21
Proceeding of The 1 st University of Muhammadiyah Purwokerto - Pharmacy International Conference 5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0 42 Endophytic Fungi Researches in Indonesia Dwi Hartanti Faculty of Pharmacy, University of Muhammadiyah of Purwokerto, Jl. Raya Dukuhwaluh, PO Box 202, Kembaran, Banyumas, Jawa Tengah, Indonesia 53182 (E-mail: [email protected]) ABSTRACT Endophytic fungi are those grow intra- or intercelullarly in the tissues of higher plants without causing overt symptoms of disease, They have been known to produce various bioactive secondary metabolites and have been studied widely for biosynthesis, biotransformations, bioremediations, and enzyme productions. In this review, a considerable amount of works that have been published on the endophytic fungi isolated from host plants collected in Indonesia is reported. This review give an overview of the reported studies from the selection of host plants, the isolated fungi, the screened bioactivity, and the bioactive metabolites of endophytic fungi derived from Indonesian host plants, Key words: Bioactive metabolites, bioactivity, endophytic fungi, host plant, Indonesia. INTRODUCTION Endophytic fungi are those grow intra- or intercelullarly in the tissues of higher plants without causing overt symptoms of disease (Schulz and Boyle, 2006). They are ubiquitous and have been isolated from almost all plants grown elsewhere, from tropical to boreal ecosystems. The relationship between endophytic fungi and their host can be obligate or facultative. They exhibit complex interactions with their hosts, the insects and another microorganisms (Arnold et al., 2007; Banerjee, 2011; Estrada et al., 2012; Kusari et al., 2013; Nair and Padmavathy, 2014; Rodriguez et al., 2009; Schulz et al., 1999; Shipunov et al., 2008). Plants strictly control the growth of endophytes and the endophytes gradually adapt to their living environments, In order to maintain stable symbiosis, endophytes participate in plant protection against pathogens through producing certain metabolites, promoting growth of plants and helping them adapt better to the environment (Brakhage and Schroeckh, 2011; Das and Varma, 2009; Dudeja et al., 2012; Gao et al., 2010; Kane, 2012). Endophytic fungi have been known to produce various bioactive secondary metabolites (Abrahão et al., 2013; Alvin et al., 2014; Aly et al., 2010; Jalgaonwala et al., 2011; Joseph and Priya, 2011; Kaul et al., 2012; Radic and Strukelj, 2012; Suryanarayanan, 2013; Yu et al., 2010). They also have been studied widely for biosynthesis, biotransformations, bioremidiations and enzyme productions (Cook et al., 2014; Khan and Doty, 2011; Kumar and Ahmad, 2013; Luo et al., 2013; Molina et al., 2012; Pimentel et al., 2011; Robl et al., 2013; Stępniewska and Kuźniar, 2013; Verza

Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Embed Size (px)

Citation preview

Page 1: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

42

Endophytic Fungi Researches in Indonesia

Dwi Hartanti

Faculty of Pharmacy, University of Muhammadiyah of Purwokerto, Jl. Raya Dukuhwaluh, PO Box

202, Kembaran, Banyumas, Jawa Tengah, Indonesia 53182

(E-mail: [email protected])

ABSTRACT

Endophytic fungi are those grow intra- or intercelullarly in the tissues of higher plants without

causing overt symptoms of disease, They have been known to produce various bioactive

secondary metabolites and have been studied widely for biosynthesis, biotransformations,

bioremediations, and enzyme productions. In this review, a considerable amount of works that

have been published on the endophytic fungi isolated from host plants collected in Indonesia is

reported. This review give an overview of the reported studies from the selection of host plants,

the isolated fungi, the screened bioactivity, and the bioactive metabolites of endophytic fungi

derived from Indonesian host plants,

Key words: Bioactive metabolites, bioactivity, endophytic fungi, host plant, Indonesia.

INTRODUCTION

Endophytic fungi are those grow intra- or intercelullarly in the tissues of higher plants without

causing overt symptoms of disease (Schulz and Boyle, 2006). They are ubiquitous and have been

isolated from almost all plants grown elsewhere, from tropical to boreal ecosystems. The

relationship between endophytic fungi and their host can be obligate or facultative. They exhibit

complex interactions with their hosts, the insects and another microorganisms (Arnold et al.,

2007; Banerjee, 2011; Estrada et al., 2012; Kusari et al., 2013; Nair and Padmavathy, 2014;

Rodriguez et al., 2009; Schulz et al., 1999; Shipunov et al., 2008). Plants strictly control the

growth of endophytes and the endophytes gradually adapt to their living environments, In order

to maintain stable symbiosis, endophytes participate in plant protection against pathogens

through producing certain metabolites, promoting growth of plants and helping them adapt

better to the environment (Brakhage and Schroeckh, 2011; Das and Varma, 2009; Dudeja et al.,

2012; Gao et al., 2010; Kane, 2012).

Endophytic fungi have been known to produce various bioactive secondary metabolites (Abrahão

et al., 2013; Alvin et al., 2014; Aly et al., 2010; Jalgaonwala et al., 2011; Joseph and Priya, 2011;

Kaul et al., 2012; Radic and Strukelj, 2012; Suryanarayanan, 2013; Yu et al., 2010). They also have

been studied widely for biosynthesis, biotransformations, bioremidiations and enzyme

productions (Cook et al., 2014; Khan and Doty, 2011; Kumar and Ahmad, 2013; Luo et al., 2013;

Molina et al., 2012; Pimentel et al., 2011; Robl et al., 2013; Stępniewska and Kuźniar, 2013; Verza

Page 2: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

43

et al., 2009; Wang and Dai, 2010; Ying et al., 2014). This review aims to take a comprehensive

look at the progress of endophytic fungi research in Indonesia as April 2015.

HOST PLANTS

A specific rationale for the selection of plant for endophyte isolation is performed in order to

widen the opportunity obtaining new endophytic fungi and new bioactive metabolites as well.

The prioritized host plants are those from unique environmental settings, have an ethnobotanical

history, that are endemic and grown in areas of great biodiversity (Strobel and Daisy, 2003). In

Indonesia, the most studied plant for isolation of endophytic fungi were medicinal plants,

followed by crops and mangroves (Figure 1). Most of medicinal plants studied for endophytic

fungi isolation were based one ethnomedicinal use by one or more of hundreds of Indonesian

tribes. The medicinal plants for endophytic fungi isolation reported in Indonesia were sambiloto

(Andrographis paniculata, Acanthaceae), sugar apple (Annona squamosa, Annonaceae), kepel

(Stelechocarpus burahol, Annonaceae), cananga (Cananga odorata, Annonaceae), pulasari (Alyxia

reinwardtii, Apocynaceae), keladi tikus (Typhonium divaricatum, Araceae), dahlia (Dahlia

viriabilis, Asteraceae), mangosteen (Garcinia mangostana, Clusiaceae), kandis gajah (G, griffithii,

Clusiaceae), G, forbessi, G, porrecta (Clusiaceae), paku simpai (Cibotium barometz,

Dicksoniaceae), red meranti (Shorea balarengan, Dipterocarpaceae), kumis kucing (Orthosiphon

stamineus, Lamiaceae), johor (Cassia siamea, Leguminosae), trengguli (C, fistula, Leguminosae),

kemladeyan (Loranthus parasiticus, Loranthaceae), neem (Azadirachta indica, Meliaceae), orchid

tree (Aglaia odorata, Meliaceae), mahagony (Swietania macrophylla, Meliaceae), brotowali

(Tinaspora crispa, Menispermaceae), yellow moonsheed (Archangelisia flava, Menispermaceae),

akar kuning (Fibraura chloroleuca, Menispermaceae), Java fig (Ficus benyamina, Moraceae),

Morus spp, (Moraceae), Indonesian laurel (Syzygium polyanthum, Myrtaceae), white gum

(Eucalypthus alba, Myrtaceae), guava (Psidium guajava, Myrtaceae), jasmine (Jasminum sambac,

Oleaceae), tunjuk langit (Helminthostachys zeylanica, Ophiogloseceae), pigeon orchid

(Dendrobium crumenatum, Orchidaceae), pandan (Pandanus amaryfolius, Pandanaceae), sirih

(Piper betle, Piperaceae), pepper (P, nigrum, Piperaceae), Celebes pepper ( P, crocatum,

Piperaceae), Indian mullberry (Morinda citrifolia, Rubiaceae), cinchona (Cinchona ledgeriana,

Rubiaceae), red cinchona (C, pubescens, Rubiaceae), catechu (Uncaria gambier, Rubiaceae),

honey bush (Murraya paniculata, Rutaceae), buah makasar (Brucea javanica, Simaroubaceae),

Chinese yew ( Taxus sumatrana, Taxaceae), tea (Camelia sinensis, Theaceae), mahkota dewa

