

especies germinadoras obligadas estudiadas. Las altas temperaturas, el humo

o los nutrientes liberados podrían estimular la geminación y supervivencia de

nuevas plántulas (Capítulo 4). Sin embargo, este alto establecimiento podría no

ser consecuencia exclusiva de los efectos directos del fuego y otros efectos

indirectos, como el incremento de la fluctuación diaria del régimen de

temperaturas del suelo, pueden ser determinantes en la ruptura de la

dormancia física de las semillas. De hecho, se ha observado que, en especies

de leguminosas australianas, el régimen de temperaturas del suelo después de

un fuego de verano puede ser suficiente para romper la dormancia física de

semillas con cubiertas duras (Capítulo 7). Por lo tanto, la determinación de la

importancia relativa de cada uno de estos efectos (directos o indirectos) en la

ruptura de la dormancia puede ser clave a la hora de clarificar los procesos de

regeneración de estas especies. Sin embargo, destacar la dificultad de

determinar estos efectos, ya que pueden estar altamente correlacionados entre

si (por ejemplo las altas temperaturas del fuego y el grado de consumo de

biomasa aérea que determinará la fluctuación de temperaturas del suelo). En el

marco de la presente tesis se ha realizado un estudio comparativo entre estos

efectos en las especies principales de estudio (Cistus albidus, Rosmarinus

officinalis, Ulex parviflorus), sin embargo, no ha sido incluido en la memoria

final. A grandes rasgos, cabría resaltar que se ha encontrado un peso

importante de los efectos indirectos.

No obstante, el reclutamiento de estas especies no está restringido a

situaciones post-incendio, poniendo en entredicho la necesidad de los efectos

directos del fuego en la regeneración de estas especies. Ulex parviflorus o R.

officinalis, son capaces de establecerse con cierto éxito en periodos

sucesionales entre fuegos, especialmente cuando existen espacios abierto de

suelo y vegetación y/o la densidad de individuos adultos no es muy alta

(Capítulo 4). El incremento de la fluctuación diaria de las temperaturas del

suelo a consecuencia de la radiación incidente puede ser un factor ambiental

Page 139: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

130

determinante en la ruptura física de la dormancia de especies con cubierta

dura. Este reclutamiento se ve restringido en etapas sucesionales maduras,

cuando los espacios abiertos son cerrados por la vegetación y la materia

orgánica acumulada en el suelo. Probablemente, los individuos adultos pueden

también excluir competitivamente el establecimiento de las plántulas. Por lo

tanto, los resultados sugieren que las especies germinadoras obligadas

estudiadas utilizan una estrategia oportunista; es decir, podrían germinan y

establecerse en sitios abiertos o suelos perturbados después de un fuego o de

cualquier otro tipo de perturbación (Ackerly 2004). Esta estrategia contrasta con

la mayoría de las especies de germinadoras obligadas de otras regiones

mediterráneas, donde la germinación y el establecimiento depende

completamente de de los efectos directos del fuego y se produce casi

exclusivamente en el primer año post-incendio (Pierce y Cowling 1991, Bell et

al. 1993, Keeley 1992, 1995).

Por otro lado, existen diferencias en los micro-hábitats preferenciales

para la germinación y establecimiento de las especies estudiadas, sugiriendo

diferencias en los nichos de regeneración (Capítulo 4). Destacar las diferencias

entre especies con diferentes características funcionales en sus semillas

(cubierta dura y blanda). Por ejemplo, las especies con cubiertas duras (C.

albidus y U. parviflorus) ven estimulada su germinación por valores intermedios

de severidad y, además, germinan en espacios abiertos de la cubierta vegetal.

En contra, R. officinalis con cubierta blanda ve limitado su germinación en

valores altos de severidad y, en periodos entre-fuegos, su germinación esta

ligada a micro-hábitats cercanos a individuos adultos. Por lo tanto, son

necesarios nuevos estudios que establezcan los patrones de coexistencia entre

especies y los factores que la determinan. De hecho, estas diferencias implican

que la oportunidad de establecimiento y coexistencia de las especies puede

variar en el tiempo a causa de las cambiantes condiciones ambientales a lo

largo de la sucesión.

