53
ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST Jan Valentin 24.-25.11.2009, České Budějovice

ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

  • Upload
    cybill

  • View
    31

  • Download
    1

Embed Size (px)

DESCRIPTION

ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST. Jan Valentin. 24.-25.11.2009, České Budějovice. Úvodní poznámka. Příspěvky k tématu IV konference. Problematika recyklace dodáno šest příspěvků jeden příspěvek zahraniční (Francie) Problematika nízkoteplotních směsi dodáno pět příspěvků - PowerPoint PPT Presentation

Citation preview

Page 1: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

Jan Valentin

24.-25.11.2009, České Budějovice

Page 2: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

2

Úvodní poznámka

Page 3: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

3

Příspěvky k tématu IV konference

Problematika recyklace dodáno šest příspěvků jeden příspěvek zahraniční (Francie)

Problematika nízkoteplotních směsi dodáno pět příspěvků jeden příspěvek zahraniční (Francie)

Problematika uplatnění drcené pryže dodány čtyři příspěvků jeden příspěvek slovenský

Problematika asfaltových směsí s pojivem CRmB dodáno šest příspěvků dva příspěvky zahraniční (Německo,USA) a jeden slovenský

Page 4: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

4

Asfaltové směsi s uplatněním drcené pryže

Page 5: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

5

Úvod - obecně

využívání drcené pryže v asfaltových směsích se i v České republice od osmdesátých let v pravidelných cyklech opakuje;

existují dva procesy využití v asfaltové směsi – mokrý a suchý; v roce 2009 v této souvislosti vydány aktualizované TP148; problematika uplatňování drcené pryže v posledních letech v řadě

evropských zemích velmi aktuální; zaměření na problematiku motivováno podmínkami směrnice o

odpadech a evropských předpisů týkajících se ochrany ovzduší a produkce emisí;

stoupá množství starých pneumatik, které jsou problematické z hlediska skládkování;

při spalování starých pneumatik nezbytné garantovat, že nedojde k emisi zplodin obsahujících síru.

Page 6: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

6

Úvod – problematika starých pneumatik

v zemích EU se ročně vyprodukuje 300 mil. kusů opotřebovaných pneumatik;

obsah kaučuku v pneumatice je cca 30-50 %-hm.;

využití: cementárny gumárenský průmysl silniční stavitelství

otázka dopadů na životní prostředí.

Stát Množství pneumatik v

tunách

Počet obyvatel

Rakousko 51 000 8 082 000

Česká republika 55 071 10 203 300

Německo 585 000 82 536 700

Maďarsko 45 000 10 142 400

Slovenská republika 18 000 5 379 200

Celkem 754 071 116 343 600

Region RmB Spotřebitelé (profilované

prvky)

Sport a bezpečnost

povrchy

Pneumatiky Devulkani-zace

Umělé hmoty

Stavebnictví a ostatní

% (kT/rok) % (kT/rok) % (kT/rok) % (kT/rok) % (kT/rok) % (kT/rok) % (kT/rok) USA 43 91 11 23 17 36 11 23 18 39 Evropa 7 36 21 108 39 200 33 170

Page 7: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

7

Úvod – uplatnění v silničním stavitelství

kaučuk obsažený v pneumatikách je vulkanizovaný sírou => náročné rozpouštění v asfaltovém pojivu;

možnosti rozpouštění: přímé (energeticky i časově náročné), rozpouštění s využitím změkčovadel, úprava granulátu termickou devulkanizací (ekonomicky náročnější na

pořízení zařízení),

potřeba správného stanovení teploty i doby míchání při aplikaci drcené pryže do asfaltového pojiva;

při teplotách nad 230°C dochází k postupné destrukci vazeb v chemické struktuře pryže => ztráta pružných vlastností, degradace;

některé složky pryžového granulátu nejsou zcela rozpustné v pojivu (např. saze).

