37
Direct Search for Dark Ma/er WIMPs with Depleted Liquid Argon at the Gran Sasso Laboratory: Dark‐Side Aldo Ianni, DarkSide Collabora2on INFN Gran Sasso Laboratory Padova, Sept. 18 th , 2012

Direct Search for Dark Maer WIMPs with Depleted Liquid

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Direct Search for Dark Maer WIMPs with Depleted Liquid

DirectSearchforDarkMa/erWIMPswithDepletedLiquidArgon

attheGranSassoLaboratory:

Dark‐SideAldoIanni,DarkSideCollabora2on

INFNGranSassoLaboratory

Padova,Sept.18th,2012

Page 2: Direct Search for Dark Maer WIMPs with Depleted Liquid

EvidenceofDarkMa/er

•  Spiralgalaxiesrota2oncurves:Ωhalo~10Ωstars

•  Clusters:galaxymo2on,gravita2onallensingandX‐rayemission:ΩmaLer~0.2‐0.3

•  CMBanisotropy:ΩmaLer~0.27,Ωbaryons~0.04–  ~84%ofmassintheUniversedarkandnon‐baryonic

•  Usingearlyuniversenucleosynthesis:Ωbaryons~0.04•  LargeScaleStructures:–  Forma2onofstructuresbygravita2onalclustering–  Comparisonofobserva2onswithnon‐rela2vis2c(cold)darkmaLerclusteringagreewell

Page 3: Direct Search for Dark Maer WIMPs with Depleted Liquid

WIMPs:WeaklyInteracEngMassiveParEcles

•  Ageneralclassof weaklyinterac2ngmassivepar2clesnotfromtheStandardModel

•  Assuming thermal equilibrium in the early Universeandnon‐rela2vis2cdecoupling, theenergydensity fortheserelicpar2clesispredictedtobe:–  Ωχ~10‐36cm2/<σv>–  annihila2oncrosssec2on~picobarns–  relicabundancerightorder(i.e.Ω∼1)

•  This circumstance: a par2cle non‐rela2vis2c atdecoupling with weak‐scale mass and cross sec2onwhich gives the right order for the relic abundance isgiventhenameofWIMPmiracle

Page 4: Direct Search for Dark Maer WIMPs with Depleted Liquid

DirectSearchforWIMPs:nuclearrecoiltagging

χ χ

N N

dRdE

= Nt

ρχmχ

mN

µn2 A

2σχnF2(E) d3v

f v( )vv≥vmin (E )∫

f (v) =1Ne−

vχ +vsun +vEarthv0

2

, vχ +vsun +vEarth <vesc

0 , elsewhere

• 170km/s<v0<270km/s• 450km/s<vesc<650km/s• ρχ~0.3Gev/cm3

• F(E)=nuclearformfactor• f(v)=velocitydistribu2onofWIMPsinthegalaxy

Erecoil =mNMχ

2

mN + Mχ( )2 v

2(1− cosθ*)

v ~ 300 km/sErecoil ~ 1−100 keV

Page 5: Direct Search for Dark Maer WIMPs with Depleted Liquid

ExpectedWIMPsSignalinLAr

100GeV/c2WIMPmass10‐45cm2WIMP‐nucleoncrosssec2on~10‐4interacEons/day/kg

Page 6: Direct Search for Dark Maer WIMPs with Depleted Liquid

CommentsonexpectedWIMPsignal

•  Nospecificfeature•  Lownuclearrecoilenergy•  10‐100eventsfor1ton‐yearexposure•  GOALofWIMPssearch:–  IfDarkMaLerismadeofWIMPsweneed:•  Strongsuppressionofbackground•  Aslowaspossiblesensi2vitytoWIMP‐nucleoncrosssec2on

Page 7: Direct Search for Dark Maer WIMPs with Depleted Liquid

ScinEllaEoninLAr

•  Minimumionizingpar2clesproduce~4×104γ/MeV

•  Fast(~7ns)andslow(~1.6µs)decaycomponents

•  Fornuclearrecoil:fastcomponent~70%•  Forelectron recoil:fastcomponent~30%

•  Scin2lla2onlightpeakedat128nm

•  Needwavelengthshigerto~400nmtomatchPMTsQuantumEfficiency

Page 8: Direct Search for Dark Maer WIMPs with Depleted Liquid

BackgroundsforLAr

•  β/γ radioac2vity•  γ radioac2vityfromsurfaceclosetosensi2vemass

•  Radiogenicneutrons:(α,n)andspontaneousfissions

•  Cosmogenicneutronsfrommuons

Neutronscanmimicanuclearrecoil

Page 9: Direct Search for Dark Maer WIMPs with Depleted Liquid

Double‐PhaseArgonTPC

Liquid

GasLayer

Cathode

DrigField(~1kV/cm)

