Evaluacion de Radiacion y Microfisica en Zonas Polares

Embed Size (px)

Citation preview

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    1/33

    Evaluation of WRF Radiation and MicrophysicsParameterizations for use in the Polar Regions

    Mark W. Seefeldt

    Michael Tice

    Department of Engineering – Physics – SystemsProvidence College

     

    Cooperative Institute for Research in Environmental Sciences (CIRES)

    University of Colorado at Boulder

     Atmospheric Model Parameterizations in the Polar Regions WorkshopBoulder, CO – July 12, 2012

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    2/33

    Outline

    • Objective / Motivation

    • WRF General Configuration

    • Radiation Parameterizations

    • Microphysics Parameterizations

    • Observations for Evaluation

    • Statistical Comparisons• WRF 3.0 Physics Evaluation (2009)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    3/33

    Objective

    • The preferred physics parameterizations in the

    polar regions is still under debate and evaluation

     • e purpose o s s u y s o eva ua e a su e oradiation and microphysics parameterizations for

    the use of the WRF model in the polar regions

    • The anticipated outcome is the identification of abest-use combination of microphysics and radiation

    • A secondary goal is the elimination of several of the

    physics parameterizations as viable options

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    4/33

     WRF in the Polar Regions

    • Atmospheric models have been found to have difficulty inreproducing representative conditions in the polar regions

    (Wyser et al. 2008)

     e pro ems are genera y re a e o e a mosp er c p ys cs

    cloud processes

     

    radiation

    processes

    PBL and surface fluxes

    sea ice / icecovered land

     WRF-ARW Version 3

    Modeling SystemUser’s Guide

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    5/33

     WRF Physics Parameterizations

    • There are seven general WRF physics

    parameterizations:

      – ra a on – s or wave ra_ w_p ys cs – radiation – longwave (ra_sw_physics)

     – microphysics (mp_physics)

     – cumulus (cu_physics)

     – boundar la er bl_ bl_ h sics 

     – surface layer (sf_sfclay_physics)

     – land surface model (sf_surface_physics)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    6/33

     WRF Physics Parameterizations• The performance of a given physics parameterization is often

    related to the associated parameterizations

     

     The most complete way to identify the preferred physicsparameterizations is to evaluate different physics combinations

     

     WRF Tutorial

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    7/33

     WRF Physics Evaluation – Summary 

    • This study will focus on the performance of the

    radiation and microphysics parameterizations

     • e s u y w compare s mu a ons anobservations for two locations:

    Barrow, Alaska Summit, Greenland

    • The month-long climate simulations will be evaluated

    against observations of meteorology (surface and

    upper- eve , c ou s, an ra at on• A statistical evaluation will be completed with the

    results providing a ranking of the preferred

    parameterizations

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    8/33

     WRF Physics Evaluation – General Configuration

    • WRF-ARW v3.4 (released April, 2012)

    • month-long climate simulations:

    - - ,

    • simulations for four different months covering different seasonal

    and radiation forcing conditions:

    October 2011, January 2012, April 2012, July 2012• Initial and lateral boundary conditions: ERA-Interim

    • Fractional sea ice: NSIDC Near Real-Time DMSP SSMI

    • Domains: outer – 50 km, inner – 10 km (one-way nesting)• Vertical: 40 levels with a 50 mb top

    • Timestep : 50 km – 300 s, 10 km – 60 s

    • Post-processing: CF NetCDF files using wrfout_to_cf.nclhttp://foehn.colorado.edu/wrfout_to_cf/

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    9/33

     WRF Physics Evaluation – Domains

    • Two domains: Barrow – Alaska, Summit Camp – Greenland

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    10/33

     WRF Physics Evaluation – Non-Varying Physics

    General Physics:

    •Land surface model (sf_surface_physics): Noah LSM (2)

     •Surface Layer (sf_sfclay_physics): Eta (2)•Boundary layer (bl_pbl_physics): MYJ (2)

    •Cumulus (cu_physics): Grell-Devenyi (3)

    •Fractional Sea Ice (fractional_seaice = 1)

    •SST Updates (sst_update = 1 – uses wrflowinp_d0n)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    11/33

     WRF Physics – Radiation Parameterizations

    • Limit the shortwave (ra_sw_physics) and longwave(ra_lw_physics) radiation parameterizations to paired selections

    •   Four selected radiation combinations (LW / SW):

      – o ar w_ -sw_  – CAM / CAM (lw_3-sw_3)