Page 8: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

8

Asfaltové směsi s CRmB – české zkušenostiPříspěvek KUDRNA et al.:

zaměřeno na mokrý proces, tzn. přípravu asfaltového pojiva modifikovaného pryžovým granulátem;

technologie suchého procesu v ČR selhaly; použití drcené pryže v množství 15-25 %-hm. pojiva.

Příspěvek ŽALMAN: ověřovací směsi a provedení posouzení v praxi směsi AC s

uplatněním CRmB; použití drcené pryže v množství 18-20 %-hm. pojiva.

Page 9: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

9

Rozsah experimentu (KUDRNA)

použití pryžového granulátu z mechanického mletí a granulování; ověření přijatelnosti uplatnění podílu zkalandrovaného granulátu; pryž zrnitosti 0/1 nebo 0/2; jako základní pojiva uplatněny asfalty 50/70 a 70/100; vlastnosti pojiva laboratorně stanoveny po 60 min. míchání při

175°C; kontrolní zkoušky pojiv z praxe (podmínky výroby) po 10 hod.

@190°C a 45 min. @170°C; výsledky potvrzují obecné zkušenosti – pokles penetrace i o

několik tříd, nárůst bodu měknutí a více jak třicetinásobný nárůst viskozity @175°C.

Page 10: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

10

Rozsah experimentu (KUDRNA)

návrh a výroba směsí typu AC, PA a BBTM; u směsi AC o 2 %-hm. vyšší obsah pojiva; ověřování empirických i funkčních vlastností; upřednostnění funkčních charakteristik s ohledem k menší

vhodnosti návrhu směsi Marshallovým pěchem; uplatnění adhezní přísady vápenného hydrátu (potřeba zlepšení

odolnosti proti účinkům vody); sledováno stárnutí směsi (uložení nezhutněné směsi @80°C po

dobu 2 a 7 dní).

Page 11: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

11

Výsledky (KUDRNA)

Odolnost proti vodě zjištěna nižší odolnost směsí s CRmB vůči účinkům vody => vliv

na životnost; přísada vápenného hydrátu v množství 20 % hmotnosti pojiva

zabraňuje vlivu CRmB z hlediska hodnoty ITSw; vápenný hydrát pravděpodobně má pozitivní vliv i na stárnutí

směsi.

Tuhost moduly tuhosti (@15°C a 10 Hz) směsí s CRmB jsou nižší než u

srovnávacích směsí; u směsí ze zkušebních úseků se pravděpodobně ukazuje vliv

množství drcené pryže (vyšší obsah vede k nižší tuhosti); při stejném obsahu pryže vápenný hydrát snižuje tuhost.

Page 12: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

12

Výsledky (KUDRNA)

Únava charakteristiky stanoveny @10°C a 25 Hz dle ČSN EN 12697-24; zlepšení charakteristiky 6 u směsí s CRmB v porovnání se

standardní směsí; přísada vápenného hydrátu naopak mírně zhoršuje únavové

vlastnosti.

Nízkoteplotní vlastnosti zkouška není v ČR standardizována; uplatněn postup Thermal Stress Restrained Specimen Test; z hlediska vzniku mrazových trhlin došlo u směsí s CRmB k

snížení teploty v průměru o 6°C.

Page 13: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

13

Výsledky (KUDRNA)

2

8

3

7

15

6

4

0,0

0,5

1,0

1,5

2,0

2,5

3,0

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20Teplota [°C]

Tahové

napětí

[M

Pa]

1 AC 11

2 AC 11; CRmB

3 BBTM 8; CRmB

4 PA 8; CRmB

5 Úsek 1.1

6 Úsek 1.2

7 Úsek 2.1

8 Úsek 2.2

Page 14: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

14

Výsledky (KUDRNA)

Ztráta částic u PA při obsahu pojiva nad 8 %-hm. ztráta částic do 10 %; vliv simulace účinku mrazu přinesl nárůst ztráty částic cca o 2 %; vliv simulace stárnutí přinesl nárůst ztráty částic cca o 3 %.