FieldCage

Extrac2onGrid

Anode

Extrac2onField(~3kV/cm)

Photodetectors

Wavelengthshiger

Page 10: Direct Search for Dark Maer WIMPs with Depleted Liquid

RemarksonLArtargetforWIMPssearch

•  Advantages– Goodscin2llator– Moderatecryogenicrequirements:at1atmliquifiesat87K

–  1%abundanceinatmosphere(butwith39Arseelater)

•  Disatvantages– Needwaveshigerto~400nmfrom128nm– Mustremove39Ar:useundergroundAr(moredifficulttechnology)

Page 11: Direct Search for Dark Maer WIMPs with Depleted Liquid

LArTPCatWork[1]

gas

liquid

UpperPMTsarray

LowerPMTsarray

S1promptsignalfromLAr

UpperPMTsarray

LowerPMTsarray

Drigoffreee‐anddelayedsignalingasS2

S1measuresenergyand2meofeventS2measuresposi2onofeventinLArandispropor2onaltofrac2onofchargethatescapesrecombina2on

Efield

Page 12: Direct Search for Dark Maer WIMPs with Depleted Liquid

LArTPCatWork[2]

FigurefromWARP(Astropart.Phys.28,6

(2008)495‐507)

PulseShapeParameter

Log(S2/S1)

Backgroundreduc2onperformedbyexploi2ng

a)  PulseshapeofS1throughaparameterwhichmeasuresthefrac2onoffasttoslowcomponentinscin2lla2on

b)S2/S1

ElectromagneEcEvents

NuclearRecoils

DatafromDS‐10(seelater)

Page 13: Direct Search for Dark Maer WIMPs with Depleted Liquid

Theproblemof39Ar

•  Arnaturallypresentintheatmosphereat1%level

•  39Arformedbycosmicmuoninterac2ons–  40Ar(n,2n)39Ar

•  39ArisaβdecayemiLerwithQβ=565keVandT1/2=269years

•  InArfromtheatmosphere,39Arisatthelevelof1Bq/kg–  ~9×104decays/kg/day– WIMPs(100GeV,10‐45cm2)~10‐4events/kg/day

Page 14: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSideApproach

•  DoublephaseTPC– Exploitbackgroundrejec2onpower

•  Lowbackgroundtechnology– Carefulselec2onofmaterials– AssemblinginRn‐freecleanroom

•  AcEveneutronveto– Boron‐loadedscin2llator

•  DepletedArgon–  39Arac2vityreducedto~0.6%Bq/kg

Page 15: Direct Search for Dark Maer WIMPs with Depleted Liquid

UndergroundArgon[1]

•  40Arproducedfrom40K•  TheEarthisreachin40Kinunderground•  40Armovesintotheatmosphereandmakes39Arwith

muonsinterac2ons•  Inunderground39Arisexpectedtobemuchlessdueto

lowmuonflux•  However,39Arundergroundcanbeproducedby

radiogenicneutronsinterac2ons–  39K(n,p)39Ar

•  Recipe:godeepundergroundwheresurroundingrocksarepoorinUandTh

Page 16: Direct Search for Dark Maer WIMPs with Depleted Liquid

UndergroundArgon[2]•  Inexhauststreamgas(CO2)ofcommercialminingfacili2esArat

400‐600ppmlevel–  InDSextrac2onsite:CO2plantoutput,CO2(96%)+N2(2.4%)+He(0.4%)+Ar(0.06%)

•  Makeon‐sitepreconcentra2onto~40,000ppm,thencryogenicdis2lla2onatFNAL–  Agerdis2lla2on:CO2(~0)+N2(<0.05%)+He(~0)+Ar(>99.95%)

•  Purifieddepletedargonproducedat0.5kg/day

•  39Ardepletedat<0.6%levelwrtatmosphericlevel–  ~500decays/kg/day–  ForWIMPs~10‐4interac2ons/kg/day

•  UseLArscin2lla2onproper2estoperformbackgroundreduc2on–  PromptsignalPSDshows:90%n‐recoilacceptancewith<10‐5e‐recoilleakage