     – RRTMG / RRTMG (lw_4-sw_4)

     – New Goddard / New Goddard (lw_5-sw_5)

    • RRTM / Goddard was selected because of its use in past WRF

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    12/33

     WRF Physics – Radiation Parameterizations

     To be evaluated:• RRTM / Goddard (lw_1-sw_2)

    • CAM / CAM (lw_3-sw_3)

     • RRTMG / RRTMG (lw_4-sw_4)• New Goddard / New Goddard (lw_5-sw_5)

    Eliminated:

    • Dudhia (1) shortwave scheme was not selected based on poor

    • Fu-Liou Gu (7/7) was not selected as it is a new scheme with no

    particular known strengths for the polar regions

    • GFDL (99/99) was not chosen as it is old and being phased out

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    13/33

     WRF Physics – Microphysics Parameterizations

    • Eliminate the warm-rain and 3-phase parameterizations: – Kessler (1)

     – WRF Single-Moment 3-class (3)

     NCEP models:

     – Eta (5) / (95)

    • Eliminate the WRF double-moment parameterizations:

     – WRF Double-Moment 5-class (14)

     – WRF Double-Moment 6-class (16)

     • m nate severe storm ocuse parameter zat ons:

     – NSSL 2-moment (17, 18)

    • Eliminate the 7-class paratmerization:

     – Milbrandt-Yau Double-Moment 7-class (9)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    14/33

     WRF Physics – Microphysics Parameterizations

     To be evaluated –  seven

    microphysics parameterizations:•Lin et al. (2)

    •WRF Single-Moment 5-class (4)

     •WRF Single-Moment 6-class (6)•Goddard (7)

    •New Thompson (8)

    •Morrison Double-Moment (10)

    •Stony Brook University (Lin) (13)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    15/33

     WRF Physics Evaluation – Simulations Summary 

    Summary of simulations:• Two domains (Barrow, AK and Summit Camp)

     – evaluating the 50 km and the 10 km domains separately 

     • Four months (October 2011, January, April, July 2012)• Four radiation parameterization combinations

    • Seven microphysics parameterizations

     Total number of simulations:

     x x x = s mu at ons

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    16/33

     WRF Physics Evaluation – Observations

    • Reviewed the available the data from the International ArcticSystems for Observing the Atmosphere (IASOA) observatories

    http://iasoa.org/

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    17/33

     WRF Physics Evaluation – Observations

    Barrow, Alaska – 71.323 N, 156.609 W, 11 m asl:http://www.esrl.noaa.gov/gmd/obop/brw/

    Summit, Greenland – 72.580 N, 38.48 W, 3238 m asl:

    http://www.geosummit.org/

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    18/33

     WRF Physics Evaluation – Observations

    Evaluating WRF using observations from Barrow and Summit:• surface meteorology (temperature, pressure, dew point /

    mixing ratio, wind speed)

     • upper-a r meteoro ogy temperature, e g t, pressure,moisture)

    • surface radiation (downwelling longwave, downwelling 

    shortwave)• radar and microwave (IWP, LWP)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    19/33

     WRF Physics – Statistical Comparisons

    • Monthly time series plots comparing WRF simulations toobservations will be created

    • Statistical measures of bias, RMSE, and correlation will be

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    20/33

     WRF Physics – Statistical Comparisons

    • The statistical performance for each radiation and microphysics

    combination will be evaluated for each month and each domain 

    • The rankings of the statistical comparisons will be used todetermine preferred radiation and microphysics parameterizations

    • Evaluation of the time series plots can be conducted to dig

    further into the statistical comparisons

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    21/33

     WRF 3.0 Physics Evaluation (ca. 2009)• Goal: identify preferred radiation and microphysics parameterizations

     – radiation – 5 combinations (lw-sw): RRTM-Dudhia,

    RRTM-Goddard, RRTM-CAM, CAM-Goddard, CAM-CAM

      – microphysics – 6 schemes:Lin, WSM5, WSM6, Goddard, Thompson, Morrison

    • Observations:

     – Barrow – Baseline Surface Radiation Network  – SHEBA – Surface-Met Tower, Cloud Radiation

      , , , ,

    liquid water path (SHEBA), ice water path (SHEBA)

    • Evaluate: over different months: January, March, May, June

    • Evaluate: 10 km domain versus 50 km domain

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    22/33

     WRF 3.0 Physics Evaluation (ca. 2009)• The WRF results are compared against observations from the SHEBA met tower

    and Barrow – Baseline Surface Radiation Network 

    observations:

     -longwave downward-shortwave downward-2 m temperature-surface pressure

    SHEBA only:-LWP-IWP

    Statistics are calculatedto objectively evaluatethe performance of themodel in comparison to

    the observations.