Akustické vlastnosti

65

70

75

80

85

90

95

315

400

500

630

800

1000

1250

1600

2000

2500

3150

4000

Frekvenční spektrum [Hz]

Hla

dina

hlu

ku [d

B(A

)]

SMA 11 blízkoúseku 2

PA 8 Úsek 2

ACO 8 50/70 blízko Úseku 1

BBTM 11Úsek 1

Rubit® 1998

Page 15: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

15

Výsledky (KUDRNA)

Environmentální hlediska diskutované riziko uvolňování škodlivých látek při výrobě a

zpracování => zejména některé PAU; studie ve Švédsku či v Německu účinky těchto látek nepotvrdily; oproti tomu některé studie NIOSH poukázaly na riziko vybraných

PAU z hlediska chronických onemocnění.

Další vývoj návrh a ověření směsi typu SMA; provedení zkušebních úseků na PK typu D a R.

Page 16: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

16

Rozsah experimentu (ŽALMAN)

návrh a výroba směsí typu AC – označená jako ACR v souladu s firemním TP;

obsah pojiva ve směsi 7,5-8,6 %-hm.; provedení ověřovacího úseku (I/36 – obec Časy – rekonstrukce); použito CRmB dovezené z Itálie (Asphalt Rubber Italia); penetrace pojiva 25-75p.j., bod měknutí ≥ 54,4°C, viskozita

@175°C v rozmezí 1,5-5 Pa.s; pojivo možné udržovat při teplotě 165-185°C po dobu 10h.

Page 17: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

17

Výsledky sledovaných směsí (ŽALMAN)

Vlastnost Zjištěné hodnotyPožadováno dle

firemních TP

Mezerovitost směsi V (%-obj.) 4,4 3,5-5,5

Mezerovitost směsi kameniva VMA (%-obj.) 21,4 min. 19

Míra zhutnění MZ (%) Ø 98,1 min. 97

Spojení vrstev ACR / ACL 22 S Ø 18,16 KN** -

Max. poměrná hloubka koleje PRDAIR po 5000 cyklech (%)

2,9 5,0

Max. přírůstek hloubky koleje WTSAIR

(mm/103 cyklů )0,025 0,07

Protismykové vlastnosti – TRT -60 km/h + 0,04*** -

Měření hladiny hluku ( dB) - 2,5**** -

*** zvýšení fp oproti směsi AC na navazujícím úseku

**** snížení hluku oproti hladině hluku navazujícího úseku (při 50 km/h)

Page 18: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

18

Výsledky sledovaných směsí (ŽALMAN)

použitá drcená pryž prakticky neobsahuje zrna < 0,063 mm; nebylo prokázáno skutečné rozpouštění pryže v asfaltovém pojivu

spíše lze usuzovat na dílčí rozpouštění (zmenšování) větších částic drcené pryže;

samostatně zjišťován a vyloučen úbytek pryže jejím povařením v rozpouštědle => max. úbytek 1 %-hm.;

prokázána vysoká odolnost proti trvalým deformacím a odolnost proti kopírování trhlin;

zlepšené nízkoteplotní vlastnosti; předpokládán úbytek hlukové zátěže => vymezení směsi ARCT.

POZNÁMKA: zjištěné zvýšení vratné duktility @25°C (40 %) vyžaduje další

ověření dosavadním poznatkům.

Page 19: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

19

CRmB směsi – zahraniční zkušenosti

Příspěvek LOVEČEK et al.: zaměřeno na mokrý proces; návrh, ověření a výroba modifikovaného asfaltu PmB 45/80-55 s

přísadou drcené pryže.

Příspěvek BEER et al.: poznatky ze zkušebního úseku v Německu; použití komerčního CRmB ve směsi SMA8 a porovnání se směsí s

tradičním PmB.

Příspěvek MARCANT et al.: využití vhodných aditiv pro zlepšení vlastností CRmB; poznatky patentované technologie s využitím Innovalt R; řešení problematiky stability a ekonomické efektivity.

