fea mit lecture

Embed Size (px)

Citation preview

  • 8/20/2019 fea mit lecture

    1/95

    2.094— 

    Finite

    Element

    Analysis

    of 

    Solids

    and

    Fluids

    —Fall‘08— 

    MITOpenCourseWare 

  • 8/20/2019 fea mit lecture

    2/95

    Contents

    1

    Large

    displacement

    analysis

    of 

    solids/structures

    1.1 Project Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

    1.2 Large Displacement analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

    1.2.1 Mathematical model/problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

    1.2.2 Requirementstobefulfilledbysolutionattimet . . . . . . . . . . . . . . . . . . . 5 

    1.2.3 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

    1.2.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

    2

    Finite

    element

    formulation

    of 

    solids

    and

    structures

    2.1 Principle of Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

    2.2 Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

    3

    Finite

    element

    formulation

    for

    solids

    and

    structures

    10 

    4

    Finite

    element

    formulation

    for

    solids

    and

    structures

    14 

    5 F.E.displacement formulation,cont’d 19 

    6

    Finite

    element

    formulation,

    example,

    convergence

    23 

    6.1 Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

    6.1.1 F.E. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

    6.1.2 Higher-order elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

    7

    Isoparametric

    elements

    28 

    8

    Convergence

    of 

    displacement-based

    FEM

    33 

    9

    u/ p

    formulation

    37 

    10

    F.E.

    large

    deformation/general

    nonlinear

    analysis

    41 

    11

    Deformation,

    strain

    and

    stress

    tensors

    45 

    12TotalLagrangian formulation 49 

    1

  • 8/20/2019 fea mit lecture

    3/95

    MIT2.094 Contents

    13

    Total

    Lagrangian

    formulation,

    cont’d

    53 

    14

    Total

    Lagrangian

    formulation,

    cont’d

    57 

    15

    Field

    problems

    61 

    15.1 Heat transfer

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    61 

    15.1.1 Differential formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

    15.1.2 Principle of virtual temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

    15.2 Inviscid, incompressible, irrotational flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

    16

    F.E.

    analysis

    of 

    Navier-Stokes

    fluids

    65 

    17

    Incompressible

    fluid

    flow

    and

    heat

    transfer,

    cont’d

    71 

    17.1 Abstract body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

    17.2 Actual 2D problem (channel flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

    17.3 Basic equations

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    72 

    17.4 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

    17.5 FSI briefly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

    18

    Solution

    of 

    F.E.

    equations

    76 

    18.1 Slender structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

    19

    Slender

    structures

    81 

    20

    Beams,

    plates,

    and

    shells

    85 

    21

    Plates

    and

    shells

    90 

    2

  • 8/20/2019 fea mit lecture

    4/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture1- Largedisplacementanalysisof solids/structures

    Prof. K.J.Bathe MITOpenCourseWare

    1.1 ProjectExample

    Physicalproblem

    Reading:

    Ch. 1 in

    thetext

    “Simple”

    mathematical

    model

    analyticalsolution•

    F.E.solution(s)•

    More

    complex

    mathematical

    model

    holesincluded•

    largedisp./largestrains•

    F.E.solution(s)• ⇒

    Howmanyfiniteelements?•

    Weneedagooderrormeasure(especiallyforFSI)

    “Even

    more

    complex”

    mathematical

    model

    The“complexmathematicalmodel”includes FluidStructureInteraction(FSI).

    YouwilluseADINAinyourprojects(andhomework)forstructuresandfluidflow.

    3

  • 8/20/2019 fea mit lecture

    5/95

    MIT2.094  1.Largedisplacementanalysisof solids/structures

    1.2 LargeDisplacementanalysis

    Lagrangianformulations:

    • TotalLagrangianformulation

    • 

    Updated

    Lagrangian

    formulation

    Reading:Ch. 6

    1.2.1

    Mathematical

    model/problem 

    Given  theoriginalconfigurationof thebody,

    thesupportconditions,theappliedexternal loads,theassumedstress-strainlaw

    Calculate  thedeformations,strains,stressesof thebody.