(Phaleria macrocarpa, Thymelaeaceae), bengle hantu (Zingiber ottensii, Zingiberaceae), ginger

(Z, officinale, Zingiberaceae), white turmeric (Curcuma zedoaria, Zingiberaceae), galangal (Alpinia

galanga, Zingiberaceae), and ongkea (Mezzetia parviflora) (Agusta, 2007; Agusta et al., 2005;

Agusta et al., 2006b; Agusta et al., 2013; Artanti et al., 2014; Artanti et al., 2012; Artanti et al.,

Page 3: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto

5-6 June 2015, Horison Hotel PurwokertoISBN 978-602-73538-0-0

2011; Astuti et al., 2014; Dompeipen

al., 2011a; Elfita et al., 2012b

al., 2013; Fitrya and Muharni

2014; Ilyas et al., 2009; Jamal

al., 2008; Kumala et al., 2010a

Kumala and Siswanto, 2007

Maehara et al., 2010; Mangunwardoyo

Muharni et al., 2014; Mun'im

2011; Praptiwi et al., 2013;

Ramdanis et al., 2012; Saraswaty

et al., 2007; Sugijanto et al.,

al., 2010; Sugijanto et al., 2004

Yunianto et al., 2012; Yunianto

The endophytic fungi from crops were also extensively studied in Indonesia

endophytic fungi obtained from crops were studied for their potency as bioagent for controlling

plant pathogenic insects, nematodes and fungi

oil (Elaeis guineensis, Arecaceae)

(Diospyros mabola, Ebenaceae)

(Dimocarpus longan, Sapindaceae)

University of Muhammadiyah Purwokerto - Pharmacy International Conference6 June 2015, Horison Hotel Purwokerto

Dompeipen et al., 2011; Elfina et al., 2014; Elfita et al., 2012a

2012b; Elfita et al., 2011b; Elfita et al., 2014; Elfita et al., 2013

Fitrya and Muharni, 2013; Ginting et al., 2013; Harni and Munif, 2012; Hermawati

Jamal et al., 2009; Kumala et al., 2007a; Kumala and Fitri, 2008

2010a; Kumala et al., 2011; Kumala et al., 2010b; Kumala

2007; Kumala et al., 2006; Kumala et al., 2007b; Lorenita

Mangunwardoyo et al., 2012; Margino, 2008; Mufidah et al.,

Mun'im et al., 2013; Noverita et al., 2009; Ola et al., 2014; Prabandari

; Prihatiningtias et al., 2007; Radji et al., 2009; Radji

Saraswaty et al., 2013; Shibuya et al., 2005; Sinaga et al., 2009

2011a; Sugijanto et al., 2009; Sugijanto and Dorra, 2012;

2004; Sugijanto et al., 2014; Winarno, 2006; Wulansari

Yunianto et al., 2014).

Fig 1. The nature of host plants.

The endophytic fungi from crops were also extensively studied in Indonesia. Most of the

endophytic fungi obtained from crops were studied for their potency as bioagent for controlling

nematodes and fungi. Mango (Mangifera indica, Anacardiaceae)

Arecaceae), water spinach (Ipomea reptans, Convolvulaceae)

Ebenaceae), candlenut (Aleuritas mollucana, Euphorbiaceae)

Sapindaceae), soy bean (Glycine max, Fabaceae), avocado (

Pharmacy International Conference

2012a; Elfita et

2013; Fitriyah et

Hermawati et al.,

2008; Kumala et

Kumala et al., 2009;

Lorenita et al., 203;

et al., 2013;

Prabandari et al.,

Radji et al., 2011;

2009; Srikandace

; Sugijanto et

Wulansari et al., 2014;

Most of the

endophytic fungi obtained from crops were studied for their potency as bioagent for controlling

Anacardiaceae), palm

Convolvulaceae), butter fruit

Euphorbiaceae), longan

avocado (Persea

Page 4: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

45

gratissima, Lauraceae), cocoa (Theobroma cacao, Malvaceae), jackfruit (Artocarpus

heterophyllus, Moraceae), banana (Musa paradisiana, Musaceae), water cherry (S, aqueum,

Myrtaceae), vanilla (Vanilla planiflora, Orchidaceae), starfruit (Averhoa carambola, Oxalidaceae),

rice (Oriza sativa, Poaceae), corn (Zea mays, Poaceae), manilkara (Manilkara kauki, Sapotaceae),

citrus (Citrus sp,, Rutaceae), potato (Solanum tuberosum, Solanaceae) and chilli (Capsicum

annuum, Solanaceae) were the crops studied for their endophytic fungal diversity (Amin, 2013a;

Amin et al., 2013; Amin et al., 2014; Ariyanto et al., 2013; Ariyono et al., 2014; Delfita, 2011;

Hapsari et al., 2014; Hernawati et al., 2011; Legiastuti and Aminingsih, 2012; Manurung et al.,

2014; Margino, 2008; Nurzannah et al., 2014; Puspita et al., 2013; Rante et al., 2013; Sinaga et al.,

2013; Situmorang et al., 2013; Sriwati et al., 2011; Sudantha and Abadi, 2007b; Tirtana et al.,

2013; Tondok et al., 2012).

Mangroves are considered living in harsh environment (Kathiresan and Bingham, 2001), that they

meet the rationale for host plant selection. The studied mangroves for isolation of endophytic

fungi in Indonesia were Avicennia alba, A. marina (Acanthaceae), Sonneratia sp. (Lythraceae),

Bruguiera sp., Rhizophora mucronata, R. stylosa, R. apiculata, and Ceriops sp. (Rhizophoraceae)

(Kartika et al., 2013; Prihanto et al., 2011; Suciatmih and Rahmansyah, 2013; Sumampouw et al.,

2013; Tarman et al., 2013). Aside from the medicinal plants, crops, and mangroves, recently

studied host plant for endophytic fungi diversity are Gebang palm (Corypha utan, Arecaceae) and

sengon (Paracerianthes falcateria, Fabaceae) (Amin, 2013b; Margino, 2008).

THE ISOLATED ENDOPHYTIC FUNGI

The dominant endophytic fungi succesfully isolated from host plants are from Ascomycota

phylum, followed by Basidiomycota, Zygomycota, and Deuteromycota (Figure 2). The most often

isolated Ascomycota are Aspergillus spp. (Amin et al., 2013; Ariyanto et al., 2013; Elfina et al.,

2014; Elfita et al., 2011b; Ginting et al., 2013; Hapsari et al., 2014; Ilyas et al., 2009; Nurzannah et

al., 2014; Puspita et al., 2013; Suciatmih and Rahmansyah, 2013; Sudantha and Abadi, 2007a;

Tarman et al., 2013; Tirtana et al., 2013). Fusarium spp. (Agusta et al., 2006b; Amin, 2013a; Amin

et al., 2014; Ariyono et al., 2014; Delfita, 2011; Elfina et al., 2014; Elfita et al., 2013; Hapsari et al.,

2014; Ilyas et al., 2009; Mangunwardoyo et al., 2012; Prihanto et al., 2011; Puspita et al., 2013;

Situmorang et al., 2013; Suciatmih and Rahmansyah, 2013; Sunariasih et al., 2014; Tirtana et al.,

2013; Yunianto et al., 2012). Penicillium spp. (Agusta, 2007; Ariyanto et al., 2013; Ariyono et al.,

2014; Hapsari et al., 2014; Maehara et al., 2010; Muharni et al., 2014; Radji et al., 2009;

Situmorang et al., 2013; Suciatmih and Rahmansyah, 2013; Sudantha and Abadi, 2007b;

Sunariasih et al., 2014; Tarman et al., 2013; Tirtana et al., 2013; Yunianto et al., 2014),

Colletotrichum spp. (Amin et al., 2014; Ariyono et al., 2014; Ginting et al., 2013; Hapsari et al.,

2014; Mangunwardoyo et al., 2012; Puspita et al., 2013; Radji et al., 2009; Suciatmih and

Page 5: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

46

Rahmansyah, 2013; Tirtana et al., 2013). Cladosporium spp. (Ariyono et al., 2014; Ilyas et al.,

2009; Suada et al., 2012; Sudantha and Abadi, 2007b; Sugijanto and Dorra, 2012; Sunariasih et

al., 2014). Trichoderma spp. (Amin, 201.a; Elfina et al., 2014; Elfita et al., 2014; Hapsari et al.,

2014; Situmorang et al., 2013; Sudantha and Abadi, 2007b). Curvularia spp. (Amin et al., 2014;

Ariyanto et al., 2013; Ginting et al., 2013; Hapsari et al., 2014; Prabandari et al., 2012; Puspita et

al., 2013; Situmorang et al., 2013). Acremonium spp, (Amin, 2013a; Elfita et al., 2012b; Prihanto

et al., 2011; Puspita et al., 2013; Tirtana et al., 2013). Nigrospora spp. (Amin, 2013b; Ariyono et

al., 2014; Hapsari et al., 2014; Hernawati et al., 2011; Suada et al., 2012). Diaporthe spp. (Agusta,

2007; Agusta et al., 2005; Agusta et al., 2006a; Ilyas et al., 2009; Maehara et al., 2010; Ola et al.,

2014; Shibuya et al., 2005), and Altenaria spp. (Elfina et al., 2014; Situmorang et al., 2013;

Sunariasih et al., 2014; Tarman et al., 2013).

