36
Electronic Conductio n of Mesoscopic Syst ems and Resonant Sta tes Naomichi Hatano Institute of Industrial Science, Unviersity of Tok yo Collaborators: Akinori Nishino (II S, U. Tokyo) Takashi Imamura (IIS, U. Tokyo) Keita Sasada (Dept. Phy s., U. Tokyo) Hiroaki Nakamura (NIFS) Tomio Petrosky (U. Texas at Austin)

Electronic Conduction of Mesoscopic Systems and Resonant States Naomichi Hatano Institute of Industrial Science, Unviersity of Tokyo Collaborators: Akinori

Embed Size (px)

Citation preview

Electronic Conduction of Mesoscopic Systems and Reson

ant States

Electronic Conduction of Mesoscopic Systems and Reson

ant StatesNaomichi Hatano

Institute of Industrial Science, Unviersity of TokyoCollaborators: Akinori Nishino (IIS, U. Tokyo)       Takashi Imamura (IIS, U. Tokyo)       Keita Sasada (Dept. Phys., U. Tokyo)       Hiroaki Nakamura (NIFS)        Tomio Petrosky (U. Texas at Austin)       Sterling Garmon (U. Texas at Austin)

2/342/34

ContentsContents

1.Conductance and the Landauer Fo

rmula

2.Definition of Resonant States

3. Interference of Resonant States an

d the Fano Peak

3/343/34

What are mesoscipic systems?What are mesoscipic systems?

QuickTime˛ Ç∆ êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆ êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆ êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

T. Machida (IIS, U. Tokyo)

S. Katsumoto (ISSP, U. Tokyo)

T. Machida (IIS, U. Tokyo)

4/344/34

Theoretical modelingTheoretical modelinglead

Scatterer(Quantum Dot, …)

Cross section of a lead

lead

? kT

5/345/34

k

ε(k) 2πL

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

Perfect Conductor

L

6/346/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

I = envv>0

<ε (k)<

∑ =eL

dε(k)d(hk)

=v>0

<ε (k)<

∑ ehL

∫ =e

h −

e=e

hV

k

ε(k)

2πL

G =e

hConductance of a Perfect ConductorSpin

Density

n =1/L

Voltage differenc

e

7/347/34

So, what was the conductance?So, what was the conductance?

I =GV =e

hV

V =RI G =R−

G− =he

=.9 kΩ[ ]

Conductance is the inverse of the resistance.

Be aware! R =ρLS does not hold!

8/348/34

Perfect Conductor

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

Contact resistance G− =he

9/349/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

L

ScattererProbability T

I = T(k)envv>0

<ε (k)<

∑ =eL

T(k)dε(k)d(hk)

=v>0

<ε (k)<

∑ ehL

T(ε)dε

∫ ;e

hT(F )

−e

=e

hT(F )V

G =e

hT Conductance in general

Linear response

Calculates at the Fermi energy

Gate voltage

10/3410/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

L

G− =he

T=

he+

he−T

T

Contact resistance “Raw” resistance of a scatterer

ScattererProbability T

11/3411/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

V VTransmission probability: T(E)

Scatterer

Conductance (Inverse Resistance)

G =e

hT(EF )

Note R =ρ L S does not hold.

12/3412/34

Example: 3-state quantum dotExample: 3-state quantum dotKeita Sasada: Ph. D. Thesis (2008)

ε0 t = 0, ε1 t = −0.3, ε 2 t = 0.5

v01 t = 0.8, v12 t = 0.4, v20 t = 0.5

tα t = tβ t = 1

⎨⎪

⎩⎪

Resonance Peak(AsymmetricFano Peak)

Trans. Prob. T

Fermi Energy

Con

duct

ance

13/3413/34

ContentsContents

1.Conductance and the Landauer Fo

rmula

2.Definition of Resonant States

3. Interference of Resonant States an

d the Fano Peak

14/3414/34

Definition of resonance: 1Definition of resonance: 1

Aeikx

CeikxBe−ikx

S(E)≡r(E) ′t (E)t(E) ′r (E)