    Question Isthereauniquesolution? Yes,forinfinitesimalsmalldisplacement/strain. Notnecessarily

    forlargedisplacement/strain.

    Forexample:

    Snap-through 

    problem 

    Thesame load. Twodifferentdeformedconfigurations.

    4

  • 8/20/2019 fea mit lecture

    6/95

    MIT2.094 1.Largedisplacementanalysisof solids/structures

    Column problem,statics 

    NotphysicaltR is in“direction”of bendingmoment Not inequilibrium.

    1.2.2

    Requirements

    to

    be

    fulfilled

    by

    solution

    at

    time

    t

    I. Equilibriumof stresses (Cauchystresses, forcesperunitarea in tV  and on tS f )withtheappliedbodyforcestf B andsurfacetractionstf S f 

    II. Compatibility

    III. Stress-strain law

    1.2.3 FiniteElementMethod

    I. Equilibriumconditionmeansnow

    • equilibriumatthenodesof themesh

    • equilibriumof eachfiniteelement

    II. Compatibilitysatisfiedexactly

    III. Stress-strain lawsatisfiedexactly

    5

  • 8/20/2019 fea mit lecture

    7/95

    MIT2.094 1.Largedisplacementanalysisof solids/structures

    1.2.4 Notation 

    Cauchystresses(forceperunitareaattimet): 

    tτ ij

    i,

     j= 1,2,3 tτ ij

    = tτ ji

    (1.1) 

    6

  • 8/20/2019 fea mit lecture

    8/95

     

    2.094—FiniteElementAnalysisof SolidsandFluids  Fall‘08

    Lecture2- Finiteelementformulationof solidsandstructures

    Prof. K.J.Bathe  MITOpenCourseWare

    Reading:

    Ch. 1,Sec.AssumethatontS u

    thedisplacementsarezero(andtS u

    isconstant). Needtosatisfyattimet: 6.1-6.2

    Equilibrium of Cauchystressestτ ij

    withapplied loads•

    tτ T  = tτ 11

    tτ 22

    tτ 33

    tτ 12

    tτ 23

    tτ 31

    (2.1) 

    (Fori= 1,2,3) 

    tτ ij,j +tf i

    B = 0 intV  (sumover j) (2.2) 

    tτ ij

    tnj

    = tf iS f 

    on tS f 

    (sumover j) (2.3) 

    (e.g. tf iS f 

    = tτ i1

    tn1

    + tτ i2

    tn2

    + tτ i3

    tn3

    )  (2.4)

    And: tτ 11tn1 +

    tτ 12tn2 =

    tf 1S f 

    •  Compatibility Thedisplacementstui needtobecontinuousandzeroontS u.

    Stress-Strain 

    law •

    tτ ij = functiontuj  (2.5)

    7

  • 8/20/2019 fea mit lecture

    9/95

    MIT2.094 2.Finiteelementformulationof solidsandstructures

    2.1 Principleof VirtualWork∗

     

    t V  

    tτ ij

    teij

    d

    tV  =

     

    tV  

    tf Bi

    ui

    d

    tV  +

     

    t S f 

    tf S f 

    i uS f 

    i dtS f 

    (2.6)

    where

    teij

    withui

    tS u

    =

    =

    1

    2

    ∂ui

    ∂ 

    txj

    0

    +

    ∂uj

    ∂ 

    txi

    (2.7)

    (2.8)

    2.2 Example

    Assume“planesectionsremainplane”

    Principle

    of 

    Virtual

    Work 

    tV  

    tτ 11 te11 dtV 

    =

     

    tV  

    tf B1 u1 dtV 

    +

     

    tS f 

    tP r uS f 1

    d

    tS f  (2.9)

    Derivation

    of  (2.9)

    tτ 11,1 +tf B1

    =0 by(2.2)�

    tτ 11,1

    + tf B1

    u1

    =0

    ∗orPrincipleof VirtualDisplacements

    (2.10)

    (2.11)

    8

  • 8/20/2019 fea mit lecture

    10/95

      �

     

     

     

     

          

      �

    MIT2.094 2.Finiteelementformulationof solidsandstructures

    Hence,

    tτ 11,1 +tf 1

    B u1 dtV  =0 (2.12)

    tV  

    tτ u1,1tτ 11

    d V   + u1 dtV  =0 (2.13)   11u 1

    t

    t

    u

      − tV    t

    tV  

    tf 1

    Sf  tτ    tS 

      te11 u1 11 f 

    where tτ 11|tS f 

    =tP r.