Another fungi living as endophytes from Ascomycota succesfully isolated are Ampelomyces sp.

(Prihanto et al., 2011), Arthrinium sp. (Maehara et al., 2010), Arthroascus sp., Cyniclomyces sp.,

Guillermondella sp., Hanseniaspora sp., Kluyveromyces sp. (Sugijanto et al., 2004), Aschersonia

sp., Pestalotia sp., Xylaria sp. (Tondok et al., 2012), Aureobasidium sp. (Lorenita et al., 203),

Beauveria sp. (Amin et al., 2013), Botryosporium sp., Clyndrophora spp., Humicola spp.,

Microsporium sp., Verticillium spp. (Puspita et al., 2013), Botrytis sp. (Puspita et al., 2013; Tirtana

et al., 2013), Cephalosporium sp. (Ariyono et al., 2014; Puspita et al., 2013), Cercospora piaropi,

C. nicotianae, Dothideomycete sp., Geomyces pannorum, Guignardia mangiferae, Pleosporaceae

sp. (Legiastuti and Aminingsih, 2012), G. endophyllicola (Mangunwardoyo et al., 2012; Suciatmih

and Rahmansyah, 2013), Ceriporia lacerate, Sordariomycetes sp. (Sunariasih et al., 2014),

Chochlibus lunatus (Fitrya and Muharni, 2013), Coniothyrium sp. (Hernawati et al., 2011),

Cylindrocephalum sp., Mastigosporium spp., Helicosporium sp., Paecylomyces sp., Passalora sp.

(Hapsari et al., 2014), Fennelia nivea (Saraswaty et al., 2013), Geotrichum sp. (Amin et al., 2014),

Gliocladium spp. (Amin et al., 2014; Situmorang et al., 2013), Gloesporium sp., Helminthosporium

sp., Monocillium sp., Nodulsporium sp. (Ariyono et al., 2014), Cochliobolus geniculatus,

Glomerella cingulata, Lecanicillium kalimantanense, Neonectria punicea, Periconia macrospinosa,

Rhizopycnis vagum, Talaromyces assiutensis, Myrothecium verrucaria (Ginting et al., 2013),

Hyalodendron sp. (Hapsari et al., 2014; Tirtana et al., 2013), Lecythophora sp. (Sugijanto et al.,

2011b; Sugijanto et al., 2010), Monilia sp. (Fitriyah et al., 2013), Nectria rigidiuscula (Yunianto et

al., 2012), Pestalotiopsis spp. (Ilyas et al., 2009; Mangunwardoyo et al., 2012; Suciatmih and

Rahmansyah, 2013), Nodulisporium sp., Phaeosphaeriopsis musae, Phialemonium curvatum,

Sarocladium oryzae, Sordariomycetes sp. (Suada et al., 2012), Phoma spp. (Ilyas et al., 2009;

Situmorang et al., 2013), Phomopsis spp. (Ilyas et al., 2009; Maehara et al., 2010; Suciatmih and

Rahmansyah, 2013), Sarocladium oryzae (Suada et al., 2012; Sunariasih et al., 2014),

Scolecobasidium sp., Westerdikella sp., Xylohypha sp. (Mangunwardoyo et al., 2012),

Page 6: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

47

Talaromyces spp. (Ginting et al., 2013; Hermawati et al., 2014; Suciatmih and Rahmansyah,

2013), and Thievalia polygonoperda (Prihatiningtias et al., 2007).

Fig 2. The phyllum of isolated endophytic fungi.

Calocybe gambosa (Tondok et al., 2012), Fomitopsis cf. maliae (Sunariasih et al., 2014),

Fomitopsis pinicola (Maehara et al., 2010), Moniliella sp. (Lorenita et al., 203), Resinicium friabile

(Tondok et al., 2012), Rhizoctonia spp. (Marlida et al., 2010a; Sudantha and Abadi, 2007b),

Schizophyllum spp. (Maehara et al., 2010; Sunariasih et al., 2014), and Zygodesmus spp. (Puspita

et al., 2013) were the endophytic fungi from Basidiomycota. From Zygomycota phylum,

endophytic Cunninghamella sp. (Tirtana et al., 2013), Martensiomyces sp. (Ariyono et al., 2014),

Mucor spp. (Puspita et al., 2013), and Mycotypha sp. (Hapsari et al., 2014) were succesfully

isolated. It has been reported that endophytic Coelomycetes sp. (Jamal et al., 2009; Wulansari et

al., 2014) and Zasmidium cellare (Radji et al., 2009) from Deuteromycota phylum have been

reported previously.

THE SCREENED BIOACTIVITY OF ENDOPHYTIC FUNGI

The first of the steps needed for discovery of new biaoctive metabolites from endophytic fungi is

to determine the bioactivity of a crude extract of their culture broth or mycelium. The

identification and structure elucidation of the most potent metabolite is the next step to develop

the new drugs that would potentially be used in therapy (Radic and Strukelj, 2012). Bioactivity

guided isolation is commonly performed in order to obtain bioactive compounds from

Page 7: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

48

endophytic fungi (Strobel and Daisy, 2003). The selection of the screened bioactivity of

endophytic fungi based on the bioactivity of their respective host plant. The most often studied

bioactivity of endophytic fungi in Indonesia is antimicrobial, followed by inhibition of enzymes,

production of metabolites, citotoxicity, biotransformation, antinematodic, antioxidant, and

antimalarial (Figure 3).

There are two main purposes of studying antimicrobial activity of endophytic fungi, they are

producing antibiotic for human disease or developing bioagent to combat plant pathogenic fungi.

The endophytic fungi screened for producing antibiotics were mainly isolated from antimicrobial

medicinal plant such as A. squamosa, S. burahol, C. odorata, D. variabilis, L. parasiticus, A.

reinwardtii, G. mangostana, C. fistula, F. benyamina, A. indica, A. odorata, A. flava, F. chloroleuca,

J. sambac, M. citrifolia, S. polyanthum, D. crumenatum, P. betle, P. crocatum, P. macrocarpa, Z.

officinale, Z. ottensii, A. galanga, C. zedoaria and M. parviflora. For this purpose, the extract of

selected endophytic fungi were tested against common human pathogenic microorganisms such

as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Shigella dysentri,

Streptomyces pneumoniae, Salmonella typhiimurium, Pseudomonas aeruginosa,Candida

albicans, C. kruzei and Malassezia furfur (Fitriyah et al., 2013; Ginting et al., 2013; Kumala et al.,

2007a; Kumala and Siswanto, 2007; Margino, 2008; Mufidah et al., 2013; Muharni et al., 2014;

Noverita et al., 2009; Ola et al., 2014; Prihatiningtias et al., 2007; Radji et al., 2011; Sinaga et al.,

2009; Sugijanto et al., 2011a; Sugijanto et al., 2009; Sugijanto et al., 2011b; Sugijanto and Dorra,

2012; Sugijanto et al., 2010; Sugijanto et al., 2014; Wulansari et al., 2014).

In order to obtain biocontrol agents against plant pathogenic fungi, endophytic fungi were

isolated from crops such as M. indica, D. mabola, A. mollucana, P. guajava, P. gratissima, T.

cacao, A. heterophyllus, M. paradisiana, S. aqueum, V. planiflora, A. carambola, O. sativa, Z.

mays, M. kauki, D. longan, S. tuberosum and C. annuum. The tested organisms for finding new

biocontrol agents against plant pathogenic fungi are Fusarium spp., Phytophthora spp.,

Curvularia spp., Helminthosporium maydis, and Botryodiplodia theobromae (Amin et al., 2013;

Manurung et al., 2014; Margino, 2008; Nurzannah et al., 2014; Puspita et al., 2013; Sinaga et al.,

2013; Suada et al., 2012; Sudantha and Abadi, 2007b; Sunariasih et al., 2014; Tirtana et al., 2013).

Antidiabetic activity of endophytic fungi was studied using inhibition of α-glucosidase model. The

fungi were isolated from medicinal plants traditionally used as antidiabetic such as S. mahagoni,

A. paniculata, O. spicatus, M. citrifolia, P. crocatum, P. ornatum, C. siamea, and T. sumatrana.

Endophytic fungi isolated from A. paniculata, O. spicatus, P. crocatum and C. siamea exhibited a

potent α-glucosidase inhibition activity. The similar results were also shown by endophytic fungi

Collelotricum sp. isolated from T. sumatrana (Artanti et al., 2012; Dompeipen et al., 2011;

Mun'im et al., 2013).

