14
Fabrication of oxide nanostructure using Sidewall Growth 田田田 M1 田田田田

Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志

Embed Size (px)

Citation preview

Fabrication of oxide nanostructure using Sidewall

Growth田中研  M1

尾野篤志

VO2LPCMO

Backgroundstrongly correlated electron system( 強相関電子系 ) in nanosize

100nm100nm 100nm100nm100nmM. Fäth et al, Science 285 (1999)1540

Ferromagnetic

Anti-Ferromagnetic

M. M. Qazilbash et al, Science 318 (2007) 1750,

Metal

Insulator

(La, Pr,Ca)MnO3 filmSTM image

VO2 filmSNIM image

500nm

500nm

• Nanostructure lead to sharp phase transition

Backgroundstrongly correlated electron system( 強相関電子系 ) in nanosize

Nano-structure fabrication techniqueSize-control

Insulator Metal

Y. Yanagisawa et al Appl. PHYSICS LETTERS 89 (2006) 253121

500nm

Future advanced nano-deviceDimension-control

(La, Pr,Ca)MnO3 film

Charge Ordering Insulator   Ferromagnetic metal

1μm

Fabrication of nanostructureTop down and Bottom up

Top down Technique • Figure materials finely

For example―Nano Imprint Lithography―AFM Lithography

Bottom up Technique• Accumulate atoms by

depositionFor example―Pulsed Laser Deposition―Sputtering Deposition

  Top down Bottom upComplex pattern

○ △

Size control △ (>101nm) ○(>10-1nm)

Our nanostructure fabrication methodCombination of Top down and Bottom up

Top Down• Nano Imprint Technology

Bottom up• Pulsed Laser Deposisiton

  Top down Bottom up CombinationSize control △(>101nm) ○(>10-1nm) ○(>10-1nm)

Complex pattern

○ △ ○

Purpose- Fabrication of oxide nanostructures

and evaluation of their properties-• Establishment of fabrication method

ZnO nanobox

• Measurement of their physical properties• Application for devices

ZnO: Semiconductor, Optical Device

Amorphous @RT ⇒ Crystal @HT

Fabrication of the nanostructureFabrication of the nanostructure① Patterning by NIL ② Depositon using Sidewall growth

③   Removing patterns ( Ion milling and Cleaning) ④ Crystallization by annealing

⑤ Measurement of their physical properties

Experimental method1. Deposition on Plane Substrate 1-1. Control thin film’s thickness 1-2. Optimize crystallization condition by

annealing

2. Deposition on Nano-pattaerne substrate ― Fabricate ZnO nanobox using sidewall

growth

Deposition@ Room temperature

Result1-1: Deposition of ZnO

time-dependency of sidewall thickness

Deposition time [min.]

Film’s thickness∝ Sidewall’s thickness

I measured thin films’ thickness

Sidewall thickness : controllable

Thickness[nm]

ZnO deposition: PLD methodSubstrate: Si(001)PO2=1.0×10-2PaDeposition time: 30-120min.

Evaluation method:Atomic Force Microscopyd: film’s thickness (nm)

t: deposition time (min)

d=1.30t

Result1-2: Crystallization condition

Optimize the condition of Crystallizing ZnO

by Annealing•ZnO crystallization: higher than 550℃

Annealing temperature: 550-950 ℃

Evaluation method: X-ray Diffraction

2θ [°]

Intensity (a.u.)

1μm 1μm

1μm 500nm45nm

Polymers on substrate

Ion Milling

Result2: Fabrication of ZnO nano-boxEvaluation method: Scanning Electron Microscopy

ZnO-deposited substrate

Acetone cleaning

Summary• I succeeded in fabrication of ZnO nanobox by the

combination Top down (imprint) and Bottom up (PLD) technique.

• The side wall thickness was 45nm.• I need to improve the accuracy and responsibility.

This technique can be applied for another system.Various patterns can be formed.

2 µm

100 nm

200 nm

200 nm

60nm

150 nm

150 nm

Examples of the various patterns: Mo, Au

Example of various patterns

N.-G. Cha et al. Nanotechnology 20 (2009) 395301

Next Step―I am trying to fabricate Fe3-xZnxO4 nanowire

500nm

50nm!!

MR effect  ⇒MRAM, Spin FET, …

Spintronics

Y. Yanagisawa et al Appl. PHYSICS LETTERS 89 (2006) 253121 FZO

1.Strongly correlated electron system2.Ferromagnetic semiconductor @ room temperature

Mag

netic

F

ield

Magnetic Field