    Thereforewehave

    te11tτ 11

    d

    tV  = u1

    tf 1B

    d

    tV  +u

    1

    f  tP rtS f  (2.14)

    tV  

    tV  

    From(2.12)to(2.14)wesimplyusedmathematics. Hence,if (2.2)and(2.3)aresatisfied,then(2.14)musthold. If  (2.14)holds,thenalso(2.2)and(2.3)hold!

    Namely,from(2.14)

    t

    tS f 

    t B t   S f  u1,1

    tτ 11d V   = u1tτ 11

    tS u− u1

    tτ 11,1d V   = u1tf 1

    d V   +u1tP r

    tS f 

    (2.15)tV  

    tV  

    tV  

    or

    B t

    S f u1tτ 11,1 +

    tf 1 d V   +u1

    tP r −tτ 11

    tS f  =0 (2.16)tV  

    Nowletu1

    =x 1− txL

    tτ 11,1

    +tf 1

    B ,where tL=lengthof bar.

    Hencewemusthavefrom(2.16)

    tτ 11,1 +tf 1

    B =0 (2.17)

    andthenalso

    tP    =tτ    (2.18)r

    11

    9

  • 8/20/2019 fea mit lecture

    11/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture3- Finiteelementformulationforsolidsandstructures

    Prof. K.J.Bathe MITOpenCourseWare

    Reading:

    Sec. 6.1-6.2Weneedtosatisfyattimet:

    Equilibrium •

    t∂ τ ij +tf B = 0 (i= 1,2,3)intV  (3.1)t   i∂ xj

    tτ ij nt

    j = f t S f 

    i

    (i=1,2,3)ontS f  (3.2)

    • Compatibility 

    • Stress-strain  law(s)

    Principleof virtualdisplacements

     

    tV  

    tτ ij

    teij

    dV t = 

    tV  

    uitf Bi

    dV t + 

    tS f 

    ui|tS f 

    f t S f 

    i

    dS t f 

    (3.3)

    teij = 2

    1

    ∂ 

    ∂ t

    u

    xi

    j

    +∂ 

    ∂utx

    j

    i

    (3.4)

    If  (3.3)holdsforanycontinuousvirtualdisplacement(zeroon tS   ),then(3.1)and(3.2)holdand• uviceversa. 

    RefertoEx. 4.2 inthetextbook. •

    10

  • 8/20/2019 fea mit lecture

    12/95

      �

     

    MIT2.094 3.Finiteelementformulationforsolidsandstructures

    Major

    steps

    I. Take(3.1)andweighwithui:

    tτ ij,j +tf i

    B ui = 0. (3.5a)

    II. Integrate(3.5a)overvolumetV :

    tτ ij,j +tf i

    B ui dtV  =0 (3.5b)

    tV  

    III. Usedivergencetheorem. Obtainaboundarytermof stressestimesvirtualdisplacementsontS =tS u ∪

    tS f .

    IV. But,ontS u

    theui

    =0andontS f 

    wehave(3.2)tosatisfy.

    Result: (3.3).

    Example

    tτ    te11

    d V   =

     

    S tf 

    ui

    f 1 dS f t

    S f  t (3.6)11

    t

    tV  

    One

    element

    solution:

    11

  • 8/20/2019 fea mit lecture

    13/95

     

     

    MIT2.094 3.Finiteelementformulationforsolidsandstructures

    u(r) =

    tu(r) =

    u(r) =

    1 1(1+r)u1

    +2 21

    (1+r) tu1

    +21 1

    (1

    +

    r)

    u1 +2 2

    (1−r)u2

    1

    2(1−r) tu2

    (1

    r)

    u2

    (3.7)

    (3.8)

    (3.9)

    Supposeweknowtτ 11,tV ,tS f ,

    tu... use(3.6).

