41
Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 민기복 Ki-Bok Min PhD Ki Bok Min, PhD 서울대학교 에너지자원공학과 조교수 Assistant Professor , Energy Resources Engineering

Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/9487.pdf · 2018. 1. 30. · Systems of ODEs as Models – Tank T 1 and T 2 contain initially

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Engineering Mathematics I- Chapter 4. Systems of ODEs

    민기복민기복

    Ki-Bok Min PhDKi Bok Min, PhD서울대학교 에너지자원공학과 조교수Assistant Professor, Energy Resources Engineering, gy g g

  • Ch.4 Systems of ODEs. Phase Plane. Q lit ti M th dQualitative Methods

    • Basics of Matrices and Vectors• Systems of ODEs as Models• Systems of ODEs as Models• Basic Theory of Systems of ODEs• Constant-Coefficient Systems. Phase Plane Method

    C it i f C iti l P i t St bilit• Criteria for Critical Points. Stability• Qualitative Methods for Nonlinear SystemsQ y• Nonhomogeneous Linear Systems of ODEs

  • Basics of Matrices and Vectors

    • Systems of Differential Equations– more than one dependent variable and more than one equationmore than one dependent variable and more than one equation

    1 11 1 12 2' ,y a y a y 1 11 1 12 2 1

    2 21 1 22 2 2

    ' ,' ,

    n ny a y a y a yy a y a y a y

    2 21 1 22 2' ,y a y a y 2 21 1 22 2 2

    1 1 2 2

    ,

    ' ,

    n n

    n n n nn n

    y a y a y a y

    y a y a y a y

    • Differentiation– The derivative of a matrix with variable entries is obtained by

    differentiating each entry.

    1 1

    2 2

    ' '

    'y t y t

    t ty t y t

    y y

  • Basics of Matrices and VectorsEivenvalues (고유치) and Eivenvectors (고유벡터)Eivenvalues (고유치) and Eivenvectors (고유벡터)

    • Let be an n x n matrix. Consider the equation where is a scalar and x is a vector to be determined.

    jka A Ax x

    – A scalar such that the equation holds for some vector x ≠ 0 is called an eigenvalue of A,

    Ax x

    – And this vector is called an eigenvector of A corresponding to this eigenvalue .

    A Ax x

  • Basics of Matrices and VectorsEivenvalues (고유치) and Eivenvectors (고유벡터)Eivenvalues (고유치) and Eivenvectors (고유벡터)

    Ax x 0 A I x0 Ax Ix

    – n linear algebraic equations in the n unknowns (the components of x).

    1, , nx x

    p )– The determinant of the coefficient matrix A I must be zero in

    order to have a solution x ≠ 0.

    • Characteristic Equation

    – Determine λ1 and λ2

    det 0 A IDetermine λ1 and λ2

    – Determination of eigenvector corresponding to λ1 and λ2

  • Basics of Matrices and VectorsEivenvalues (고유치) and Eivenvectors (고유벡터)Eivenvalues (고유치) and Eivenvectors (고유벡터)

    • Example 1. Find the eigenvalues and eigenvectors

    0404

    2.16.10.40.4

    A

    • If x is an eigenvector, so is kxg ,

  • Systems of ODEs as Models

    10 gal/min

    10 gal/min

    10 gal/min

    10 gal/minVS.

    10 gal/min

    Single ODE Systems of ODEs

  • Systems of ODEs as ModelsE l 3 Mi i bl (S 1 3)Example 3. Mixing problem (Sec 1.3)

    – Initial Condition: 1000 gal of water, 100 lb salt, initially brine runs in 10 gal/min, 5 lb/gal, stirring all the time, brine runs out at 10 gal/mingal/min

    – Amount of salt at t?

    10 gal/min

    10 gal/min

    ?

  • Systems of ODEs as Models

    – Tank T1 and T2 contain initially 100 gal of water each.

    – In T1 the water is pure, whereas 150 lb of fertilizer are dissolved in T2.