Page 20: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

20

Slovensko - dosavadní poznatky (LOVEČEK)

při mokrém procesu byl upřednostněn postup s termickou devulkanizací;

jako vhodnější se ukázala asfaltová pojiva s vysokým obsahem malténů (lepší nabobtnání pryže);

pro výrobu asfaltového pojiva Apollobit R použito obdobného pryžového granulátu.

Vlastnosti JednotkaTřída podle STN

EN 14023Dosahované

hodnoty

Penetrace (@25°C) 0,1 mm 4 79,0

Bod měknutí (KK) oC 7 57,6

Bod vzplanutí (coc) oC 2 318,0

Bod lámavosti podle Fraasse oC 8 -20,5

Vratná duktilita (@25°C) % 4 76,0

Skladovací stabilita – rozdíl bodu měknutí

oC 5 7,8

Page 21: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

21

Slovensko - dosavadní poznatky (LOVEČEK)

Závěry: potřeba provedení a sledování zkušebních úseků s porovnáním

obou způsobů využití drcené pryže; výroba asfaltového pojiva modifikovaná u výrobce se jeví jako

výrazně efektivnější; tato výroba přesto zůstává v porovnání s tradičním PmB

energeticky náročnější (při výrobě i skladování na obalovnách); z hlediska životního prostředí sledován charakteristický zápach

=> potřeba hygienických měření

Page 22: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

22

Zkušební úsek v Německu (BEER)

Vstupní poznatky: v řadě zemích preferovány aplikace s použitím minimálně 15 %-

hm. pojiva; systém termodynamicky nestabilní vyžadující neustálé míchání; pojivo CRmB se obecně hodí hlavně pro výrobu asfaltových směsí

s vyšším podílem hrubého kameniva (vytváří odpovídající kostru); v porovnání s klasickou směsí možný útlum hluku 8-10 dB(A); dobrá odolnost proti vzniku trvalých deformací, nižší tendence ke

stárnutí (obsaženy antioxidanty přítomné v pryži), zvýšená odolnost proti vzniku trhlin.

Page 23: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

23

Zkušební úsek v Německu (BEER)

Popis zkušebního úseku: provedení obrusné vrstvy SMA ve dvou technologiích; klasifikace pozemní komunikace: II. třída, 13.000 vozidel/24hod.; tloušťka obrusné vrstvy 35 mm; použito pojivo Mexphalte 45RM + 1,5% FTP (kvůli snížení

viskozity); pojivo vyrobeno mimo obalovnu; směs vyrobena s teplotou 160-167°C s obsahem 20 % R-

materiálu; pokládka provedena dvěma finišery na horkou spáru; hutnění oscilačními válci (8t) a statickými válci (12t).

Page 24: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

24

Zkušební úsek v Německu (BEER)

Poznatky: průměrná hodnota mezerovitosti 3,8 % s průměrnou hodnotou

stupně vyplnění mezer 81,6 %; hloubka koleje po 20.000 pojezdech @20°C (voda, ocelové kolo); nebyly prokázány žádné náznaky snížené přilnavosti pojiva ke

kamenivu; výsledky mezi směsí s CRmB a PmB jsou srovnatelné; oba posuzované úseky jsou rovnocenné; rozšíření asfaltových směsí s CRmB brání skutečnost, že pojivo

nelze skladovat déle než několik hodin a to s dostatečným mícháním.

Page 25: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

25

Kombinace pryže a aditiv (MARCANT)

Motivace: přínos z hlediska životního prostředí (využití pryže starých

pneumatik namísto jejího spalování); proměnlivá cena průmyslových polymerů; problematika s vysokou viskozitou a nízkou stabilitou při dávkování

15-25 % drcené pryže do asfaltového pojiva.

Příklady zahraničních specifikací: v USA specifikace pro pojiva s obsahem drcené pryže >20 % nebo

s obsahem drcené pryže a SBS; ve Španělsku vymezeny tři kategorie:

asfaltové pojivo modifikované drcenou pryží, vylepšený gumoasfalt, vysoko viskózní asfaltové pojivo modifikované pryží.