⎝⎜

⎠⎟≡

B(E)A(E)

′C (E)′A (E)

C(E)A(E)

′B (E)′A (E)

⎜⎜⎜⎜

⎟⎟⎟⎟

′A e−ikx

′B eikx′C e−ikx

Pole → or , whereA(E)=0 ′A (E) = 0 E ∈£

where E =E(k)

Resonance: Pole of Trans. Prob. (S-Matrix)

G(E)=e

ht(E) =

e

hC(E)A(E)

15/3415/34

Definition of resonance: 2Definition of resonance: 2

Siegert condition (1939)Resonance: Eigenstate with outgoing waves only.

a−ax

Be−iKx CeiKx

h2

2m

d 2

dx2+ V (x)

⎝⎜⎞

⎠⎟ψ (x) = Eψ (x)

V(x)

−V

Fei ′K x +Ge−i ′K x

E =

hK

m=

h ′K

m−V

16/3416/34

Definition of resonance: 2Definition of resonance: 2

a−ax

Be−iKx CeiKx

Fei ′K x +Ge−i ′K x

V(x)

−V

Even solutions: B C, F G

E =

hK

m=

h ′K

m−V

F cos ′K a=CeiKa

−F ′K sin ′K a=iCKeiKa

Odd solutions: B C, F G

− ′K tan ′K a = iK

′K 2 tan2 ′K a = −K 2 =

2mV

h2− ′K 2

α =± %V cosα

α =± %V sinα

α ≡ ′K a, %V ≡

2mVa2

h2

⎝⎜⎞

⎠⎟

17/3417/34

Definition of resonance: 2Definition of resonance: 2

Im Kn < 0Re Kn

><0 ⇔ ImEn

<>0

Eigen-wave-number EigenenergyBound state

a = %V =

a = %V =

18/3418/34

Non-Hermiticity of open systemNon-Hermiticity of open system

ψ p2 ψΩ

= −h2 ψ (x)∗ ′′ψ (x)dx− L

L

∫ = −h2 ψ (x)∗ ′ψ (x)⎡⎣ ⎤⎦x=− L

L+ h2 ′ψ (x)∗

− L

L

∫ ′ψ (x)dx

ψ p2 ψΩ

∗= −h2 ψ (x) ′′ψ (x)∗dx

− L

L

∫ = −h2 ψ (x) ′ψ (x)∗⎡⎣ ⎤⎦x=− L

L+ h2 ′ψ (x)

− L

L

∫ ′ψ (x)∗dx

2i Im ψ Htotal ψ Ω

=−ihm

Re ψ (x)∗pψ (x)x=L+ψ (x)∗(−p)ψ (x)

x=−L( )

Im ψ Htotal ψ Ω

=−hm

Reψ pn ψ ∂Ω

N. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

H total =p

m+V(x)

2i Im ψ p ψ

Ω=−h ψ (x)∗ ′ψ (x)−ψ (x) ′ψ (x)∗⎡⎣ ⎤⎦x=−L

L=−

hm

Re ψ (x)∗pψ (x)⎡⎣ ⎤⎦x=−L

L

where ImV (x)≡0

Im En<>0 ⇔ ReKn

><0

Ω=[−L, L]

19/3419/34

Non-Hermiticity of open systemNon-Hermiticity of open system

∂∂t

Ψ(t) Ψ(t)Ω

=2

hIm Ψ(t) H total Ψ(t)

Ω= −

1

mRe Ψ(t) pn Ψ(t)

∂Ω

N. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

Im En > 0 ⇔ ReKn < 0

ih∂∂tΨ(t) =Htotal Ψ(t)

∂∂t

Ψ(t) Ψ(t)Ω

= −i

hΨ(t) H total Ψ(t)

Ω− Ψ(t) H total

† Ψ(t)Ω( ) =

2

hIm Ψ(t) H total Ψ(t)