Page 17: Direct Search for Dark Maer WIMPs with Depleted Liquid

UndergroundArgon[3]

39Ardeple2onfactor>100

Inprogressstudywithcoun2ngdetectorundergroundatKURF(1400m.w.e.)Virginia,USA

Page 18: Direct Search for Dark Maer WIMPs with Depleted Liquid

NeutronsfromnaturalradioacEvity•  Radiogenicneutrons–  from(α,n)andspontaneousfissionofheavyelementssuchasUandTh

– energy~afewMeV(<10MeV)

•  SourceinDarkSide:– PMTs(lowbackgroundPMTs~fewn/year/PMT)– Steelincryostatandsupportstructures

•  Recipe:– Passiveshieldingeffec2vefor~MeVenergiesbutasksformoresurroundingmaterials

– Ac2veveto

Page 19: Direct Search for Dark Maer WIMPs with Depleted Liquid

CosmogenicNeutrons

0 500 1000 1500 2000 2500 3000 3500

10!16

10!15

10!14

10!13

10!12

10!11

En !MeV"Neutronflux#cm2

s!1$

<En>~90MeV• FluxatGranSassolab: 2.4m‐2day‐1

 0.7m‐2day‐1for>10MeV• Expectedrate~3×10‐33/s/atom• WIMPSrate~10‐34/s/atom

• Neutronsfromsurroundingrocksreducedbyshielding InDS‐503mofwater~10‐3and0.04from1.5mofliquidscin2llator:~4×10‐5

Water

LS

LArTPC

µ‐inducedneutrons

Page 20: Direct Search for Dark Maer WIMPs with Depleted Liquid

NeutronVeto

•  FutureDarkMa+erDetectors@LNGS,F.Calaprice,WONDER,GranSasso,March22,2010

•  Ahighlyefficientneutronvetofordarkma+erexperiments,A.Write,P.MosteiroandF.Calaprice,NIMA644(2011)18‐26

•  Makeuseofaboron‐loadedradiopureliquidscin2llator–  10B+n‐>7Li+α(1.474MeV)+γ(0.478MeV)93.7%withσ=3837b–  α energyiscontained–  capture2me~3µs

•  1mthickvetomakesareduc2onof107againstexternalneutrons•  NeutronsfrominternalLArtargetmasscapturedin60µsin1m

thickvetowith99.5%efficiency•  WaterTankmuonveto+neutronvetoreducescosmogenic

background>>103

Page 21: Direct Search for Dark Maer WIMPs with Depleted Liquid

EsEmatedbackgroundintheDSneutronveto

•  30tonsboron‐loadedscin2llatorin1000m3watertank,100PMTs

•  Liquidscin2llator–  14C:~4Bq(Borexinolevel14C/12C~2×10‐18)–  U+Th(1ppt):~0.3Bq–  K(70ppb):~33Bq

•  StainlessSteelContainmentvessel:~30Bq(~1mBq/kginUandTh)

•  Externalbackground<1Bq•  InnerDetectorTPC<1Bq•  PMTs~100Bq•  Randomcoincidences~160Bq•  Total~300Bqwhichgives~2%dead2mein1µsDAQ

window

Page 22: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSideProgram

•  DarkSide‐10–  aprototypedetectorwith10kgofLAr–  currentlyopera2ngundergroundatGranSasso–  testcryogenictechnologywithdoublephaseTPC–  testLightYieldandbackgroundrejec2onpower

•  DarkSide‐50–  50kgofdepletedLArfor10‐45cm2sensi22vyfor100GeVWIMP

–  currentlyunderconstruc2on(readybyearly2013)–  Testac2vevetoconceptandlowbackgroundprocedures

•  DarkSide‐G2–  3tonstargetmassofdepletedLAr– WIMPsensi2vity10‐47cm2for100GeV

Page 23: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSideWIMPSensi2vity

]2[GeV/c210 310

]-2

[cm

SI pσ

-4810

-4710

-4610

-4510

-4410

-4310

-4210

-4110

-4010

10χ~

m

pre LHC (68% and 95% CL contours in CMSSM)

1/fbLHC (68% and 95% CL contours in CMSSM)

DS-50

DS-G2

CDMS

XENON100

ForDS‐50(>20keVnr):1)  6pe/keVee2)  2pe/keVnr3)  0.1ton‐yearForDS‐G2(>25keVnr):1)10ton‐year