Page 8: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

49

It has been reported that endophytic fungi undergo a sophisticated communication with their

host plants and resulted their capability to produce the same or similar metabolites produced by

their respective host plants (Kusari et al., 2012). Piperine, gingkolide B, taxol, podophyllotoxin,

camptothecin, vincristin, vinblastin, and huperzine A were the metabolites produced by both

endophytic fungi and the host plant where they live (Chithra et al., 2014; Cui et al., 2012;

Eyberger et al., 2006; Liu et al., 2010; Shweta et al., 2013). This approach was used to screen the

endophytic fungi isolated from their respective host plant. The capability of producing kinin and

sinkonin, that were the major metabolites produced by Cinchona plant, was used as the

screening method to choose the endophytic fungi isolated from C. ledgeriana and C. pubescens

(Winarno, 2006). The screening of endophytic fungi based on their capability of producing

phytase has been reported also. Phytase was produced by Rhizoctonia sp. and F. verticillioides

derived from G. max (Delfita, 2011; Marlida et al., 2010b).

Fig 3. The screened bioactivity of endophytic fungi.

Citotoxic activities of endophytic fungi have been reported. Fusarium spp. and Nectria

rigidiuscula residing in A. squamosa exhibited citotoxicity effect against MCF-7 brest cancer cells

(Yunianto et al., 2012). 19,20-epoxycytochalasin Q was a compound isolated from endophytic

Xylaria sp. residing in Morus sp. that possessing cytotoxic effect with IC50<0.1 μg/mL against

murine leukemia P-388 (Hermawati et al., 2014). An endophytic fungi isolated from P. crocatum

was reported inhibiting the growth of WiDr and T47D cell lines (Astuti et al., 2014). Endophytic F.

chlamydosporum isolated from B. javanica possesses citotoxicy against L1210, while metabolites

of B. parva isolated from the same host plant inhbits the growth of T47D and MCF-7. Endophytic

Page 9: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

50

fungi 1.3.11, also isolated from B. javanica, shows a synergyc effect to that of doxorubicin

against MCF-7 (Kumala et al., 2010b; Kumala et al., 2009; Kumala et al., 2006; Kumala et al.,

2007b).

Endophytic fungi also has been used in biotransformation process. Coelomycetes AFKR-3 isolated

from A. flava has shown the capability to transform berberine into its 7-N-oxide derivative and

palmatine into a new derivative palmatine 7-N-oxide (Agusta et al., 2013). Diaporthe sp. isolated

from C. sinensis oxidized stereoselectively at C-4 position of (+)-catechin and (-)-epicatechin to

give the correspondent 3,4-cis-dihydroxyflavan derivatives, respectively. (-)-Epicatechin 3-O-

gallate and (-)-epigallocatechin 3-O-gallate were also oxidized by the fungus into 3,4-

dihydroxyflavan derivatives (Shibuya et al., 2005). The endophytic fungus Diaporthe sp. E isolate

obtained from C. sinensis showed their capability to biotransform (-)-epigallocatechin-3-O-

gallate into (-)-2R,3S-dihydromyricetin (Agusta, 2007).

The endophytic fungi have been studied for antinematodic and biopesticide activity. Endophytic

Nigrospora sp. isolated from P. falcateria showed antinematodic activity against the motile

juvenile stage 2 of the root knot Meloidogyne spp. (Amin, 2013b). The endophytic fungus isolated

from M. paradisiana also showed the potency as biocontrol agent in controlling Radopholus

similis (Sinaga et al., 2013). Trichoderma sp. isolated from P. nigrum was reported exhibiting the

biocontrol activity against nematode M. incognita and R. similis (Harni and Munif, 2012).

The antimalarial activity screening was performed using endophytic A. flavus isolated from A.

paniculata. This fungi produced 7-hydroxypiranopiridin-4-on, an antimalarial metabolites (Elfita

et al., 2011b). Two alkaloid compounds isolated from endophytic fungi residing in brotowali also

active as antimalarial (Elfita et al., 2011a). Antioxidant activity of endophytic fungi was shown by

F. nivea residing in T. divaricatum (Saraswaty et al., 2013) and Acremonium sp. residing in G.

griffithii (Elfita et al., 2012a).

METABOLITES OF ENDOPHYTIC FUNGI

Linear with the extensive screening of antimicrobial activity of endophytic fungi, some of the

isolated metabolites were active as antimicrobial agents. Two new metabolites, diaporthemins A

and B, together with the known flavomannin-6,6’-di-O-methyl ether were isolated from D.

melonis residing in A. squamosa collected in Kupang. Flavomannin-6,6’-di-O-methyl ether was

active as antimicrobial against S. aureus ATCC 29213 and S. pneumoniae ATCC 49619 with MIC of

2 and 32 µg/mL, respectively (Ola et al., 2014). Coelomycetes sp. AFKR-18 derived from the young

stems of a A. flava produced pachybasin when cultured in a liquid medium. Pachybasin inhibited

the growth of E. coli, B. subtilis, M. luteus, S. cerevisiae, C. albicans, A. niger, A. flavus, S. aureus

and F. oxysporum with MIC values of 16.0-64.0 μg/mL (Wulansari et al., 2014). The 3-acetyl -

Page 10: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

51

2,5,7-trihydroxy-1,4-naphtalenedione, a compound isolated from endophytic fungi TCBP4

obtained from T. crispa, possessed a better antifungal activity compared to commercial

antifungal nystatin and cabisidin against C. albicans (Praptiwi et al., 2013). A new compound

lecythomycin and known compounds (2R)-3-(2-hydroxypropyl)-benzene-1,2-diol, kojic acid, 7-O-

acetyl-kojic acid, p-hydroxybenzoic acid, emodine, 7-chloroemodine and ergosterol-5,8-peroxide

were isolated from Lecythophora sp. residing in A. reinwardtii. Lecytomycin displayed antifungal

activity against A. fumigatus and C. kruzei at MIC of 62.5-125 μg /mL (Sugijanto et al., 2009;

Sugijanto et al., 2011b). Methyl eugenol was the main metabolite of ethyl acetate extracts of

Colletotricum sp. PWD2 dan Coelomycetes sp. PWA1 isolated from P. amarylifolius that inhibited

the growth of Saccaromyces cerevisae (Jamal et al., 2009). Two alkaloids, meleagrine and

chrysogine, are isolated from Penicillium sp. from A. squamosa. Both compounds were not

exhibited antimicrobial and cytotoxic activity (Yunianto et al., 2014). The structure of bioactive

metabolites from endophytic fungi is shown in figure 4.

Fig 4. Structure of bioactive metabolites produced by endophytic fungi.

Endophytic T. wortmanii, Xylaria sp., and an unidentified fungus were obtained from host plant

M. cathayana and M. macroura. Wortmin and skyrin are two known compounds isolated from T.

wortmanii, while 19,20-epoxycytochalasin Q, 18-deoxy-19,20-epoxycytochalasin Q, and 19,20-

epoxycytochalasin C were isolated from Xylaria sp. On the other hand, two arthrinone derivatives

and a presilphiperfoliane sesquiterpene were isolated from an unidentified fungus. 19,20-

Page 11: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

52

epoxycytochalasin Q exhibited the most active cytotoxicity against murine leukemia P-388 with

IC50<0.1 μg/mL (Hermawati et al., 2014). An antioxidant metabolite, 3,5-dihydroxy-2,5-

dimethyltrideca-2,9,11-triene-4,8-dione, was isolated from Acremonium sp. residing in G. griffithii

(Elfita et al., 2012b).

The 7-hydroxypiranopiridin-4-on was an antimalarial metabolites of A. flavus isolated from A.

paniculata with MIC of 0,201 μM against Plasmodium falciparum 3D7 (Elfita et al., 2011b).

Another antimalarial metabolites produced by endophytic fungi were 7- hydroxy-3,4,5-trimethyl-

6-on-2,3,4,6-tetrahydroisoquinoline-8-carboxylic acid and 2,5-dihydroxy-1-

(hydroxymethyl)pyridin-4-on. Those alkaloids was produced by endophytic fungi BB3 and BB4

isolated from T. crispa (Elfita et al., 2011a). Table 1 summarizes the metabolites isolated from

endophytic fungi that were untested for their bioactivity.

Table 1. The bioactivity-untested metabolites of endophytic fungi

Metabolites Endophitic

Fungi

Host plants References

di-(2-ethylhexyl)phthalate and 5-(4’-

ethoxy-2’-hydroxy-5’-methyl-2’,3’-

dihydrofuran-3’-il (hydroxy) methyl-4-

isopropyl-3-methyl-2-pyran-2-on

Penicillium

sp.