    – By circulating liquid at a rate of 2 gal/min and stirring the amounts of fertilizer

    in T1 and in T2 change with time t. 2y t

    1y t

    1 2 g

    – Model Set Up2 gal/min

    2y

    2 gal/min

    1 2 1 1 1 1 22 2' Inflow / min - Outflow / min Tank ' 0.02 0.02

    100 100y y y T y y y

    2 1 2 2 2 1 22 2' Inflow / min - Outflow / min Tank ' 0.02 0.02

    100 100y y y T y y y

    0 02 0 02 0.02 0.02 ' ,

    0.02 0.02

    y Ay A

  • Systems of ODEs as Models

    y1-y2 plane - phase plane (상평면 )Trajectory (궤적) : -상평면에서의곡선-전체해집합의일반적인양상을잘표현함.Phase portrait (상투영): trajectories in phase plane

  • Systems of ODEs as Models

    • Example 2. Electrical Network

    y1-y2 plane - phase plane (상평면 )Trajectory (궤적) : -상평면에서의곡선-전체해집합의일반적인양상을잘표현함.Phase portrait (상투영): trajectories in phase plane

  • Systems of ODEs as ModelsCon ersion of an nth order ODE to a s stemConversion of an nth-order ODE to a system

    • 2nd order to a system of ODE – Example 3. Mass on a Spring

    0''' k 0''' kycymy

    21' yy 10 y' , 21 yyyy

    2

    1

    yy

    y

    212

    21

    ' ymcy

    mky

    yy

    2

    10

    'yy

    mc

    mkAyy

    01

    det 2mk

    mcck

    IA Calculation same

    as before!mmmm as before!

    ) '' 2 ' 0 75 0E ) '' 2 ' 0.75 0Ex y y y

  • Systems of ODEs as ModelsCon ersion of an nth order ODE to a s stemConversion of an nth-order ODE to a system

    – solve single ODE by methods for systemsg y y– includes higher order ODEs into …first order ODE

  • Basic Theory of Systems of ODEsC t ( l t i l ODE)Concepts (analogy to single ODE)

    • First-Order Systems 1 1 1' , , , ny f t y y

    1 1

    ,

    n n

    y f

    y f

    y f

    2 2 1

    1

    ' , , ,

    ' , , ,

    n

    n n n

    y f t y y

    y f t y y

    n ny f ' ,ty f y

    S l ti i t l t b

    1n n n

    • Solution on some interval a

  • Basic Theory of Systems of ODEsE i t d U iExistence and Uniqueness

    • Theorem 1. Existence and Uniqueness Theorem

    – Let be continuous functions having continuous partial

    derivatives in some domain R of

    1, , nf f

    f f f tderivatives in some domain R of -

    space containing the point . Then the first-order system

    1 1

    1, , , ,

    n n

    f f fy y y

    n 1 2 nty y y

    0 1, , , nt K Kspace containing the point . Then the first order system

    has a solution on some interval satisfying the

    0 1 n

    0 0t t t

    initial condition , and this solution is unique.

  • Basic Theory of Systems of ODEsH N hHomogeneous vs. Nonhomogeneous

    • Linear Systems 'y a t y a t y g t

    11 1 1 1

    1 2

    , , n

    n nn n

    a a y g

    a a y g

    A y g

    1 11 1 1 1

    1 1'

    n n

    n n nn n n

    y a t y a t y g t

    y a t y a t y g t

    ' y Ay g

    Homogeneous:– Homogeneous:– Nonhomogeneous: ' , y Ay g g 0

    ' y Ay

  • Basic Theory of Systems of ODEsC t ( l t i l ODE)Concepts (analogy to single ODE)

    • Theorem 2 (special case of Theorem 1)

    Th 3• Theorem 3

    (1) (2) (1) (2) (1) (2)1 2 1 2 1 2

    (1) (2)1 2

    c c c c c c

    c c

    y y y y y Ay Ay

    A y y Ay

  • Basic Theory of Systems of ODEsG l l tiGeneral solution

    미분아님!!• Basis, General solution, Wronskian– Basis: A linearly independent set of n solutions of the 1 , , ny y

    미분아님!!