    Correlation, Bias (WRF – obs), Root Mean Square Error (RMSE)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    23/33

     WRF 3.0 Physics Evaluation (ca. 2009)• The statistics of each sensor for each physics configuration, location, month, and

    model domain are aggregated together in a list

    Note: The values for all 30 physics configurations and the different sensors have been

    removed for display.

    Each sensor statistic for each physicsconfiguration is ranked by performance (1-30)

     The average rank and standarddeviation is calculated for each sensor

    h l

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    24/33

     WRF 3.0 Physics Evaluation (ca. 2009)• The average of the three primary sensors (2 m temperature, shortwave downward,

    and longwave downward) is calculated for each domain and location

    Note: The values for Barrow have been removed to simplify the display.

    WRF 3 0 Ph i E l i ( 2009)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    25/33

     WRF 3.0 Physics Evaluation (ca. 2009)• The average rank for each physics configuration is calculated across the different

    domains, months, and locations.

    • The physics parameterizations are sorted by the average rank, from best to worst

    WRF 3 0 3 S (T SW LW) R ki

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    26/33

     WRF 3.0 – 3 Sensor (T, SW, LW) Rankings• The CAM-CAM (3-3) radiation combination shows

    consistently the best performance (4 of top 8)

    • The Goddard (7) microphysics is a strong showing with the

    top 3 performances

    • Overall, the CAM-Goddard (3-2) and RRTM-CAM (1-3)radiation schemes perform well

    • The RRTM-Dudhia (1-1) and RRTM-Goddard radiationcombinations do not do well 

    • The Lin (2) and Morrison (10) microphysics schemes do very poorly, no matter the radiation combination

    WRF 3 0 5 S (T SW LW IWP LWP)

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    27/33

     WRF 3.0 – 5 Sensor(T, SW, LW, IWP, LWP)• The CAM-CAM (3-3) radiation continues to perform well

    (5 of top 11)

    • The Goddard (7) and Lin microphysics does well followed

    by the WSM5 (4) and WSM6 (6)

    • The RRTM-CAM (1-3) radiation performs fair, but all otherthan CAM-CAM have a mixture of results

    • The Morrison (10) microphysics scheme continues to dooorl

    RRTM Goddard (1 2) Morrison (10) May 1998

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    28/33

    RRTM – Goddard (1-2), Morrison (10) – May 1998

    CAM CAM (3 3) Goddard (7) May 1998

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    29/33

    CAM – CAM (3-3), Goddard (7) – May 1998

    Sh t d L R di ti R ki

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    30/33

    Shortwave and Longwave Radiation Rankings• The CAM SW (3) consistently does very well

     with the SW rankings (top 8)

    • The Goddard SW (2) does moderate withSW rankings

     • The Dudhia SW (1) performs very poorly with the SW sensor

    • The CAM LW (3) does well, but not

    spectacular with LW rankings• The RRTM LW (1) does well when matched

     with Dudhia SW (1) but not Goddard SW orCAM SW (3)

    • The CAM-CAM (3-3) radiation combinationprovides the best results

    Liq id Water Path and Ice Water Path Rankings

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    31/33

    Liquid Water Path and Ice Water Path Rankings• The Goddard (7) and Thompson (8) show

    consistently good performance with LWP(6 of top 7)

    • The Lin (2) and Morrison (10) do poorly w

    • The Lin (2) and Morrison (10) do very well with IWP

    • The Goddard does poorly with IWP

    • Overall, using LWP and IWP is suspect asthe model results showed limited success(i.e. LWP in January)

    WRF 3 0 Physics Evaluation (ca 2009) Summary

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    32/33

     WRF 3.0 Physics Evaluation (ca. 2009) - Summary 

    • The CAM-CAM (3-3) radiation combination consistentlyperforms with the best results in nearly every ranking and

    categorization

     e - - an - o ar - per orms

    reasonable, but not as good as CAM-CAM

    • The results for the microphysics is not as clear and will requirefurther analysis

    • The Goddard (7) microphysics scheme could be classified as

    strongest, but with some questions

  • 8/18/2019 Evaluacion de Radiacion y Microfisica en Zonas Polares

    33/33

    Mark Seefeldt [email protected]