C. zedoaria (Muharni et al.,

2014)

arugosin J, xylarugosin, resacetophenone Xylaria sp. C.

xanthorrhiza

(Hammerschmidt

et al., 2014)

5-hydroxy-4-hydroxymethyl-2H-pyran-2-

one (1) and (5-hydroxy-2-oxo-2H pyran-4-

yl)

methyl acetate

Trichoderma

sp.

T. crispa (Elfita et al., 2014)

(7R,8S)-7,8-dihydroxy-3,7-dimethyl-6-oxo-

7,8-dihydro6H-isochromene -carbaldehyde

Fusarium sp. T. crispa (Elfita et al., 2013)

11,12,13-trimethylheksyl-2-methylhexa-

2,4-dienoat

C. lunatus H. zaylanica (Fitrya and

Muharni, 2013)

8,10,12-trihydroxy-9-methoxy-7a-methyl-

7,7a,12a,13-tetrahydrobenzocyclohepta

oxocin-6-one

A. niger G. griffithii (Elfita et al.,

2012a)

8-hydroxy-9,12-octadecadienoic acid C. lunata C. barometz (Prabandari et al.,

2011)

kinin and sinkonin unidentified C.

ledgeriana

(Winarno, 2006)

(+)-epicytoskyrin and (+)-1,1’-bislunatin D.

phaseolorum

C. sinensis (Agusta et al.,

2006a)

CONCLUSIONS

It is believed that searching for natural products produced by endophytes could be a promising

way to discover highly effective, low toxicity, and minimal environmental impact bioactive

metabolites. In Indonesia, the rationale for plant selection have been followed, resulted in the

variety of host plants and their respective isolated endophytic fungi. Bioactivities of endophytic

Page 12: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

53

fungi have been reported, and many bioactive metabolites have been isolated from those fungi

through bioactivity-guided isolation.

REFERENCES

Abrahão M.R.E., Molina G., Pastore G.M. (2013) Endophytes: Recent developments in

biotechnology and the potential for flavor production. Food Res. Int. 52:367–372.

Agusta A. (2007) Biotransformasi (-)-Epigalokatekin-3-O-galat menjadi (-)-2R,3S-Dihidromirisetin

oleh fungi endofit Diaporthe sp. isolat E dari tumbuhan teh. HAYATI J. Biosci. 14:150-154.

Agusta A., Maehara S., Ohashi K., Simanjuntak P., Shibuya H. (2005) Stereoselective oxidation at

C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem.

Pharm. Bull. 53:1565-1569.

Agusta A., Ohashi K., Shibuya H. (2006a) Bisanthraquinone metabolites produced by the

endophytic fungus Diaporthe sp. Chem. Pharm. Bull. 54:579-582.

Agusta A., Ohashi K., Shibuya H. (2006b) Composition of the endophytic filamentous fungi

isolated from the tea plant Camellia sinensis. J. Nat. Med. 60:268-272.

Agusta A., Wulansari D., Praptiwi, Nurkanto A., Fathoni A. (2013) Biotransformation of

protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from

yellow moonsheed plant (Archangelisia flava (L.) Merr.). Proced. Chem. 12:38-43.

Alvin A., Miller K.I., Neilan B.A. (2014) Exploring the potential of endophytes from medicinal

plants as sources of antimycobacterial compounds. Microbiol. Res. 169:483–495.

Aly A.H., Debbab A., Kjer J., Proksch P. (2010) Fungal endophytes from higher plants: a prolific

source of phytochemicals and other bioactive natural products. Fungal Divers. 41:1-16.

Amin N. (2013a) Diversity of endophytic fungi from root of Maize var. Pulut (waxy corn local

variety of South Sulawesi, Indonesia). Int. J. Curr. Microbiol. App. Sci. 2:148-154.

Amin N. (2013b) Investigation of culture filtrate of endophytic fungi Nigrospora sp. isolate RS 10

in different concentrations towards root-knot nematode Meloidogyne spp. Indian J. Sci.

Tech. 6:5177-5181.

Amin N., Daha L., Nasruddin A., Junaed M., Iqbal A. (2013) The use of endophytic fungi as

biopesticide against downy mildew Peronosclerospora spp. on maize leaf blight,

Helminthosporium maydis. Academic Res. Int. 4:153-159.

Amin N., Salam M., Junaid M., Asman, Baco M.S. (2014) Isolation and identification of endophytic

fungi from cocoa plant resistante VSD M.05 and cocoa plant Susceptible VSD M.01 in

South Sulawesi, Indonesia. Int. J. Curr. Microbiol. App. Sci. 3:459-467.

Ariyanto E.F., Abadi A.L., Djauhari S. (2013) Keanekaragaman jamur endofit pada daun tanaman

padi (Oryza sativa L.) dengan sistem pengelolaan hama terpadu (PHT) dan konvensional di

Desa Bayem, Kecamatan Kasembon, Kabupaten Malang. J. HPT 1:37-51.

Ariyono R.Q., Djauhari S., Sulistyowati L. (2014) Keanekaragaman jamur endofit daun kangkung

darat (Ipomoea reptans Poir.) pada lahan pertanian organik dan konvensional. J. HPT 2:19-

28.

Page 13: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

54

Arnold A.E., Henk D.A., Eells R.L., Lutzoni F., Vilgalys R. (2007) Diversity and phylogenetic affinities

of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR.

Mycologia 99:185–206.

Artanti N., Tachibana S., Kardono L.B.S. (2014) Effect of media composition on α-glucosidase

inhibitory activity, growth and fatty acid content in mycelium extracts of Colllelotricum sp.

TSC13 from Taxus sumatrana (Miq.) de Laub. Pak. J. Biol. Sci. 17:884-890.

Artanti N., Tachibana S., Kardono L.B.S., Sukiman H. (2012) Isolation of α-glucosidase inhibitor

produced by an endophytic fungus Collelotricum sp. TSC13 from Taxus sumatrana. Pak. J.

Biol. Sci. 14:673-679.

Artanti N., Tachibana S., Kardono L.B.S., Sukimin H. (2011) Screening of endophytic fungi having

ability for antioxidative and α-glucosidase inhibitor activities isolated from Taxus

sumatrana. Pak. J. Biol. Sci. 14:1019-1023.

Astuti P., Wahyono, Nababan O.A. (2014) Antimicrobial and cytotoxic activities of endophytic

fungi isolated from Piper crocatum Ruiz & Pav. Asian Pac. J. Trop. Biomed. 4:S592-S596.

Banerjee D. (2011) Endophytic fungal diversity in tropical and subtropical plants. Res. J. Microbiol.

6:54-62.

Brakhage A.A., Schroeckh V. (2011) Fungal secondary metabolites - Strategies to activate silent

gene clusters. Fungal Genet. Biol. 48:15-22.

Chithra S., Jasima B., Sachidanandan P., Jyothisa M., Radhakrishnana E.K. (2014) Piperine

production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper

nigrum. Phytomedicine 15:534-540.

Cook D., Gardner D.R., Pfister J.A., Grum D. (2014) Biosynthesis of natural products in plants by

fungal endophytes with an emphasis on swainsonine, in: R. Jetter (Ed.), Recent Advances

in Phytochemistry: Phytochemicals - Biosynthesis, Function and Application, Springer

International Publishing, Switzerland. pp. 23-32.

Cui Y., Yi D., Bai X., Sun B., Zhao Y., Zhang Y. (2012) Ginkgolide B produced endophytic fungus

(Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913-920.

Das A., Varma A. (2009) Soil biology: symbiotic fungi, principles and practice, in: A. Varma and A.

C. Kharkwal (Eds.), Symbiosis: the art of living, Springer-Verlag, Berlin Heidelberg. pp. 1-

28.

Delfita R. (2011) Isolasi dan karakterisasi enzim phytase mikroflora endofitik tanaman kedelai

(Glycine max (L.) Merril). J. Sainstek 3:8-20.

Dompeipen E.J., Srikandace Y., Suharso W.P., Cahyana H., Simanjuntak P. (2011) Potential

endophytic microbes selection for antidiabetic bioactive compounds production. Asian J.

Biochem. 6.

Dudeja S.S., Giri R., Saini R., Suneja-Madan P., Kothe E. (2012) Interaction of endophytic microbes

with legumes. J. Basic Microbiol. 52:248–260.

Elfina D., Martina A., Roza R.M. (2014) Isolasi dan karakterisasi fungi endofit dari kulit buah

manggis (Garcinia mangostana L) sebagai antimikroba terhadap Candida albicans,

Staphylococcus aureus dan Escherichia coli. J. Online Mahasiswa Bidang MIPA 1:1-10.

Page 14: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

55

Elfita, Muharni, Munawar, Aryani S. (2012a) Secondary metabolite from endophytic fungi

Aspergillus niger of the stem bark of kandis gajah (Garcinia griffithii). Indo. J. Chem.

12:195-200.