    Basis: A linearly independent set of n solutions of the homogeneous system on that interval

    – General Solution: A corresponding linear combination

    , ,y y

    General Solution: A corresponding linear combination 11 1 , , arbitraryn nc c c c ny y y

    – Fundamental Matrix : An n x n matrix whose columns are nsolutions 1 , , ny y 1 , ,

    nY y y y = Yc– Wronskian of : The determinant of Y 1 , , ny y

    1 21 1 1

    1 2

    n

    n

    y y y

    y y y

    ex)

    1 2 2 2

    1 2

    W , ,

    nn n n

    y y y

    y y y

    ny y

    ex)(1) (2) 0.5 1.5

    1 1 0.5 1.51 11 2(1) (2) 0.5 1.5

    2 22 2

    2 121 1.51.5

    t tt t

    t t

    c cy y e eYc c e c e

    c cy y e e

    y

  • Constant Coefficient Systems.

    • Homogeneous linear system with constant coefficients

    ' y Ay

    • Homogeneous linear system with constant coefficients – Where n x n matrix has entries not depending on tjka A

    – Try tey x

    ' t te e y x Ay Ax Ax x

    • Theorem 1. General Solution

    y y

    – The constant matrix A in the homogeneous linear system has a linearly independent set of n eigenvectors, then the corresponding solutions form a basis of solutions and the 1 ny ysolutions form a basis of solutions, and the corresponding general solution is

    , , y y 11

    1nn tt

    nc e c e y x x

  • Constant Coefficient Systems.

    • Example 1. Improper node (비고유마디점)

    3 1 3 1'1 3

    y Ay y 1 1 2

    2 1 2

    3

    3

    y y y

    y y y

    tt ececccy 42211 11

    yyy ececccy 21212 11

    yyy

  • Constant Coefficient Systems.

    • Example 2. Proper node (고유마디점)1 0

    '

    y Ay y 1 1y y

    0 1 y Ay y

    2 2y y

    t

    ttt

    ecyecy

    ecec22

    1121 1

    001

    y

  • Constant Coefficient Systems.

    • Example 3. Saddle point (안장점)1 0

    '

    y Ay y 1 1y y

    0 1 y Ay y

    2 2y y

    ttt ecyecec

    1101

    y tecyecec

    22

    21 10y

  • Constant Coefficient Systems.

    • Example 4. Center (중심)0 1

    '

    y Ay y 1 2y y

    4 0 y Ay y

    2 14y y

    itit

    itititit

    eiceicyececye

    ice

    ic 2

    22

    12

    22

    2112

    22

    1 22

    21

    21

    y

  • Constant Coefficient Systems.

    • Example 5. Spiral Point (나선점)1 1 1 1 2y y y 1 1

    '1 1

    y Ay y2 1 2y y y

    titi ei

    cei

    c

    12

    11

    11y

  • Constant Coefficient Systems.

    • Example 6. Degenerate Node (퇴화마디점): – 고유벡터가기저를형성하지않는경우: 행렬이고유벡터가기저를형성하지않는경우: 행렬이대칭이거나반대칭(skew-symmetric)인경우퇴화마디점은생길수가없음.

    texy 1

    yy

    2114

    ' exy

    tt ete uxy 2

    tt etcec 33011

    y etcec 21 111

    y

  • Constant Coefficient Systems.SSummary Δ is discriminant (판별식) of

    determinant of (A-λI)• Improper node (비고유마디점):

    – Real and distinct eigenvalues of the same sign1 20, 0

    • Proper node (고유마디점): – Real and equal eigenvalues

    *1 20,

    q g

    • Saddle point (안장점): Real eigenvalues of opposite sign

    1 20, 0 – Real eigenvalues of opposite sign

    • Center (중심): 0, pure imaginary – Pure imaginary eigenvalues

    • Spiral point (나선점): 0, complex p p ( )– Complex conjugates eigenvalues with nonzero real part