Page 26: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

26

Kombinace pryže a aditiv (MARCANT)

Koncept technologie CRmB s Innovalt R: návrh složení CRmB je vždy kompromisem mezi bodem měknutí,

vratnou duktilitou, skladovou stabilitou a viskozitou; vmíchání drcené pryže do asfaltového pojiva při vysokých

smykových rychlostech po dobu 2-8 hodin; následně aditivace Innovalt R400 po dobu 30 minut @160°C

(množství 0,5-1,0 %).

Performance Grade (PG třída) PG 64-22 Viskozita (135°C) cP 483 Skutečný grade PG (°C) 66,5 BBR – S (MPa) při teplotě -12°C 266 BBR – m-hodnota při teplotě -12°C 0,316 Vratná duktilita (%) 12,5

Složka Podíl (%-hm.) Acetonový extrakt 12,8 Kaučuk 50,0 Saze 30,8 Popel 6,4

Page 27: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

27

Kombinace pryže a aditiv (MARCANT)

Některé poznatky: viskozita se při stejné době míchání výrazně

zvyšuje v závislosti na množství přidávané drcené pryže;

při stálém obsahu drcené pryže se viskozita jakož i vratná duktilita zvyšují s rostoucí dobou míchání drcené pryže;

současně se mění tuhost pojiva; pokud se zvyšuje množství Innovalt R, dochází k

odpovídajícímu zvýšení hodnot tuhosti i viskozity; aditivace Innovalt R má pozitivní vliv na parametr

vratné duktility (pravděpodobně vliv spolupůsobení přísady a pryže);

vliv původu drcené pryže na vlastnosti je omezený.

0

5

10

15

20

25

a b c

P

ene

(1/

10 m

m)

Rubber (5%)

Rubber (5%)+ Innovalt R

Rubber

Rubber

30

+ Innovalt R

+ Innovalt R

Page 28: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

28

Kombinace pryže a aditiv (MARCANT)

Vratná duktilita

0

5

10

15

20

25

30

35

40

45

50

základníasfaltové pojivo

5 % drcenépryže

5 % drcenépryže + 0,5 %

Innovalt R

5 % drcenépryže + 1 %Innovalt R

10 % drcenépryže

Viskozita

0

2

4

6

8

10

12

14

16

18

základníasfaltové pojivo

5 % drcenépryže

5 % drcenépryže + 0,5 %

Innovalt R

5 % drcenépryže + 1 %Innovalt R

10 % drcenépryže

Page 29: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

29

Protihlukové vrstvy (HALODOVÁ)

Úvod hluk = druh environmentálního znečištění; představuje problém nejen ve městech, ale i v extravilánu; jedna z priorit řešených v rámci EU.

Mechanismy na styku pneumatika – vozovka: primární zdroje => valivý hluk (při rychlosti nad 60 km/h tvoří více

jak 75 % dopravního hluku; sekundární (zesilující) zdroje => energie vyvinutá na styku se

vyzařuje jako hluk a radiální vibrace.

Page 30: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

30

Protihlukové vrstvy (HALODOVÁ)

Primární zdroje: náraz dezénového bloku; sání vzduchu (air-pumping); tření mezi pneumatikou a

vozovkou.

Sekundární zdroje: vznik při neefektivním

vyzáření energie na styku; zesilující efekt; píšťaly varhan a

Helmholtzoby rezonátory.

Page 31: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

31

Protihlukové vrstvy (HALODOVÁ)

CB kryty s optimalizovanou strukturou: vymývaný beton; CB kryt s drážkovanou strukturou či texturováním; tenké vrstvy položené na povrch (nátěry).

Drenážní kryty (se systémem propojených mezer): jednovrstvé nebo dvouvrstvé drenážní asfaltové koberce (PA); drenážní (mezerovitá) CB obrusná vrstva.

Pružné a ostatní povrchy: asfaltové vrstvy s pryžovým granulátem; porézní elastické povrchy; povrchy s jemnou texturou (snížení velikosti max. zrna), např.

upravený typ SMA.