Ω

Im En < 0 ⇔ ReKn > 0Ω

“Anti-resonant state as an eigenstate“Resonant state” as an eigenstate

20/3420/34

Definition of resonance: 2Definition of resonance: 2

Im Kn < 0Re Kn

><0 ⇔ ImEn

<>0

Eigen-wave-number EigenenergyBound state

Resonant stateAnti-resonant state

21/3421/34

Eigenfunction of resonant stateEigenfunction of resonant stateN. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

Im En<>0 ⇔ ReKn

><0 ⇒ ImKn < 0

En =

h

mKn

⇒ ImEn =h

mReKn ImKn

CeiKn xBe−iKnx

22/3422/34

Particle-number conservationParticle-number conservationN. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

En =

h

mKn

⇒ ImEn =h

mReKn ImKn

⎝⎜⎞

⎠⎟

vn =

hm

ReKn

x

NΩ = Ψ(t) Ψ(t) Ω dx−L(t)

L(t)

∫ =e−t ImEn /h ψ ψΩ

dx−L(t)

L(t)

∫ ≈e−t ImEn /h e x ImKndx−L(t)

L(t)

∫: e− ImEnt+L(t) ImKn =exp −

th

ImEn + thm

ReKn ImKn⎛⎝⎜

⎞⎠⎟=constant

L−L L(t)−L(t)

L(t)≡vnt=t

hm

ReKn

23/3423/34

Bound, resonant, anti-resonant statesBound, resonant, anti-resonant states

K

Bound state

Resonantstate

Anti-resonantstate

Continuum

E

Bound state

Resonant state

Anti-resonantstate

Continuum

E =h

mK

Branch point

Branch cut

ψ n (x) ~e−iKn x

eiKn x

⎧⎨⎩

(Far left)

Im Kn < 0 Re Kn><0 ⇔ ImEn

<>0

(Far right)

24/3424/34

Tight-binding modelTight-binding model−t ψ l +1 +ψ l −1( ) + Vlψ l = Eψ l

Vl =0ψ l = eiklis an eigenstate for

E =−tcoskDispersion relation:

kππ0

Continuum limit Impurity bound state

energyband

25/3425/34

t t

Bound, resonant, anti-resonant statesBound, resonant, anti-resonant states

K

Bound state

Resonantstate

Anti-resonantstate

Continuum

E

Bound state

Resonant state

Anti-resonantstate

Continuum

E =−tcosK

Branch point

Branch cut

ψ n (x) ~e−iKn x

eiKn x

⎧⎨⎩

(Far left)

Im Kn < 0 Re Kn><0 ⇔ ImEn

<>0

(Far right)

π π

26/3426/34

H leadH lead

Fisher-Lee relationFisher-Lee relation

T (E)∝ xL

E−H total + iη

xR

= xL

E−Heff (E)

xR

H eff (E)=Hscatterer + Veff (E)

H scatterer

H total =Hscatterer + H lead

Veff Veff

Complex effective potential: H. Feshbach, Ann. Phys. 5 (1958) 357

G(E)=e

hxL

E−Heff (E)

xR

dεL

dkdεR

dk

S. Datta “Electronic Transport in Mesoscopic Systems”

Complex potential eikx

27/3427/34

Conductance and resonanceConductance and resonance

G(E)=e

hxL

E−Heff (E)

xR

dεL

dkdεR

dk

Green’s function: Inverse of a finite matrix

Conductance for real energy

Resonance from poles in complex energy plane

28/3428/34

ContentsContents

1.Conductance and the Landauer Fo

rmula

2.Definition of Resonant States

3. Interference of Resonant States an

d the Fano Peak

29/3429/34

N-state Friedrichs modelN-state Friedrichs model

Hd,α

Hd

Hαn

d0

Keita Sasada: Ph. D. Thesis (2008)

• All leads are connected to the site d0

• Time reversal symmetry is not broken (no magnetic field)