- Trayectorias sucesionales en relación al régimen de recurrencia de incendios

Los ecosistemas dominados por especies germinadoras obligadas no son

estables dentro del régimen de alta recurrencia de incendio estudiado; es decir,

Page 140: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

131

con el paso del tiempo no recuperan la composición y estructura previa al fuego

(Hanes 1971, Trabaud y Lepart 1980). Esta baja estabilidad se establece tanto

para los sistemas de pinar (dominados por Pinus halepensis) como de matorral

(dominados por C. albidus, R. officinalis y U. parviflorus) (Capítulo 5 y Capítulo

6). Incluso, la regeneración de los pinares puede verse comprometida por un

simple incendio (Capítulo 6), a pesar de que P. halepensis ha sido considerada

tradicionalmente como una especie altamente resiliente al fuego (Vega 2003).

Por lo tanto, son necesarios nuevos estudios que determinen las razones de la

baja regeneración obtenida en nuestra zona de estudio, ya que esta

regeneración puede ser determinante en la trayectoria sucesional que siga el

ecosistema.

Los campos de cultivo abandonado pueden albergar diferentes

trayectorias sucesionales dependiendo del régimen de recurrencia. En

ausencia de fuego, son dominados por sistemas de pinar (P. halepensis o P.

pinaster) en una primera etapa sucesional. Sin embargo, con el paso del

tiempo pueden evolucionar hacia un bosque mixto con presencia de especies

rebrotadoras (Quercus ilex). En contra, tras un solo incendio los sistemas de

pinar pueden pasar a estar dominados por especies de matorral. Tras una

primera etapa sucesional dominada por U. parviflorus y C. albidus, el matorral

podría alcanzar estados estables dominados por R. officinalis (Capítulo 6). De

hecho, en esta etapa sucesional más tardía se ha observado una

establecimiento prácticamente nulo tanto de las especies germinadoras

obligadas (C. albidus, R. officinalis, U. parviflorus; Capítulo 4) como de las

especies rebrotadoras (Capítulo 6). Los resultados sugieren que las diferentes

especies germinadoras obligadas tienen características en sus atributos vitales

las hacen más competitivas que otras a lo largo del gradiente sucesional. La

regeneración de C. albidus está prácticamente restringida a periodos post-

incendio, mientras que R. officinalis y U. parviflorus pueden establecerse en

períodos entre fuegos (Capítulo 4). Además, diferencias en el crecimiento

(tanto de la parte aérea como de la subterránea) y la longevidad de vida

podrían ser claves en los procesos de sustitución de las especies de matorral a

lo largo de la sucesión. Cabe destacar que un detallado estudio de estos

factores (longevidad de vida, crecimiento, producción de combustible muerto,

producción de semillas) se ha realizado para estas tres especies a lo largo de

Page 141: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

132

una cronosecuencia de edades dentro del marco de la presente tesis; sin

embargo, este estudio no ha sido incluido en la memoria final. En general, se

podría sugerir que el mecanismo que rige los procesos sucesionales en

matorrales dominados por especies germinadoras obligadas es el de tolerancia

(sensu Connell y Slatyer 1977; Capítulo 4), y que además, el desarrollo de

estos matorrales podrían inhibir la entrada de especies de etapas sucesionales

más tardías como rebrotadoras (Capítulo 6). Sin embargo, Siles et al. (2008)

observaron que mientras bajo U. parviflorus la entrada de especies

rebrotadoras se veía inhibida, bajo R. officinalis se veía facilitada. Por lo tanto,