    Forelement1,

    te11

    =∂u

    =B(1)u1

    (3.10)∂ 

    tx   u2

    T t for el. (1) B(1)T 

    tV  te11t

    τ 11d V    −→ [u1 u2]

      

    t V  

     

    tτ 11 dtV 

      

    (3.11)

    =

    tF (1)

    for

    el.

    (1)

    tF 

    (1)−→

    [u1

    u2] (3.12)tF ̂(1)

    =U 1   U 2   U 3 (3.13)  

       0

    u2 u1

    where

    tF ̂1(1)

    = tF 2(1)

    (3.14)

    tF ̂2(1)

    = tF 1(1)

    (3.15)

    Forelement2,similarly,

    0

    =U 1

    U 2   U 3 F (2)

    (3.16)  

      

    t ˆ 

    u2 u1 

    R.H.S.

    (unknownreactionatleft)

    U 1

    U 2

    U 3

    0 (3.17)  

     

      

    t S f tS f  

    U T 

    · 1 

    Nowapply,

    T  =

    1 0 0

    (3.18)

    then,

    U T 

    = 0 1 0 (3.19)

    then,

    = 0 0 1 (3.20)

    12

  • 8/20/2019 fea mit lecture

    14/95

    MIT2.094 3.Finiteelementformulationforsolidsandstructures

    Thisgives,

    tF̂ 

    (1)

    0

    +

    0tF̂ 

    (2)

    =

    unknownreaction0

    t

    tS f 1

    ·tS f 

    (3.21)

    We

    write

    that

    as

    tF  = tR �

    (3.22)tF 

    =fn tU 1,tU 2,

    tU 3

    (3.23)

    13

  • 8/20/2019 fea mit lecture

    15/95

    2.094—FiniteElementAnalysisof SolidsandFluids  Fall‘08

    Lecture4- Finiteelementformulationforsolidsandstructures

    Prof. K.J.Bathe  MITOpenCourseWare

    Weconsideredageneral3Dbody, Reading:Ch. 4

    Theexactsolutionof themathematicalmodelmustsatisfytheconditions:

    •  Equilibrium withintV  andontS f , 

    Compatibility  •

    Stress-strain 

    law(s)

    I. Differentialformulation

    II. Variationalformulation(Principleof virtualdisplacements)(orweakformulation)

    WedevelopedthegoverningF.E.equationsforasheetorbar

    Weobtained

    t

    t

    R =

    (4.1)

    wheretF  isafunctionof displacements/stresses/materiallaw;andtR  isafunctionof time.

    Assume 

     for 

    now 

    linear 

    analysis: Equilibriumwithin0V  andon0S f 

    ,linearstress-strainlawandsmalldisplacementsyields

    tF  =K · tU  (4.2)

    Wewanttoestablish,

    KU (t)=R (t) (4.3)

    14

  • 8/20/2019 fea mit lecture

    16/95

    MIT2.094  4.Finiteelementformulationforsolidsandstructures

    Consider

    U ˆ T  =

    U 1 V 1 W 1 U 2 W N 

    (N  nodes)  (4.4)· · ·

    whereU ˆ T  isadistinctnodalpointdisplacementvector.

    Note: forthemoment“removeS u

    Wealsosay

    U ˆ T  = U 1 U 2 U 3 U n

    (n= 3N ) (4.5)· · ·

    Wenowassume (m)u

    (m) (m)u   =H (m)U ˆ , u   =  v (4.6a)w

    whereH (m) is3xnandU ˆ isnx1.