Page 32: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

32

Protihlukové vrstvy (HALODOVÁ)

Přínosy protihlukových vrstev: snížení hladiny hluku o 3-6 dB (A); dvouvrstvé drenážní koberce mohou vést ke snížení až o 12 dB; při použití drcené pryže lze u mezerovitých směsí dosáhnout

útlumu až o 6 dB(A); snížení se projeví zejména při rychlostech > 50 km/h; u asfaltových směsí s drcenou pryží prodloužení životnosti,

optimalizace protismykových vlastností a omezení některých poruch.

Negativní aspekty: snížení mezerovitosti v důsledku zanášení nečistotami.

Page 33: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

33

Environmentální aspekty v oblasti asfaltových vozovek

Page 34: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

34

Životní prostředí vs. asfaltová pojiva a směsiPříspěvek GÁBOR et al.:

problematika potřebného rozvoje silniční infrastruktury vs. aspekty ochrany životního prostředí;

shrnutí tzv. environmentálních technologií; základní vymezení významu vozovek s dlouhou životností.

Příspěvek PLITZ et al.: dosavadní poznatky ukazují, že asfalt není nebezpečná látka; dle REACH by měl být klasifikován kategorií WT; za běžných podmínek asfalt nepředstavuje žádné riziko pro zdraví

a životní prostředí.

Page 35: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

35

Environmentální technologie (GÁBOR)

Environmentální technologie identifikované pro Slovensko: třídění odpadu a technologie recyklace; nová řešení ve výstavbě PK => např. CB vozovky; technologie prodlužující životnost a zvyšující bezpečnost

(mikrokoberce, nátěrové technologie); nová generace pojiv na bázi rostlinných látek (Végecol a další); asfaltové směsi s 3E; vozovky s dlouhou životností.

Page 36: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

36

Environmentální technologie (GÁBOR)

Využití odpadu a recyklace: obecný problém moderní společnosti; potřeba podpory a propagace opětovného využití odpadů; mnohdy získáváme materiály srovnatelných vlastností a kvality

jako původní surovina; významný podíl zaujímá stavební a demoliční odpad (na jednoho

obyvatele ročně 0,6-1 tuna SDO); potřeba a nutnost využití tohoto materiálu zpět ve stavebních

konstrukcích; výhody recyklace:

aktivní přístup k ochraně ŽP mobilita (zpracování na místě) ekonomika

na Slovensku nedostačující předpisová základna pro recyklace.

Page 37: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

37

Environmentální technologie (GÁBOR)

Využití CB vozovek: prosazování v souvislosti s rostoucím zatížením konstrukcí a s

vyšší intenzitou; řešení pro případ potenciálního problému s dostupností ropy; ekonomická hospodárnost (životnost až 40 let => méně časté

opravy); z betonu se nevyluhují nebezpečné látky (výskyt vyluhování

toxických látek u asfaltových směsí nebyl nikdy prokázán!!); beton je recyklovatelný; menší náročnost na chemickou zimní údržbu; lepší optické vlastnosti (světlý povrch => menší náročnost na

osvětlení, nižší akumulace tepla); nehořlavost betonové konstrukce.

Page 38: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

38

Environmentální technologie (GÁBOR)

Page 39: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

39

Environmentální technologie (GÁBOR)

Podmínky pro vozovky s dlouhou životností: zdokonalení technologických postupů; další zkvalitnění návrhové metody, zpřesnění poznatků o únavě

a degradaci konstrukcí; silnější vs. subtilní konstrukční vrstvy; použití kvalitních materiálů s vysokou přidanou hodnotou; průběžné informace o průběhu a vzniklých problémech při

výstavbě a provozu pozemní komunikace; důsledné dodržování pravidelné správy a údržby (prevence); uplatnění výkonových (funkčních) smluv.

Především ale CENA stavební dodávky není jediným kritériem!!