    * : when two linearly independent eigenvectors exist. Otherwise, degenerate node

  • Name Δ Eigenvalue Trajectories

    Improper node(비고유마디점) 0 1 2 0

    Proper node(고유마디점) 0 (고유마디점) 0 1 2

    Saddle Point(안장점) 0 1 2 0

    Center(중심)

    Pure imaginarye.g., i( ) g

    Spiral Point Complex number

    0

    i

    Spiral Point(나선점)

    Complex numbere.g., 1 i

  • Criteria for Critical Points. Stability

    • Critical Points of the system2

    2 2 21 1 22 2''dy

    dy y a y a ydt y Ay 2 2 21 1 22 211 1 11 1 12 2

    ' '

    y y y ydtdydy y a y a ydt

    y Ay

    – A unique tangent direction of the trajectory passing through except for the point

    2

    1

    dydy

    0 0P P Pthrough , except for the point

    – Critical Points: The point at which becomes undetermined, 0/0

    0 : 0,0P P 1 2: ,P y y2

    1

    dydy1y

  • Criteria for Critical Points. Stability

    • Five Types of Critical Points

    – Depending on the geometric shape of the trajectories near them

    Improper Node

    Proper Node

    SSaddle Point

    Center

    Spiral Point

  • Criteria for Critical Points. Stability

    • Stable Critical point (안정적 임계점):

    – 어떤 순간 에서 임계점에 아주 가깝게 접근한 모든궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한

    0tt 궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한상태로 남아 있는 경우.

    • Unstable Critical point (불안정적 임계점):

    – 안정적이 아닌 임계점

    • Stable and Attractive Critical point (안정적 흡인임계점)임계점):

    – 안정적 임계점이고, 임계점 근처 원판 내부의 한 점을지나는 모든 궤적이 를 취할 때 임계점에 가까이t접근하는 경우

  • Criteria for Critical Points. Stability

    St bl & U t blStable & attractive

    Unstable Unstable

    Stable Stable & Attractive

  • Qualitative Methods for Nonlinear S tSystems

    • Qualitative Method– Method of obtaining qualitative information on solutions without Method of obtaining qualitative information on solutions without

    actually solving a system.– particularly valuable for systems whose solution by analytic particularly valuable for systems whose solution by analytic

    methods is difficult or impossible.

    N li

    1 1 1 2

    Nonlinear systems' ,

    , thus '

    y f y y'

    f

    y f y 2 2 1 2' ,y f y yy y

    'y a y a y h y y linearization 1 11 1 12 2 1 1 2

    2 21 1 22 2 2 1 2

    ,, thus

    ' ,y a y a y h y yy a y a y h y y

    y' Ay h y

    linearization

  • Qualitative Methods for Nonlinear S tSystems

    • Theorem 1. Linearization– If f1 and f2 are continuous and have continuous partial derivatives If f1 and f2 are continuous and have continuous partial derivatives

    in a neighborhood of the critical point (0,0), and if , then the kind and stability of the critical point of nonlinear systems are th th f th li i d t

    det 0A

    the same as those of the linearized system

    1 11 1 12 2'thy a y a y

    ' A

    – Exceptions occur if A has equal or pure imaginary eigenvalues;

    1 11 1 12 2

    2 21 1 22 2

    , thus ' .y y yy a y a y

    y' Ay

    Exceptions occur if A has equal or pure imaginary eigenvalues; then the nonlinear system may have the same kind of critical points as linearized system or a spiral point.

  • Qualitative Methods for Nonlinear S tSystems

    • Example 1. Free undamped pendulum– Determine the locations and types of critical pointsDetermine the locations and types of critical points– Step 1: setting up the mathematical model

    q : the angular displacement measured counterclockwise q : the angular displacement, measured counterclockwise from the equilibrium position

    The weight of the bob : mgThe weight of the bob : mg

    A restoring force tangent to the curve of motion of the bob : mg sin q

    By Newton’s second law, at each instant this force is balanced by the force of acceleration mLq``