    �(m) =B(m)U ˆ (4.6b)

    whereB(m) is6xn,and

    �(m)T 

    =

    �xx �yy �zz γ xy γ yz γ zx 

    ∂v

    ∂u 

    e.g. γ xy = +∂x

    ∂y

    Wealsoassume

    u(m) = H (m)U ˆ  (4.6c)

    �(m) = B(m)U ˆ  (4.6d)

    15

  • 8/20/2019 fea mit lecture

    17/95

     

     

     

     

     � 

     

     � 

     

    MIT2.094 4.Finiteelementformulationforsolidsandstructures

    Principleof VirtualWork:

    �T τ dV  = U ˆ   f BdV  V V   

    (4.7)canberewrittenas

     

     

    (m)T 

    �(m)T 

    τ 

    (m)dV 

    (m) = U ˆ   f B

    (m)

    dV 

    (m)

    V  (m) V  (m)m m

    Substitute(4.6a)to(4.6d).

    T   U ˆ B(m)

    τ (m) dV (m) = V  (m) m

    U ˆT 

    H (m)T 

    f B(m)

    dV 

    (m)

    V  

    (m)m

    τ 

    (m) =C (m)�(m) =C (m)B(m)U ˆ

    Finally,

    T  U 

     ̂� B(m)

    C (m)B(m) dV (m) U ˆ =V  (m)m

    U  ̂� 

    H (m)T 

    f B(m)

    dV 

    (m)

    V  (m)m

    with

    �(m)T  ˆ

    B(m)T  

    =U  

    KU ˆ =R B

    whereK  isnxn,andR B isnx1.

    Directstiffnessmethod:

    K = K (m)

    m

    R B =

    R B

    (m) 

     m K (m) = B(m)

    T C (m)B(m) dV 

    (m)

     V  (m)R B

    (m)= H (m)

    T f B

    (m)

    dV 

    (m) 

    V  (m) 

    (4.7)

    (4.8)

    (4.9)

    (4.10)

    (4.11)

    (4.12)

    (4.13)

    (4.14)

    (4.15)

    (4.16)

    (4.17)

    16

  • 8/20/2019 fea mit lecture

    18/95

      

     

      

    MIT2.094 4.Finiteelementformulationforsolidsandstructures

    Example

    4.5 textbook

    E  =Young’sModulus 

    Mathematicalmodel Planesectionsremainplane: 

    F.E.

    model

    U 1U 

    = U 2 (4.18)U 3

    Element1

     

    U 1 

    x xu(1)(x) = 1−100 100 0

    U 2

    (4.19)

    U 3H (1)

    17

  • 8/20/2019 fea mit lecture

    19/95

    MIT2.094 4.Finiteelementformulationforsolidsandstructures

    �(1)xx(x)=  

    − 1100

    1100

     

    B(1)

    0  

    U 1U 2U 3

    (4.20)

    Element2

    u(2)(x)=  

    �(2)xx(x)=

      

    0

    0

    1− x80x

    80

     

      

    H (2)

    −180

    1

    80

     

      B(2)

    (4.21)

    (4.22)

    Then,

    K =E 

    100

    1−10

    −110

    000

    +

    13E 

    240

    000

    01

    −1

    0−11

    (4.23)

    where,

    A

    η=0

    1

  • 8/20/2019 fea mit lecture

    20/95

     

     

     

    2.094—FiniteElementAnalysisof SolidsandFluids  Fall‘08

    Lecture5- F.E.displacementformulation,cont’d

    Prof. K.J.Bathe  MITOpenCourseWare

    Forthecontinuum  Reading:Ch. 4

    Differentialformulation•

    Variationalformulation(Principleof VirtualDisplacements) •

    Next,weassumedinfinitesimalsmalldisplacement,Hooke’sLaw, linearanalysis

    KU  =R   (5.1a)

    (m) =

    H (m)U u   (5.1b)

    K = K (m)  (5.1c)

    m

    R = R (m) 

    (5.1d)B 

    �(m) =B(m)U   (5.1e)

    T  = U 1

    U 2

    U n

    , (n=alld.o.f. of elementassemblage)  (5.1f) 

    · · ·

    K (m) = B(m)T 

    C (m) B(m) dV (m) (5.1g)V  (m)