30/3430/34

Conductance formula

N-state Friedrichs modelN-state Friedrichs model

ρleads E( ) ≡1

π t 2 4t 2 − E2

Local DOS of discrete eigenstates:

gα→ β E( ) =gα→ β

max

± −

ρeigen E( )ρleads E( )

⎝⎜⎞

⎠⎟

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

ρeigen E( ) ≡

1

d0 ψ n%ψ n d0

E − Enn=1

2 N

Local DOS of leads:

    Maximum conductnace from lead α to lead β

Sign depends on the inner structure of the dot and

E

gα→ βmax :

t 2 ≡ tα t( )

α∑(where        )

Bound st., Res. st., Anti-res. st.

Keita Sasada: Ph. D. Thesis (2008)

31/3431/34

Interference of discrete statesInterference of discrete states

Bound states Resonance pair(Res. and Anti-res.)

: Interference between B and R

ρeigen E( ) ≡

1

d0 ψ n%ψ n d0

E − Enn=1

2 N

∑ = ρb E( )b

∑ + ρ rpair E( )

r∑

Keita Sasada: Ph. D. Thesis (2008)

Discrete eigenstates

G(E) ~C1 E −Er

res( ) +C0

E−Erres( )

+ Ei

res( ) =

qε + rε +

Asymmetry of a conductance peak

q: Fano parameter

ρeigen E( )( )2

→ρ r

pair E( ) × ρb E( )

ρ rpair E( ) × ρ ′r

pair E( )

⎧⎨⎩⎪ : Interference between R and R

32/3432/34

T-shape quantum dot (N=2) T-shape quantum dot (N=2)ε1 t = 0

v01 t = 1

tα t = tβ t = 1

⎨⎪

⎩⎪

  Bound state: 2  Resonant state: 1

Anti-resonant state: 1

Interference between each bound state and the resonace pair determines the asymmetry of the conductance peak.

Bound state 1 Bound state 2

Anti-resonant state

Resonant state

33/3433/34

3-state quantum dot (N = 3)3-state quantum dot (N = 3)Keita Sasada: Ph. D. Thesis (2008)

ε0 t = 0, ε1 t = −0.3, ε 2 t = 0.5

v01 t = 0.8, v12 t = 0.4, v20 t = 0.5

tα t = tβ t = 1

⎨⎪

⎩⎪

Bound state 1 Bound state 2

Anti-resonant state 2

Anti-resonant state 1

Resonant state 1

Resonant state 2Interference between the resonance pairs 1 and 2 determines the asymmetry of the conductance peal.

  Bound state: 2  Resonant state: 2

Anti-resonant state: 2

34/3434/34

Fano parameterFano parameter

ρb E( ) ~1

E − Eb

ρ ′rpair E( ) ~

1

E − E ′rres( )

2

G(E) ~C1 E −Er

res( ) +C0

E−Erres( )

+ Ei

res( ) =

qε + rε +

Large when close

: Interference between B and Rρeigen E( )( )2

→ρ r

pair E( ) × ρb E( )

ρ rpair E( ) × ρ ′r

pair E( )

⎧⎨⎩⎪ : Interference between R and R

35/3435/34

SummarySummary

- Electronic conduction and resonance scattering

- Definition and physics of resonant states

- Particle-number conservation

- Interference between resonant states

36/3436/34

Discetization of Schrödinger equationDiscetization of Schrödinger equation

h2

2m

d 2

dx2+ V (x)

⎝⎜⎞

⎠⎟ψ (x) = Eψ (x)

h2

2m

ψ (x + Δx) + ψ (x − Δx) − 2ψ (x)

Δx2+ V (x)ψ (x) = Eψ (x)

−t ψ l +1 +ψ l −1( ) + Vlψ l = Eψ l

H = −t cl+†cl + cl

†cl+( ) +Vlcl†cl⎡⎣ ⎤⎦

l=−∞

Tight-binding model