DS‐50

DS‐G2

Page 24: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSide‐10

•  TestDarkSidetechnologies–  Controlofgaslayer–  ChargedrigandS2lightcollec2on

–  Lightyield(determinedtobe~9p.e./keVeeatzerofield)

•  Backgroundsuppressionstudies

•  Experienceopera2nganargonTPC

18”boLomPMTasin1sttestdoneatPrincetonReplacedby73”PMTsatLNGS

Page 25: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSide‐10atLNGS

•  Inopera2onatGranSassoundergroundsincesummer2011

•  Watershieldingtoreducebackgroundrate

•  15Hzwith4PMTstriggerwithwatershielding

•  Calibra2onwithgammaandAmBesource

Page 26: Direct Search for Dark Maer WIMPs with Depleted Liquid

DS‐10:PMTscalibraEons

•  73”PMTshighQE

ateachendofsensi2vevolume

•  QE~30‐36%

Page 27: Direct Search for Dark Maer WIMPs with Depleted Liquid

DS10:light‐yield

Energy[keV] Light‐Yield[p.e./keV] ResoluEon(σ)[%]

122 8.87 5.2

511 8.78 3.4

662 9.08 3.1

1275 8.60 2.9

average 8.9±0.4

Light‐Yieldmeasuredbymeansofgammasourceslocatedoutsidethecryostatvessel

Page 28: Direct Search for Dark Maer WIMPs with Depleted Liquid

DS‐10:eventw/dri_field

Page 29: Direct Search for Dark Maer WIMPs with Depleted Liquid

DS‐10:PSDwithS1signal

•  FigureofmeritforPSD:f90=frac2onofS1lightwhicharrivesbefore90ns

Page 30: Direct Search for Dark Maer WIMPs with Depleted Liquid

DS‐10:neutroncalibraEon

Background AmBe

DatatakeninTCPmodewithAmBesource(10n/s)outsidethecryostat.Rejec2onpoweragainstthresholdunderstudy

Page 31: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSide‐10:publicaEons

•  LightYieldinDarkSide‐10:aprototypetwo‐phaseliqidargonTPCforDarkMa+erSearches,DarkSidecoll.,arXiv:2104.6218

•  StudyoftheResidual39ArcontentinArgonfromUndergroundSources,DarkSidecoll,arXiv:1204.6011

Page 32: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarkSide50

•  50kgDLArsensi2vemass•  WIMP‐nucleoncrosssec2onsensi2vity~10‐45cm2

•  Detectorunderconstruc2on•  Datatakingexpectedinspring2013•  Firststeptoward1ton‐scaledetector

Page 33: Direct Search for Dark Maer WIMPs with Depleted Liquid
Page 34: Direct Search for Dark Maer WIMPs with Depleted Liquid
Page 35: Direct Search for Dark Maer WIMPs with Depleted Liquid

TheLiquidScin2llatorContaimentVesselfortheDarkSideNeutronVetoascompletedwithintheCTFwatertank(HallCofLNGS)

Page 36: Direct Search for Dark Maer WIMPs with Depleted Liquid

Summary

•  DarkSidedetectordesignedtohaveverylowbackgroundfordirectWIMPsearchwithLAr

•  Firstuseofac2veboron‐loadedliquidscin2llatorneutronveto

•  MakeuseofBorexinofluindhandlingandpurifica2onplants

•  10kgprototypeinopera2onsincesummer2011•  50kgDS‐50fulldesigndetectorinconstruc2on•  DS‐50commissioningexpectedearly2013•  DS‐50sensi2vity~10‐45cm2

Page 37: Direct Search for Dark Maer WIMPs with Depleted Liquid

DarksideCollaboraEonAugustana College – SD, USA

Black Hills State University – SD, USA Fermilab – Il, USA

INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy INFN and Università degli Studi Genova, Italy INFN and Università degli Studi Milano, Italy INFN and Università degli Studi Naples, Italy INFN and Università degli Studi Perugia, Italy

Institute for High Energy Physics – Beijing, China Joint Institute for Nuclear Research – Dubna, Russia

Princeton University, USA RRC Kurchatov Institute – Moscow, Russia

St. Petersburg Nuclear Physics Institute – Gatchina, Russia Temple University – PA, USA University of Arkansas, USA

University of California, Los Angeles, USA University of Houston, USA

University of Massachusetts at Amherst, USA