    R B(m

    )

    =

    H (m)T 

    f B(m)

    dV 

    (m)

    (5.1h)V  (m)

    Surface

    loads

    Recallthatintheprincipleof virtualdisplacements,

    “surface”loads= U S f 

    f S f  dS f  (5.2)S f 

    u

    (m)

    =H S (m)

    U   (5.3)

    H S (m)

    =H (m) (5.4)evaluated at the surface

    19

  • 8/20/2019 fea mit lecture

    21/95

     

     

    MIT2.094 5.F.E.displacementformulation,cont’d

    Substituteinto(5.2)

    T H S 

    (m)T 

    f S (m)

    dS (m) (5.5)S (m)

    forelement(m)andonesurfaceof thatelement.

    R (sm) = H S 

    (m)T 

    f S (m)

    dS (m) (5.6)S (m)

    Needtoaddcontributionsfromallsurfacesof allloadedexternalelements.

    KU  =R B

    +R S 

    +R c

    (5.7)

    whereR c areconcentratednodalloads.

    Assume

    • (5.7)hasbeenestablishedwithoutanydisplacementboundaryconditions.

    We,

    however,

    know

    nodal

    displacements

    U b (rewriting

    (5.7)).

    KU  =R ⇒

    K aaK ba

    K abK bb

    U aU b

    =

    R aR b

    (5.8)

    SolveforU a:

    K aaU a =R a −K abU b

    whereU b

    isknown!

    Thenuse

    (5.9)

    K baU a +K bbU b =R b +R r (5.10)

    whereR r areunknownreactions.

    Example

    4.6

    textbook

    τ xx E 1 ν  0 �xx

    τ yy = ν  1 0 �yy (5.11)τ xy

    1−ν 20 0 1−2

    ν  γ xy

    20

  • 8/20/2019 fea mit lecture

    22/95

    MIT2.094 5.F.E.displacementformulation,cont’d

    u(x,y)v(x,y)

    =H 

    u1u2

    u3u4v1

    v2

    v3

    v4

    (5.12)

    If wecansetthisrelationup,thenclearlywecangetH (1),H (2),H (3),H (4).

    u(m) =H (m)U  (5.13)

    Alsowant�(m) =B(m)U . We want H . Wecouldproceedthisway

    u(x,

    y) =

    a1 +

    a2x

    +

    a3y

    +

    a4xy

    (5.14)

    v(x,y) =b1

    +b2x+b3y+b4xy (5.15)

    Expressa1. . .a4,b1. . .b4

    intermsof thenodaldisplacementsu1. . .u4,v1. . .v4. 

    (e.g.) u(1,1)=a1

    +a2

    +a3

    +a4

    =u1. 

    h1(x,y) =14(1+x)(1+y) interpolation function

    fornode1.

    h2(x,y) =1

    (1−x)(1+y)4

    21

  • 8/20/2019 fea mit lecture

    23/95

       

       

    MIT2.094 5.F.E.displacementformulation,cont’d

    h3(x,y) =1(1−x)(1−y)4

    h4(x,y) =1

    (1+x)(1−y)4

    u(x,y) =h1u1 +h2u2 +h3u3 +h4u4 (5.16)

    v(x,y) =h1v1 +h2v2 +h3v3 +h4v4 (5.17)

    u1

    u2

    u3u4v1v2v3v4

    u(x,y)=

    h1 h2 h3 h4 0 0 0 0 (5.18)v(x,y) 0 0 0 0 h1 h2 h3 h4

    H  (2x8)

    Wealsowant,

    u1u2u3u4v1v2

    v3

    v4

    �xx h1,x h2,x h3,x h4,x 0 0 0 0 =    0 0 0 0 h1,y h2,y h3,y h4,y   (5.19)�yy

    γ xy

    h1,y

    h2,y

    h3,y

    h4,y

    h1,x

    h2,x

    h3,x

    h4,x

    B (3x8)

    �xx =∂u

    ∂x(5.20)

    �yy =

    ∂v

    ∂y

    (5.21)