Page 40: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

40

Asfaltová pojiva a otázky ŽP (PLITZ)

Poznatky o škodlivosti asfaltových pojiv: z chemického hlediska asfalt je složitou kompozicí chemických látek

(zejména uhlovodíků); zatříděn pod CAS 8002-05-9; při vyšších teplotách dochází k uvolňování emisí, které by

potenciálně mohly mít negativní vlivy; toxikologické vlastnosti mohou představovat riziko teprve při

teplotách >180°C; karcinogenita je z hlediska vdechování dermální, z hlediska

kontaktu s kůže může být slabě pozitivní vliv kondenzátu dýmů uvolňovaných při teplotě >230°C;

poznatky eko-toxicity dosud ukazují, že výluhy z asfaltu jsou hluboko pod limity pro pitnou vodu.

Obecně doporučeno při aplikacích udržovat teplotu pod 200°C => dochází k minimální emisi PAU.

Page 41: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

41

Asfaltová pojiva a otázky ŽP (PLITZ)

Asfaltová pojiva v kontextu nové evropské legislativy: podléhají klasifikaci a registraci dle REACH; musí mít doloženu existenci předpisů pro uvolňování

nebezpečných látek => činnost CEN TC351; při posuzování shody asfaltových stavebních výrobků dle CPD

(resp. CPR) musí být posouzeny emise všech složek; pro asfaltová pojiva existuje řada ověřovacích studií.

Nahlížení na asfalt z hlediska zdraví a ŽP jako na nebezpečnou látku je neopodstatněné a nesprávné.

Page 42: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

42

Studie škodlivosti asfaltových výparů

Úvod: týká se celého zpracovatelského řetězce; problematika zejména zvýšených pracovních teplot; různé kategorie částic asfaltových výparů:

jemné částice, částice rozpustné v benzenu, celkový obsah organických látek, obsah PAU (S-PAU, D-PAU, benzo(a)pyren).

Výroba asfaltových

pojiv a skladování

Přeprava, nakládka a vykládka

Aplikace:

• hutněnéasfaltové úpravy vozovek

• střechy

• lité asfalty

Skladovánía výroba Přeprava Aplikace in

situ

Recyklace, opětovné

použití

Výroba asfaltových

pojiv a skladování

Přeprava, nakládka a vykládka

Aplikace:

• hutněnéasfaltové úpravy vozovek

• střechy

• lité asfalty

Skladovánía výroba Přeprava Aplikace in

situ

Recyklace, opětovné

použití

Page 43: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

43

Studie škodlivosti asfaltových výparů

Identifikované vlivy na zdraví: akutní (krátkodobé) podráždění:

riziko otravy a podráždění horních cest dýchacích (uzavřené prostory),

ojedinělé podráždění očních sliznic (vniknutí výparů), akutní podráždění kůže nebylo prokázáno;

chronické vlivy na zdraví: rakovina plic – nebyl prokázán vliv asfaltových výparů, rakovina kůže – ověřování probíhá, chronická obstrukční choroba plicní (určité negativní

výsledky sledovány výzkumy v severských zemích).

Page 44: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

44

Aktuální epidemiologické studie případová kontrolní studie vlivu asfaltových výparů na rakovinu

plic: dlouhodobý výzkum IARC (více jak 20 let), sledovány velké soubory pracovníků, kteří byly v kontaktu s

asfaltovými směsmi, studie je podkladem pro REACH a pro kladnou propagaci

průmyslu zpracovávajícího asfalt, výpary asfaltových pojiv nemají vliv na onemocnění rakovinou

plic, mnohem závažnější jsou kuřácké návyky a případná práce s

dehtovými pojivy v minulosti.

Page 45: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

45

Aktuální epidemiologické studie studie MESTA vztahu respiračních onemocnění a asfaltových

výparů: dlouhodobé sledování souboru více jak 60 pracovníků (pouze

Norsko), sledován vliv asfaltových výparů a jemných asfaltových částic

na výskyt respiračních onemocnění, pracovní četa pokládky asfaltové směsi je v porovnání s dalšími

pracovníky při výrobě a zpracování asfaltové směsi vystavena čtyřnásobně vyšší koncentraci PAU,

identifikován negativní vliv výfukových plynů strojů a projíždějící dopravy,

určité negativní vlivy ultra-jemných částic z hlediska mírného zvýšení výskytu chronických respiračních onemocnění.