nuevos estudios que determinen si la sustitución de especies a lo largo de la

sucesión (U. parviflorus > R. officinalis) puede establecer cambios en la

probabilidad de de establecimiento de las especies rebrotadoras son

necesarios. Este hecho puede alcanzar especial relevancia en la restauración

de este tipo de ecosistemas en la Comunitat Valenciana, donde se pretenden

promocionar trayectorias sucesionales que conduzcan hacia estados

dominados por especies rebrotadoras (Valdecantos et al. 2009), con una mayor

resiliencia al fuego y una menor acumulación de combustible fino muerto

(Baeza et al. en prensa). Por otro lado, el escaso establecimiento de nuevos

individuos de especies rebrotadoras en los sistemas de romeral (R. officinalis),

así como de una propia autoregeneración, podría sugerir un colapso del

ecosistema en futuras etapas sucesionales. Por lo tanto, serían interesantes

nuevos estudios que indaguen en esta posibilidad, que podría llevar asociados

ecosistemas senescentes con procesos de sucesión regresiva (sensu Walker y

Reddell 2007).

Bajo una alta recurrencia de incendio (2-3 fuegos), los ecosistemas de

matorral sufren modificaciones en los patrones de abundancia de las especies

que los componen. La especie dominante en la primera etapa sucesional, U.

parviflorus, no sólo ve reducida su abundancia, sino que también ve retrasado

su óptimo en el tiempo. Rosmarinus officinalis sufre un ligero descenso en su

abundancia, mientras que P. halepensis ve prácticamente eliminada su

presencia (Capítulo 5). Probablemente, el intervalo de tiempo entre incendios

es demasiado corto para que las especies alcancen su madurez reproductiva

y/o rellenen satisfactoriamente sus bancos de semillas (Capítulo 5 y Capítulo

6). De hecho, dos fuegos consecutivos en periodos de tiempo menores a 10-15

Page 142: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

133

años son suficientes para eliminar a P. halepensis, ya que este intervalo de

tiempo es demasiado corto para que la especie alcance su madurez

reproductiva (Eugenio y Lloret 2006). Por el contrario, especies de tipo

caméfitos o hemicriptófitos, de pequeño tamaño, con una rápida maduración

y/o capacidad de rebrote se pueden ver favorecidos por el régimen de alta

recurrencia de incendios. Se ha observado que especies de matorral que

producen un gran cantidad de semillas, como C. albidus, necesitan ambientes

perturbados para regenerarse satisfactoriamente y, además, en ambientes de

alta recurrencia aumenta su abundancia (Capítulo 4 y Capítulo 5). Los

resultados sugieren una transición hacia sistemas con una mayor presencia de

especies de matorral de bajo porte, caméfitos y herbáceas, especialmente de

Brachypodium retusum, que pueden establecer un vínculo con la ocurrencia de

incendio. En este tipo de ecosistemas, dominado por especies germinadoras

obligadas, se antoja imprescindible el estudio de la evolución del banco de

semillas de suelo de las diferentes especies y bajo diferente régimen de

recurrencia de incendios. Este estudio, a pesar de que se ha realizado a través

de la extracción de muestras de suelo y su posterior determinación de forma

indirecta (germinación en invernadero), no ha sido incluido en la presente tesis

doctoral.

- Dinámica y efectos de los combustibles en el ecosistema

A nivel de combustible, se ha observado una especial relevancia de la cantidad

de biomasa muerta acumulada en la estructura de los individuos a la hora de

determinar los efectos en el ecosistema (combustión de biomasa y

temperaturas del suelo; Capítulo 3). La especie que mas acumuló este tipo de

combustible, U. parviflorus, experimentó los mayores valores de combustión y

temperatura del suelo, mientras que la especie con menor combustible muerto,

R. officinalis, obtuvo los valores más bajos (Capítulo 3). Este hecho se ve

reflejado en la función de inflamabilidad descrita para este tipo de matorrales

donde la sustitución de U. parviflorus por R. officinalis a lo largo de la sucesión