Elfita, Muharni, Munawar, Legasari L., Darwati. (2011a) Antimalarial compounds from endophytic

fungi of brotowali (Tinaspora crispa L). Indo. J. Chem. 11:53-58.

Elfita, Muharni, Munawar, Rizki. (2012b) Isolation of antioxidant compound from endophytic

fungi Acremonium sp. from the twigs of kandis gajah. Makara J. Sci. 16:46-50.

Elfita, Muharni, Munawar, Salni, Oktasari A. (2011b) Senyawa antimalaria dari jamur endofitik

tumbuhan sambiloto (Andographis paniculata Nees). J. Natur Indonesia 13:123-129.

Elfita, Munawar, Muharni, Sudrajat M.A. (2014) Identification of new lactone derivatives isolated

from Trichoderma sp., an endophytic fungus of brotowali (Tinaspora crispa). HAYATI J.

Biosci. 21:15-20.

Elfita, Munawar, Muharni, Suprayetno. (2013) New pyran of an endophytic fungus Fusarium sp.

isolated from the leaves of brotowali (Tinaspora crispa). Indo. J. Chem. 13:209-215.

Estrada A.E.R., Jonkers W., Kistler H.C., May G. (2012) Interactions between Fusarium

verticillioides, Ustilago maydis, and Zea mays: An endophyte, a pathogen, and their

shared plant host. Fungal Genet. Biol. 49:578–587.

Eyberger A.L., Dondapati R., Porter J.R. (2006) Endophyte fungal isolates from Podophyllum

peltatum produce podophyllotoxin. J. Nat. Prod. 69:1121-1124.

Fitriyah D., Jose C., Saryono. (2013) Skrining aktivitas antimikroba dan uji fitokimia dari kapang

endofitik tanaman dahlia (Dahlia viriabilis) J. Ind. Che. Acta 3:50-55.

Fitrya, Muharni. (2013) Secondary metabolite from endophytic fungi Chochlibus lunatus of the

rhyzome of tunjuk langit (Helmynthostachys zaylanica). Indo. J. Chem. 13:193-198.

Gao F.-k., Dai C.-c., Liu X.-z. (2010) Mechanisms of fungal endophytes in plant protection against

pathogens. Afr. J. Microbiol. Res. 4:1346-1351.

Ginting R.C.B., Sukarno N., Widyastuti U., Darusman L.K., Kanaya S. (2013) Diversity of endophytic

fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to

Fusarium oxysporum plant pathogenic fungi. HAYATI J. Biosci. 20:127-137.

Hammerschmidt L., Ola A., Müller W.E.G., Lin W., Mándi A., Kurtán T., Proksch P., Aly A.H. (2014)

Two new metabolites from the endophytic fungus Xylaria sp. isolated from the medicinal

plant Curcuma xanthorrhiza. Tetrahedron Lett. doi:

http://dx.doi.org/10.1016/j.tetlet.2014.12.120.

Hapsari R.T.Y., Djauhari S., Cholil A. (2014) Keanekaragaman jamur endofit akar kangkung darat

(Ipomoea reptans Poir.) pada lahan pertanian organik dan konvensional. J. HPT 2:1-10.

Harni R., Munif A. (2012) Pemanfaatan agens hayati endofit untuk mengendalikan penyakit

kuning pada tanaman lada. Bul. RISTRI 3:201-206.

Hermawati E., Hakim E.H., Juliawaty L.D. (2014) Secondary metabolites of endophytic fungi from

Morus plant. Nat. Prod. Chem. Res. 2.

Page 15: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

56

Hernawati H., Wiyono S., Santoso S. (2011) Leaf endophytic fungi of chili (Capsicum annuum) and

their role in the protection against Aphis gossypii (Homoptera: Aphididae) Biodiversitas

12:187-191.

Ilyas M., Kanti A., Jamal Y., Hertina, Agusta A. (2009) Biodiversity of endophytic fungi associated

with Uncaria gambier Roxb. (Rubiaceae) from West Sumatra. Biodiversitas 10:23-28.

Jalgaonwala R.E., Mohite B.V., Mahajan R.T. (2011) A review: Natural products from plant

associated endophytic fungi. J. Microbiol. Biotech. Res. 1:21-32.

Jamal Y., Praptiwi, Agusta A. (2009) Metileugenol, metabolit utama pada kultur jamur endofit

yang diisolasi dari tumbuhan pandan wangi Indonesian J. Pharm. 20:185-189.

Joseph B., Priya R.M. (2011) Bioactive compounds from endophytes and their potential in

pharmeceutical effect: a review. Am. J. Biochem. Biol. Mol 1:291-309.

Kane K.H. (2012) Effects of endophyte infection on drought stress tolerance of Lolium perenne

accessions from the Mediterranean region. Environt. Exp. Bot. 71:337–344.

Kartika R., Bodhi W., Kepel B., Bara R. (2013) Uji daya hambat jamur endofit akar bakau

Rhizophora apiculata terhadap bakteri Staphylococcus aureus dan Escherichia coli. J.

eBiomedik 2.

Kathiresan K., Bingham B.L. (2001) Biology of mangroves and mangrove ecosystems. Adv. Mar.

Biol. 40:81-251.

Kaul S., Gupta S., Ahmed M., Dhar M.K. (2012) Endophytic fungi from medicinal plants: a treasure

hunt for bioactive metabolites. Phytochem. Rev. 11:487–505.

Khan Z., Doty S. (2011) Endophyte-assisted phytoremidiation. Curr. Topics Plant Biol. 12:97-105.

Kumala S., Agustina E., Wahyudi P. (2007a) Uji aktivitas antimikroba metabolit sekunder kapang

endofit tanaman tregguli (Cassia fistula L). J. Bahan Alam Indonesia 6:46-48.

Kumala S., Fitri N.A. (2008) Penapisan kapang endofit ranting kayu meranti merah (Shorea

balangeran Korth.) sebagai penghasil enzim xylanase. J. Ilmu Kefarmasian Indonesia 6:1-6.

Kumala S., Juniarti D.H., Wahyudi P. (2008) Isolasi mikroba endofit ranting tumbuhan trengguli

(Cassia fistula L) dan aktivitas enzim xilanase. J. Bahan Alam Indonesia 6:139-144.

Kumala S., Meiyanto E., Ikawati M., Jenie R.I. (2010a) Sinergisme fraksi butanol metabolit

sekunder kapang endofit 1.3.11 dengan doxorubisin dalam modulasi daur sel T74D dan

MCF-7. J. Ilmu Kefarmasian Indonesia 8:1-9.

Kumala S., Ruswita A., Setiawan H. (2011) Aktivitas antimikroba ekstrak n-butanol metabolit

sekunder kapang endofit 1.3.11 buah makasar (Brucea javanica L. Mer) dengan variasi pH

media fermentasi. J. Bahan Alam Indonesia 7:244-247.

Kumala S., Septiseptiana E.P., Meiyanto E. (2010b) Cytotoxic effect of secondary metabolites

produced by endophytic fungi 1.3.11, 1.1.6 and 1.2.6 isolated from the fruit of "tanaman

buah makassar" (Brucea javanica (L.) Merr on invitro T47D and MCF7 intact cells and

identification of fungus 1.3.11 by ribosomal DNA sequence analysis. Int. J. Pharm.

Pharmaceutical Sci. 2:80-83.

Page 16: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

57

Kumala S., Septisetyani E.P., Meiyanto E. (2009) n-Butanolic fraction of endofitic fungi of Buah

Makasar increases apoptotic effect of doxorubicin on MCF-7 cells. Indonesian J. Pharm.

20:42-47.

Kumala S., Siswanto E.B. (2007) Isolation and screening of endophytic microbes from Morinda

citrifolia and their ability to produce anti-microbial substances. Microbiol. Indones. 1:145-

148.

Kumala S., Utji R., Sudarmono P., Kardono L.B.S. (2006) Isolation of endophytic fungi from Brucea

javanica L. (Merr.) and cytotoxic evaluation of their n-butanol extract from fermentation

broth. Pak. J. Biol. Sci. 9:825-832.

Kumala S., Utji R., Sudarmono P., Kardono L.B.S. (2007b) Cytotoxic secondary metabolites from

fermentation broth of Brucea javanica endophytic fungus 1.2.11. Res. J. Microbiol. 2:625-

631.

Kumar A., Ahmad A. (2013) Biotransformation of vinblastine to vincristine by the endophytic

fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal. Biotransfor.

31:89-93.

Kusari S., Hertweck C., Spiteller M. (2012) Chemical ecology of endophytic fungi: origins of

secondary metabolites. Chem. Biol. Persp. 19:792-798.

Kusari S., Pandey S.P., Spiteller M. (2013) Untapped mutualistic paradigms linking host plant and

endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry

91:81-87.