Page 46: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

46

Aktuální epidemiologické studie studie potenciálu vlivu asfaltových výparů a aerosolů na vznik

rakoviny kůže: epidemiologický výzkum iniciován americkou NIOSH v roce

2007 pro ověření dermální expozice, založeno na principu provádění kožních stěrů, výzkum dosud prováděn především na laboratorních myších

(nátěry kůže asfaltovým kondenzátem), určité negativní vlivy ultra-jemných částic z hlediska mírného

zvýšení výskytu chronických respiračních onemocnění, biologické zkoušky myší kůže prokázaly, že kondenzát

asfaltových výparů získaných z hutněné asfaltové směsi nebyl karcinogenní,

sledováno pouze slabé kožní podráždění a žádné jiné nežádoucí účinky.

Page 47: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

47

Vyluhování škodlivých látek

Úvod: tlak na provádění tohoto typu zkoušek; souvislost s ochranou podzemních vod a půdy; do blízké budoucnosti nezbytné, pokud bude snahou surovinu

identifikovat jako odpad; podmínky vyplývají ze směrnice 2008/98/EC a z některých

národních zákonů a vyhlášek (např. vyhláška 376/2001 Sb. o hodnocení nebezpečných vlastností odpadů);

v rámci CEN se problematice věnuje TC292 a TC351; riziko u druhotných materiálů používaných v silničním

stavitelství je omezené => podmínkou je dostatečné třídění a využívání ověřených materiálů.

Page 48: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

48

Vyluhování škodlivých látek

Způsoby ověřování vyluhovatelnosti: metoda vyluhování vymezením toxicity

(využívána americkou agenturou EPA pro ověření koncentrací těžkých kovů);

jednostupňová vsádková zkouška vyluhovatelnosti se stanoveným poměrem kapalné a pevné fáze;

zkouška vyluhovatelnosti se závislostí na pH (obdobou vsádkové zkoušky);

sloupcová zkouška vyluhovatelnosti; zkouška vyluhovatelnosti pro zhutněný

zrnitý materiál; dynamická monolitická zkouška

vyluhovatelnosti.

Page 49: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

49

Vyluhování škodlivých látek

Alternativní měření - experiment: činidlo vyluhování – destilovaná voda nebo kyselina octová; zkušební vzorek o hmotnosti 1-5 g ve 100 ml činidla; anorganický rozbor proveden zejména na mletých vzorcích; srovnávací zkoušky provedeny na původním materiálu; provedené též celkový rozbory chemických prvků rozpuštěním

vzorku v roztoku kyseliny dusičné / kyseliny fluorovodíkové / kyseliny chloristé;

stanoveny koncentrace základních prvků (makroprvků) a stopových prvků (mikroprvků);

použito zařízení ICP EOS (optická emisní spektrometrie s plazmou) => plazma zajišťuje vznik signálu, spektrometr detekuje prvky a jejich koncentrace).

Page 50: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

50

Vyluhování škodlivých látek

Optická část spektormetru

Generování plazmatu

Uspořádání měření

Page 51: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

51

Vyluhování škodlivých látek

Page 52: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

52

Vyluhování škodlivých látek

Analyzované materiály: drcená pryž s maximální velikostí částice do 1 mm; odprašky z výroby; hnědouhelný multiprach; asfaltový tříděný R-materiál.

Výsledky: kyselina octová vyluhuje větší koncentrace než roztok vody; každé činidlo vyluhuje mírně odlišné prvky; u rozemletých vzorků efektivnější vyluhování; u R-materiálu vyluhování potvrzuje pasivační účinky asfaltu; z pohledu potenciální škodlivosti pro životní prostředí

nepředstavují testované materiály riziko (pouze anorganická analýza!!!).

Page 53: ENVIRONMENTÁLNÍ TECHNOLOGIE, ENERGETICKÁ NÁROČNOST

53

Děkujeme za pozornost