    '' sin 0 sin 0 gmLθ mg θ'' k kL

  • Qualitative Methods for Nonlinear S tSystems

    – Step 2: Critical Points Linearization 0,0 , 2 ,0 , 4 ,0 ,

    sin 0θ'' k 1 2set , 'y y 1 2'' iy yk

    2 1' siny k y

    2 10, sin 0 infinitely many critical points 0 , 0, 1, 2, y y nπ , n : 1 '0 1

    – Step 3: Critical Points Linearization.3

    1 1 1 11sin6

    y y y y 1 22 1

    '0 1, thus

    '0y y

    'y kyk

    y Ay y

    ,0 , 3 ,0 , 5 ,0 ,

    Consider the critical point (p , 0) 1 2set , ' 'y y 0 1' y Ay y

    critical points are all saddle points.

    sin 0θ'' k

    31 1 1 1 11sin sin sin6

    y y y y y 0'

    k

    y Ay y

  • Qualitative Methods for Nonlinear S tSystems

  • Nonhomogeneous Linear Systems of ODEODEs

    • Nonhomogeneous of Linear Systems:– Assume g(t) and the entries of the n x n matrix A(t) to be

    ' , y Ay g g 0Assume g(t) and the entries of the n x n matrix A(t) to be continuous on some interval J of the t-axis.

    – General solution : h p y y yGeneral solution : : A general solution of the homogeneous system on J

    : A particular solution(containing no arbitrary constants) of

    y y y hy py ' y Ay

    ' y Ay g

    : A particular solution(containing no arbitrary constants) of on J

    • Methods for obtaining particular solutions

    y y Ay

    • Methods for obtaining particular solutions– Method of Undetermined Coefficients– Method of the Variation of Parameter

  • Nonhomogeneous Linear Systems of ODEODEs

    • Method of undetermined coefficients: – Components of g : Components of g : – (1) constants

    (2) iti i t f t– (2) positive integer powers of t

    – (3) exponential functions – (4) cosines and sines.

  • Nonhomogeneous Linear Systems of ODEODEs

    • Example 1. Method of undetermined coefficients. Modification rule 3 1 6

    A general solution of the homogeneous system :

    23 1 6'1 3 2

    ty e y Ay g

    2 41 2

    1 1h t tc e c e

    y– A general solution of the homogeneous system :

    – Apply the Modification Rule by setting

    Equating the terms on both sides:

    1 21 1 y

    2 2p t tte e y u v

    1 2tt – Equating the -terms on both sides:– Equating the other terms:

    6

    2 2 h 0k

    k A

    1

    2 with any 01

    a a

    u Au u2tte

    – General solution :

    2 2, choose 02 4

    a kk

    u v Av v

    1 1 1 2 2 4 2 21 2

    1 1 1 22

    1 1 1 2t t t tc e c e te e

    y

  • Nonhomogeneous Linear Systems of ODEODEs

    • Example 1. solution by the method of variation of parameters3 1 6

    – General solution of the homogeneous system :

    23 1 6'1 3 2

    ty e y Ay g

    General solution of the homogeneous system :

    – Particular solution :

    11 'h nnc c t y y y Y c Y AY p t ty Y u– Particular solution : t ty Y u

    ' ' ' ' ' pt

    y Y u Yu Y u Yu AYu g

    0

    1 1 ' ' t

    t

    t t dt Yu g u Y g u Y g

  • Nonhomogeneous Linear Systems of ODEODEs

    • Example 1. solution by the method of variation of parameters (cont.)

    4 4 2 21 1 1

    t t t te e e e Y 6 2 2 4 4

    2 2 21

    2 24 4 2

    2 2

    4 261 1'8 42 22

    t t t t t

    t t t

    t tt t t

    e e e e e

    e e ee e

    Y

    u Y g 4 4 2

    2 20

    8 42 22

    2 24 2 2

    t t t

    t

    t t

    e ee e e

    tdt

    e e

    u

    0

    2 4

    2 4

    t tp

    t t

    e ee e

    y Yu

    2 2 42 4

    2 2 2 4

    2 2 2 22 2 22 2 2 2 22 2 2

    t t tt t

    t t t t

    t tte e ee e

    e tte e e