Legiastuti T.S., Aminingsih T. (2012) Identifikasi cendawan endofit menggunakan teknik

Polymerase Chain Reaction. J. Fitopatol. Indones. 8:31-36.

Liu K., Ding X., Deng B., Chen W. (2010) 10-Hydroxycamptothecin produced by a new endophytic

Xylaria sp., M20, from Camptotheca acuminata. Biotechnol. Lett. 32:689–693.

Lorenita M., Haryani Y., Puspita F., Trihartomo D., Sikumbang S. (2003) Screening of endophytic

fungi from tubers of Dahlia variabilis. J. Agricul. Tech. 9:565-570.

Luo S.-L., Dang L.-Z., Li J.-F., Zou C.-G., Zhang K.-Q., Li G.-H. (2013) Biotransformation of saponins

by endophytes isolated from Panax notoginseng. Chem. Biodivers. 10:2021–2031.

Maehara S., Simanjuntak P., Ohashi K., Shibuya H. (2010) Composition of endophytic fungi living

in Cinchona ledgeriana (Rubiaceae). J. Nat. Med. 64:227-230.

Mangunwardoyo W., Suciatmih, Gandjar I. (2012) Frequency of endophytic fungi isolated from

Dendrobium crumenatum (Pigeon orchid) and antimicrobial activity. Biodiversitas

13:34-39.

Manurung I.R., Pinem M.I., Lubis L. (2014) Uji antagonisme jamur endofit terhadap Cercospora

oryzae Miyake dan Culvularia lunata (Wakk) Boed. dari tanaman padi di laboratorium. J.

Online Agroekoteknologi 2:1563-1571.

Margino S. (2008) Secondary metabolite (antibiotic) production by Indonesian endophytic fungi

Indonesian J. Pharm. 19:86-94.

Marlida Y., Delfita R., Adnadi P., Ciptaan G. (2010a) Isolation, characterization and production of

phytase from endophytic fungus its application for feed. Pak. J. Nutr. 9:471-474.

Page 17: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

58

Marlida Y., Delfita R., Gusmanizar N., Ciptaan G. (2010b) Identification, characterization and

production of phytase from endophytic fungi. W. Academy Sci. Eng. Tech. 4:817-820.

Molina G., Pimentel M.R., Bertucci T.C.P., Pastore G.M. (2012) Application of fungal endophytes

in biotechnological processes Chem. Eng. Transactions 27:289-294.

Mufidah, Rante H., Rahim A., Agustina R., Pakki E., Talbani A. (2013) Aktivitas antifungi metabolit

sekunder fungi endofit yang diisolasi dari Mezzetia parviflora Becc. Maj. Farm. Farmakol.

17:69-72.

Muharni, Fitrya, Ruliza M.O., Susanti D.A., Elfita (2014) Di-(2-ethylhexyl)phthalate and pyranon

derivated from endophytic fungi Penicillium sp the leave of kunyit putih (Curcuma

zedoaria). Indo. J. Chem. 14:290-296.

Mun'im A., Ramadhan M.G., Soemiati A. (2013) Screening of endophytic fungi from Cassia siamea

Lamk leaves as α-glucosidase inhibitor. Int. Res. J. Pharm. 4:128-131.

Nair D.N., Padmavathy S. (2014) Impact of endophytic microorganisms on plants, environment

and humans. Sci. World J. 2014.

Noverita, Fitria D., Sinaga E. (2009) Isolasi dan uji aktivitas antibakteri jamur endofit dari daun

dan rimpang Zingiber ottensii Val. J. Farm. Indonesia 4:171-176.

Nurzannah S.E., Lisnawita, Bakti D. (2014) Potensi jamur endofit asal cabai sebagai agens hayati

untuk mengendalikan layu Fusarium (Fusarium oxysporum) pada cabai dan interaksinya. J.

Online Agroekoteknologi 2:1230-1238.

Ola A.R.B., Debbab A., Kurtán T., Brötz-Oesterhelt H., Aly A.H., Proksch P. (2014)

Dihydroanthracenone metabolites from the endophytic fungus Diaporthe melonis isolated

from Annona squamosa. Tetrahedron Lett. 55:3147–3150.

Pimentel M.R., Molina G., Dionısio A.P., Junior M.R.M., Pastore G. (2011) The use of endophytes

to obtain bioactive compounds and their application in biotransformation process.

Biotech. Res. Int. 2011:doi:10.4061/2011/576286.

Prabandari E.E., Irawadi T.T., Sumaryono W., Syamsu K. (2011) Selection of carbon and nitrogen

source for 8-hydroxy-9,12-octadecadienoic acid production using endophytic fungi

BioMCC FE-00283. Microbiol. Indones. 5:187-191.

Prabandari E.E., Irawadi T.T., Sumaryono W., Syamsu K. (2012) Uji sitotoksisitas fraksi aktif dan

senyawa murninya yang dihasilkan kapang endofit tanaman obat dari Lombok Timur

terhadap sel MCF-7. J. Ilmu Kefarmasian Indonesia 10:24-29.

Praptiwi, Jamal Y., Fathoni A., Nurkanto A., Agusta A. (2013) 3-acetyl -2,5,7-trihydroxy-1,4-

naphtalenedione, an antimicrobial metabolite from the culture of endophytic fungus

Coelomycetes TCBP4 from Tinospora crispa. Media Litbangkes 23:95-101.

Prihanto A.A., Firdaus M., Nurdiani R. (2011) Endophytic fungi isolated from mangrove

(Rhyzopora mucronata) and its antibacterial activity on Staphylococcus aureus and

Escherichia coli. J. Food Sci. Eng. 1:386-389.

Prihatiningtias W., Widyastuti S.M., Wahyuono S. (2007) Aktivitas antibakteri fungi endofit

Thievalia polygonoperda, isolat dari tumbuhan akar kuning (Fibraurea chloroleuca Miers).

Majalah Obat Tradisional 11:3-8.

Page 18: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

59

Puspita Y.D., Sulistyowati L., Djauhari S. (2013) Eksplorasi jamur endofit pada tanaman jeruk

(Citrus sp.) fusiprotoplas dengan ketahanan berbeda terhadap Botriodiplodia theobromae

Pat. J. HPT 1:67-76.

Radic N., Strukelj B. (2012) Endophytic fungi - The treasure chest of antibacterial substances.

Phytomedicine 19:1270-1284.

Radji M., Nugraheni F.A., Sumiati A. (2009) Molecular identification of endophytic fungi isolated

from Garcinia porrecta and Garcinia forbesii. J. Farm. Indonesia 4:156-160.

Radji M., Sumiati A., Rachmayani R., Elya B. (2011) Isolation of fungal endophytes from Garcinia

mangostana and their antibacterial activity. Afr. J. Biotechnol. 10:103-107.

Ramdanis R., Soemiati A., Mun'im A. (2012) Isolation and α-glucosidase inhibitory activity of

endophytic fungi from mahogany (Swietania macrophylla King) seeds. Int. J. Med. Arom.

Plants 2:447-452.

Rante H., Taebe B., Intan S. (2013) Isolasi fungi endofit penghasil senyawa antimikroba dari daun

cabai katokkon (Capsicum annuum L var. chinensis) dan profil KLT bioautografi. Maj.

Farm. Farmakol. 17:39-46.

Robl D., Delabona P.d.S., Mergel C.M., Rojas J.D., Costa P.d.S., Pimentel I.C., Vicente V.A., Pradella

J.G.d.C., Padilla G. (2013) The capability of endophytic fungi for production of

hemicellulases and related enzymes. BMC Biotechnology 13.

Rodriguez R.J., White Jr J.F., Arnold A.E., Redman R.S. (2009) Fungal endophytes: diversity and

functional roles. New Phytologyst 2009:1-17.

Saraswaty V., Srikandace Y., Simbiyani N.A., Jasmansyah, Setiyanto H., Udin Z. (2013) Antioxidant

activity and total phenolic contents of endophytic fungus Fennelia nivea NRRL 5504. Pak.

J. Biol. Sci. 16:1574-1578.

Schulz B., Boyle C. (2006) What are endophytes?, in: B. Schulz, et al. (Eds.), Soil Biology: Microbial

Root Endophytes, Springer-Verlag, Berlin pp. 1-13.

Schulz B., Römmert A.-K., Dammann U., Aust H.-J., Strack D. (1999) The endophyte-host

interaction: a balanced antagonism? Mycol. Res. 103:1275-283.

Shibuya H., Agusta A., Ohashi K., Maehara S., Simanjuntak P. (2005) Biooxidation of (+)-catechin

and (-)-epicatechin into 3,4-dihydroxyflavan derivatives by the endophytic fungus

Diaporthe sp. isolated from a tea plant. Chem. Pharm. Bull. 53:866-867.

Shipunov A., Newcombe G., Raghavendra A.K.H., Anderson C.L. (2008) Hidden diversity of

endophytic fungi in an invasive plant. Am. J. Bot. 95:1096-1108.