conlleva una un función de forma jorobada; es decir, tras un incremento inicial,

con el paso del tiempo, la cantidad de combustible muerto se ve reducida

(Capítulo 5). Por lo tanto, estos resultados sugieren una varibilidad en los

Page 143: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

134

posibles efectos del fuego sobre el ecosistema dependiendo de la etapa

sucesional. Sin embargo, nuevos estudios que demuestren esta hipótesis

empíricamente son necesarios. A nivel de recurrencia de incendios, se he

rechazado la hipótesis inicial sobre la posibilidad de un bucle de

retroalimentación positiva (sensu Wilson y Agnew 1992) entre las especies que

acumulan mayor cantidad de combustible muerto y tienen una germinación

estimulada por el fuego (Capítulo 5). Dentro del régimen de recurrencia de

incendio estudiado, la cantidad de combustible muerto acumulado se ve

reducida por un segundo incendio. Por lo tanto, a nivel de comunidad, se pone

en entredicho las ventajas de la retención de este tipo de combustibles en la

estructura por las diferentes especies. Dentro del contexto de la tesis doctoral,

se propone la hipótesis de que la acumulación de combustible muerto puede

ser debido a la respuesta intrínseca de las diferentes especies al gradiente de

recursos sucesional (Capítulo 5), como la disponibilidad de luz o de agua. No

obstante, todavía se conoce muy poco sobre las causas fisiológicas de la

producción de biomasa muerta y, por lo tanto, nuevos estudios que indaguen

en estos mecanismos son necesarios.

BIBLIOGRAFÍA

Ackerly D (2004) Functional strategies of chaparral shrubs in relation to

seasonal water deficit and disturbance. Ecological Monographs 74: 25-

44.

Baeza MJ, Santana VM, Pausas JG, Vallejo VR (en prensa) Successional

trends in standing dead biomass in Mediterranean Basin species. Journal

of Vegetation Science.

Bell DT, Plummer JA, Taylor SK (1993) Seed germination ecology in

southwestern western Australia. Botanical Review 59: 24-73.

Connell JH, Slatyer RO (1977) Mechanisms of succession in natural

communities and their role in community stability and organization.

American Naturalist 111: 1119-1144.

Page 144: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

135

Eugenio M, Lloret F (2006) Effects of repeated burning on Mediterranean

communities of the northeastern Iberian Peninsula. Journal of Vegetation

Science 17: 755-764.

Hanes TL (1971) Succession after fire in the chaparral of southern California.

Ecological Monographs 41: 27-52.

Keeley JE (1992) Recruitment of seedlings and vegetative sprouts in unburned

chaparral. Ecology 73: 1194-1208.

Keeley JE (1995) Seed-germination patterns in fire-prone Mediterranean-

climate regions. En: Arroyo, M.T.K., Zedler, P.H., Fox, M.D. (Eds.)

Ecology and biogeography of Mediterranean ecosystems in Chile,

California and Australia. Springer-Verlag, New York.

Pierce SM, Cowling RM (1991) Dynamics of soil-stored seed banks of six

shrubs in fire-prone dune fynbos. Journal of Ecology 79: 731-747.

Siles G, Rey PJ, Alcántara JM, Ramírez JM (2008) Assessing the long-term

contribution of nurse plants to restoration of Mediterranean forests

through Markovian models. Journal of Applied Ecology 45: 1790-1798.

Trabaud L, Lepart J (1980) Diversity and stability in garrigue ecosystems after

fire. Vegetatio 43: 49-57.

Valdecantos A, Baeza MJ, Vallejo VR (2009) Vegetation management for

promoting ecosystem resilience in fire-prone Mediterranean shrublands.

Restoration Ecology 17: 414-421.

Vega JA (2003) Regeneración del género Pinus tras incendios. Cuadernos

Sociedad Española de Ciencias Forestales 15: 59-68

Walker J, Reddell P (2007) Retrogressive succession and restoration on old

landscapes. En: Walker LR, Walker J, Hobbs RJ (Eds) Linking

restoration and ecological succession. Springer, New York.

Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant-

communities. Advances in Ecological Research 23: 263-336.

