EE315_Exp4_BJTssAmp

  • Upload
    serhat

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/19/2019 EE315_Exp4_BJTssAmp

    1/3

    İ YTE - Department of Electrical and Electronics Engineering

    EE315 - Electronics Laboratory - Experiment 4 1 

    EE315 - Electronics Laboratory

    Experiment 4BJT Small Signal Analysis 

    Preliminary Work

    1.a)  Calculate Av, Ai, Rin, and Rout on the circuit given in Figure 1. Assume that CCi 

    and CCo behave as open circuit for DC signals and as short circuit for AC signals.

    1.b)  Determine limits of the signal source, vS, for the transistor to remain in forward-

    active region.

    VCC=15V

    R2 

    27kΩ 

    vo 

    R1 

    110kΩRC 

    3.6kΩ

    Q1: BC237

    or BC238

     β=200VBE(on)=0.7V

    RE 

    1.2kΩ

    Figure 1. Common-emitter amplifier.

    vS  RL 12kΩ 

    CCo 

    4.7μF

    CCi 

    4.7μF

    Rin  Rout

    Q1

    RS 

    100Ω 

    2.a)  Calculate Av, Ai, Rin, and Rout on the circuit given in Figure 2. Assume that the

    coupling capacitors, CCi and CCo, behave as open circuit for DC signals and as short

    circuit for AC signals.

    2.b)  Determine limits of the signal source, vS, for the transistor to remain in forward-

    active region. (Hint: AC current on RL will be added onto the quiescent emitter

    current.)

    VCC=15V

    vo

    RB 

    220kΩ 

    Q1: BC237

    or BC238

     β=200

    VBE(on)=0.7V

    RE1.2kΩ

    Figure 2. Common-collector amplifier

    (emitter follower).

    vS RL 

    100Ω

    CCo 

    4.7μF

    CCi

     

    4.7μF

    Rin  Rout

    Q1

    RS 100Ω 

  • 8/19/2019 EE315_Exp4_BJTssAmp

    2/3

    İ YTE - Department of Electrical and Electronics Engineering

    EE315 - Electronics Laboratory - Experiment 4 2 

    Procedure

    1.  Build the circuit given in Figure 1. Use the function generator to obtain 1 Vp-p,

    1 KHz as vS. Note the polarity of the capacitors on the circuit diagram.

    1.a)  Measure the voltage gain, Av. Use the oscilloscope in X-Y mode, probing vS 

    on Ch-1 (X) and vO on Ch-2 (Y).

    VSp-p = VOp-p = Av =

    1.b)  Determine the current gain, Ai, by measuring the peak-to-peak AC voltages

    across RS and RL.

    VRSp-p = VRLp-p =

    ISp-p = ILp-p = Ai =

    1.c)  Disconnect RL and measure the input resistance, Rin. Use the oscilloscope in

    X-Y mode, probing iS (voltage across RS) on Ch-1 (X) and vS on Ch-2 (Y). Note

    that, the two oscilloscope channels must share a single, common node for proper

    ground connection.

    VSp-p = VRSp-p = ISp-p = Rin =

    1.d)  Measure peak-to-peak output voltage while RL is disconnected. Connect a

    4.7 kΩ variable resistor in place of RL, and adjust the variable resistor to obtain halfthe output voltage measured without any load. Measure the value of variable resistor

    that will give the Rout of the amplifier.

    VOp-p(NoLoad) = Rout =

    1.e)  Find the maximum peak vS amplitudes before the transistor goes into cut-off or

    saturation. Compare the results with your calculations in the preliminary work.

    VSpeak(cut-off) = VSpeak(sat)  =

    1.f)  Connect a 4.7 μF capacitor in parallel to RE. Make sure that the polarity of thecapacitor matches the DC voltage polarity on RE. Measure the voltage gain, Av,

    again as described in step 1.a.

    VSp-p = VOp-p = Av =

    1.g)  Draw the small signal model of the common-emitter amplifier with the capacitor

    in parallel to RE, and calculate the voltage gain, Av, based on your model.

  • 8/19/2019 EE315_Exp4_BJTssAmp

    3/3

    İ YTE - Department of Electrical and Electronics Engineering

    EE315 - Electronics Laboratory - Experiment 4 3 

    2.  Build the emitter-follower circuit given in Figure 2. Verify that the function

    generator output is still set to 1 Vp-p, 1 KHz, and repeat the steps 1.a, 1.b, and 1.c.

    2.a)  Measure the voltage gain, Av.

    VSp-p = VOp-p = Av =

    2.b)  Determine the current gain, Ai.

    VRSp-p = VRLp-p =

    ISp-p = ILp-p = Ai =

    2.c)  Disconnect RL and measure the input resistance, Rin.

    VSp-p = VRSp-p = ISp-p = Rin =

    2.d)  Increase vS amplitude to 2.0 Vp-p and observe vO on the oscilloscope. How do

    you explain the distortion in the vO waveform?

    2.e)  Find a way to restore the vO waveform while keeping vS amplitude at 2.0 Vp-p,

    and RL = 100 Ω. Explain how you can restore the vO waveform.

    2.f)  Set the function generator output back to 1 Vp-p, and measure the output

    resistance, Rout. You should use a smaller variable resistor such as 100Ω

     to obtaina better precision with emitter-follower. Make sure that the output waveform is not

    distorted while you measure Rout.

    VOp-p(NoLoad) = Rout =