Shweta S., Gurumurthy B.R., Ravikanth G., Ramanana U.S., Shivanna M.B. (2013) Endophytic fungi

from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine.

Phytomedicine 20:337-342.

Sinaga E., Noverita, Fitria D. (2009) Daya antibakteri jamur endofit yang diisolasi dari daun dan

rimpang lengkuas (Alpinia galanga Sw.). J. Farm. Indonesia 4:161-170.

Sinaga R.T., Lisnawita, Pinem M.I. (2013) Potensi cendawan endofit dalam mengendalikan

Fusarium oxysporum f.sp. cubense dan nematoda Radopholus similis Cobb. pada tanaman

Page 19: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

60

pisang barangan (Musa paradisiaca L.) di rumah kaca. J. Online Agroekoteknologi 2:362-

372.

Situmorang E.C., Parameswara A., Sinthya H.C., Toruan-Matthius N., Liwang T. (2013)

Morphology and histology of fungal endophytes from oil palm roots in Ganoderma

boninense endemic area. Microbiol. Indones. 7:198-204.

Srikandace Y., Hapsari Y., Simanjuntak P. (2007) Seleksi mikroba endofit Curcuma zedoaria dalam

memproduksi senyawa kimia antimikroba. J. Ilmu Kefarmasian Indonesia 5:77-84.

Sriwati R., Chamzurni T., Sukarman. (2011) Deteksi dan identifikasi cendawan endofit

Trichoderma yang berasosiasi pada tanaman kakao. Agrisia 15:15-20.

Stępniewska Z., Kuźniar A. (2013) Endophytic microorganisms - promising applications in

bioremediation of greenhouse gases. Appl. Microbiol. Biotechnol. 97:9589-9596.

Strobel G., Daisy B. (2003) Bioprospecting for microbial endophytes and their natural products.

Microbiol. Mol. Biol. Rev. 67:491–502.

Suada I.K., Suhartini D.M.W.Y., Sunariasih N.P.L., Wirawan I.G.P., Chun K.W., Cha J.Y., Ohga S.

(2012) Ability of endophytic fungi isolated from rice to inhibit Pyricularia oryzae-induced

rice blast in Indonesia. J. Fac. Agr. Kyushu Univ. 57:51-53.

Suciatmih, Rahmansyah M. (2013) Endophytic fungi isolated from mangrove plant and have

antagonism role against Fusarium Wilt ARPN. J. Agricul. Biol. Sci. 8:251-257.

Sudantha I.M., Abadi A.L. (2007a) Identifikasi jamur endofit dan mekanisme antagonismenya

terhadap Fusarium oxysporum f. sp. vanillae pada tanaman vanili. Agroteksos 17:23-38.

Sudantha I.M., Abadi A.L. (2007b) Identifikasi jamur endofit dan mekanisme antagonismenya

terhadap jamur Fusarium oxysporum f. sp. vanillae pada tanaman vanili Agroteksos. 7:27-

38.

Sugijanto N.E., Anggraeny D., Zaini N.C. (2011a) Aktivitas antimikroba ekstrak jamur endofit

Kabatiella cauliflora var B yang diisolasi dari Alyxia reinwardtii. J. Ilmu Kefarmasian

Indonesia 9:31-34.

Sugijanto N.E., Diesel A., Ebel R., Indrayanto G., Zaini N.C. (2009) Chemical constituents of the

endophytic fungus Lecythophora sp. isolated from Alyxia reinwardtii. Nat. Prod. Commun.

4:1485-1488.

Sugijanto N.E., Diesel A., Rateb M., Pretsch A., Gogalic S., Zaini N.C., Ebel R., Indrayanto G.

(2011b) Lecythomycin, a new macrolactone glycoside from the endophytic fungus

Lecythophora sp. Nat. Prod. Commun. 6:677-678.

Sugijanto N.E., Dorra B.L. (2012) Aktivitas antimikroba fraksi-fraksi dari ekstrak jamur endofit

Cladosporium oxysporum yang diisolasi dari Aglaia odorata Lour. J. Kedokteran Indonesia

3.

Sugijanto N.E., Maftuchah I., Zaini N.C. (2010) Antimicrobial activity of endophytic fungi

Kabatiella Caulivora Var. A from Alyxia Reinwardtii BL. J. Biol. Res. 16.

Sugijanto N.E.N., Indrayanto G., Zaini N.C. (2004) Isolation and determination endophytic fungi

from Aglaia ecliptica, Aglaia eusideroxylon, Aglaia odorata and Aglaia odoratatissima.

Media Jurnal Penelitian Medika Eksakta 5.

Page 20: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

61

Sugijanto N.E.N., Yodianto B., Kusumajaya M.N., Zaini N.C. (2014) Aktivitas antimikroba dan

analisis KLT-densitometri metabolit fraksi-fraksi ekstrak endofit dari Aglaia odorata.

Berkala Ilmiah Kimia Farmasi 3:20-27.

Sumampouw M., Bara R., Awaloei H., Posangi J. (2013) Uji efek antibakteri jamur endofit akar

bakau Rhizophora stylosa terhadap bakteri Staphylococcus aureus dan Escherichia coli. J.

eBiomedik 2:1-5.

Sunariasih N.P.L., Suada I.K., Sunti N.W. (2014) Identifikasi jamur endofit dari biji padi dan uji

daya hambatnya terhadap Pyricularia oryzae Cav. secara in vitro. E-Jurnal

Agroekoteknologi Tropika 3:51-60.

Suryanarayanan T.S. (2013) Endophyte research: going beyond isolation and metabolite

documentation. Fungal Ecol. 6:561-568.

Tarman K., Safitri D., Setyaningsih I. (2013) Endophytic fungi isolated from Rhizophora mucronata

and their antibacterial activity. Squalen 8:69-76.

Tirtana Z.Y.G., Sulistyowati L., Cholil A. (2013) Eksplorasi jamur endofit pada tanaman kentang

(Solanum tuberosum L) serta potensi antagonisnya terhadap Phytophthora infestans

(Mont.) de Barry penyebab penyakit hawar daun secara in vitro. J. HPT 1:91-101.

Tondok E.T., Sinaga M.S., Widodo, Suhartono M.T. (2012) Potensi cendawan endofit sebagai

agens pengendali hayati Phytophthora palmivora (Butl.) Butl. penyebab busuk buah

kakao. J. Agron. Indonesia 40:146-152.

Verza M., Arakawa N.S., Lopes N.P., Kato M.J., Pupo M.T., Saida S., Carvalho I. (2009)

Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp. J.

Braz. Chem. Soc. 20:195-200.

Wang Y., Dai C.-C. (2010) Endophytes: a potential resource for biosynthesis, biotransformation,

and biodegradation. Ann. Microbiol. 61:207-215.

Winarno E.K. (2006) Produksi alkaloid oleh mikroba endofit yang diisolasi dari batang kina

Cinchona Ledgeriana Moens dan Cinchona Pubescens Vahl (Rubiaceae). J. Kimia Indonesia

1:59-66.

Wulansari D., Jamal Y., Praptiwi, Agusta A. (2014) Pachybasin, a major metabolite from culture

broth of endophytic Coelomyceteous AFKR-18 fungus isolated from a yellow moonsheed

plant, Arcangelisia flava (L.) Merr. HAYATI J. Biosci. 21:95-100.

Ying Y.-M., Shan W.-G., Zhan Z.-J. (2014) Biotransformation of huperzine A by a fungal endophyte

of Huperzia serrata furnished sesquiterpenoid - alkaloid hybrids. J. Nat. Prod. 77:2054–

2059.

Yu H., Zhang L., Li L., Zheng C., Guo L., Li W., Sun P., Qin L. (2010) Recent developments and

future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res.

165:437-449.

Yunianto P., Rosmalawati S., Rachmawati I., Suwarso W.P., Sumaryono W. (2012) Isolation and

identification of endophytic fungi from srikaya plants (Annona squamosa) having potential

secondary metabolites as anti-breast cancer activity. Microbiol. Indones. 6:23-29.

Page 21: Endophytic Fungi Researches in Indonesia Dwi Hartantidigilib.ump.ac.id/files/disk1/23/jhptump-ump-gdl-dwihartant-1105-1-48_pdfsa-c.pdf · 202, Kembaran, Banyumas, Jawa Tengah, Indonesia

Proceeding of The 1st University of Muhammadiyah Purwokerto - Pharmacy International Conference

5-6 June 2015, Horison Hotel Purwokerto ISBN 978-602-73538-0-0

62

Yunianto P., Rusman Y., Saepudin E., Suwarso W.P., Sumaryono W. (2014) Alkaloid (meleagrine

and chrysogine) from endophytic fungi (Penicillium sp.) of Annona squamosa L. Pak. J.

Biol. Sci. 17:667-674.