Page 145: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

136

Page 146: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

137

CAPÍTULO 9-

CONCLUSIONES

Page 147: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

138

Page 148: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

139

CAPÍTULO 9 - CONCLUSIONES

1. Existen diferencias en el nicho de regeneración de las especies

germinadoras obligadas. Esto hace que unas especies sean más

competitivas que otras a lo largo del gradiente sucesional o en diferentes

regimenes de incendio. Aunque, la mayor parte de los individuos de las

especies estudiadas se establecen en etapas inmediatamente post-

fuego, Cistus albidus se regenera prioritariamente en ambientes

recientemente perturbados, mientras que Ulex parviflorus y Rosmarinus

officinalis pueden establecerse en periodos entre incendios.

2. Existen procesos de sustitución especies a lo largo de la sucesión en los

matorrales dominados por especies germinadoras. Estos ecosistemas

se rigen por el mecanismo sucesional de tolerancia, y tras una primera

etapa dominada por U. parviflorus y C. albidus la comunidad pasa a

estar dominada por R. officinalis. Un fuego recurrente no afecta los

patrones de sustitución entre especies, pero si que afecta a la

abundancia y retrasa en el tiempo el punto donde las especies alcanzan

su óptimo.

3. Los campos de cultivo abandonados pueden establecer diferentes

trayectorias sucesionales dependiendo del régimen de recurrencia de

incendio. En ausencia de fuego, son dominados en una primera etapa

por Pinus halepensis, que con el paso del tiempo se convierten en una

formación mixta de pinar con especies rebrotadoras y de hoja ancha

como Quercus ilex y Q. coccifera. Un solo incendio puede sustituir el

pinar por una matorral de R. officinalis, donde el establecimiento de

especies germinadoras obligadas y de especies rebrotadoras de etapas

sucesionales posteriores pueden estar impedidas. Una alta recurrencia

de incendio en intervalos cortos de tiempo desvían el ecosistema hacia

una comunidad dominada por terófitos o herbáceas como Brachypodium

retusum.

Page 149: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

140

4. La capacidad de retener combustible muerto y su disposición en la

estructura de la planta es determinante en los efectos del fuego en el

ecosistema. Bajo parches de la especie que más acumula combustible

muerto, U. parviflorus, se experimentan las mayores tasas de consumo

de biomasa y de temperatura de suelo. En contra, bajo los parches de R.

officinalis, la especie con menor acumulación de combustible muerto, se

encuentran los efectos opuestos.

5. Los procesos sucesionales de sustitución de especies en ecosistemas

de matorral llevan asociada una función de inflamabilidad basada en la

cantidad de combustible muerto acumulado. Una primera etapa de la

sucesión dominada por U. parviflorus, especie que mayor cantidad de

combustible muerto acumula, seguida por una dominancia de R.

officinalis, especie que acumula menor cantidad, conlleva a una función

de inflamabilidad de forma jorobada; es decir, tras un incremento inicial

del combustible muerto acumulado, éste disminuye con el transcurso de

la sucesión.

6. Tras un fuego recurrente no existe un incremento en la cantidad de

combustible muerto acumulado a nivel de comunidad. Por lo tanto, se

sugiere la ausencia de un bucle de retroalimentación positivo entre las

especies que acumulan mayor cantidad de combustible muerto y una

regeneración estimulada por el fuego con el régimen de recurrencia de

incendios estudiado.

7. Un efecto indirecto del fuego, como el aumento del régimen de

temperaturas diarias del suelo, puede ser un desencadenante de la

ruptura física de la dormancia en semillas de leguminosas de sureste de

Australia. Este efecto difiere entre las diferentes especies y, además,

esta modulado por el rango de temperaturas y el tiempo de exposición.

Page 150: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

141

Page 151: Dinámica de ecosistemas dominados por especies ...rua.ua.es/dspace/bitstream/10045/19208/1/Tesis_Santana.pdf · Rosmarinus officinalis pueden establecerse en periodos entre incendios

142

La defensa de la tesi doctoral feta per s’ha desenvolupat en les llengües següents: i , fet que, unit al compliment de la resta de requisits establits en la normativa pròpia de la UA, li atorga la menció de Doctor Europeu. Alacant, de de EL SECRETARI EL PRESIDENT