    γ xy =∂u

    ∂y+

    ∂v

    ∂x(5.22)

    22

  • 8/20/2019 fea mit lecture

    24/95

     

     

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture6- Finiteelementformulation,example,convergence

    Prof. K.J.Bathe MITOpenCourseWare

    6.1 Example

    Reading:

    Ex. 4.6 in

    thetext

    t= 0.1, E, ν  planestress

    (6.1)KU  =R ; R =R B

    +R s

    +R c

    +R r

    = K (m); K (m) = B(m)T 

    C (m) B(m) d V (m) (6.2)K V  (m)m

    R B = R (m) (m)

    ; R    = H (m)T 

    f B(m) d V (m) (6.3)B BV  (m)m

    6.1.1

    F.E.

    model

    u1

    u2

    u3

    u4

    v1

    v2

    v3

    v4↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

    u1× × × × × ←(6.4)K 

    el.

    (2)

    ...

    ...

    23

  • 8/20/2019 fea mit lecture

    25/95

     

      

     

    MIT2.094 6.Finiteelementformulation,example,convergence

    Inpractice,

    BT CBdV ; �=B

    u1

    ...u4

    v1

    .

    .

    .

    v4

    K  (6.5)=el

    V  

    whereK  is8x8andB is3x8.

    AssumewehaveK  (8x8)forel. (2)

    U 1 U 2 U 3 U 4 U 5 U 11 U 18· · · · · ·↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓× × × × × × × × ×

    . . .. . .. . .

    . . .. . .. . .

    . . .. . .. . .

    . . .. . .. . .

    U 1←....

    .

    .

    (6.6)

    K    =

    assemblage

    U 11←......

    U 18←× × × × × × × × ×

    Consider,

    R S  = H S T  f S  d S ; H S  =H  (6.7)

    on surface

    h1 h2 h3 h4 0 0 0 0 u(x,y)H =

    0 0 0 0 h1 h2 h3 h4

    ←v(x,y)

    (6.8)←

    u1u2...

    (6.9)u= u4v1...

    v4

    24

  • 8/20/2019 fea mit lecture

    26/95

      

     

      

    MIT2.094 6.Finiteelementformulation,example,convergence

    (6.10)H S  =H  y=+11

    2

    (1+x) 12

    (1−x) 0 0 0 0 0 0=

        (6.11)

    0 0 0 0 1(1+x) 1(1−x) 0 02 2

    From(6.7);

      +1

    =

    =

    1

    (1+x) 021(1−x) 02

    0

    0(0.1) dx (6.12)R S 

    1(1+x) − p(x)2−1

    10 (1−x) thickness2

    0 0 

    − p0(0.1) − p0(0.1) 

    (6.13)R S 

    6.1.2 Higher-orderelements 

    Wanth1,h2,h3,h4,h5

    u(x,y) =

    i5=1hiui.

    hi

    =1atnodeiand0atallothernodes.

    h5 =

    1

    (1

    x2)(1

    +

    y)2

    25

  • 8/20/2019 fea mit lecture

    27/95

     

     

     

    MIT2.094 6.Finiteelementformulation,example,convergence

    h1 =1

    4(1+x)(1+y)−

    1

    2h5

    h2 =1

    4(1−x)(1+y)−

    1

    2h5

    h3

    =

    1

    4

    (1

    x)(1

    y)

    h1 =1

    4(1+x)(1−y)

    Note:

    (6.14)

    (6.15)

    (6.16)

    (6.17)

    hi = 1

    Wemusthave ihi =1tosatisfytherigidbodymodecondition.

    u(x,y) = hiui

    (6.18)i

    Assumeallnodalpointdisplacements=u∗. Then,

    u(x,y) = hiu∗

    =u∗ hi =u∗ (6.19)i i

    From(6.1),

    K (m) U  =R  (6.20)m

    B

    (m)T 

    (m)

    B

    (m)

    dV 

    (m)

    =

    (6.21)

    V  

    (m)m

    whereC (m)B(m)U  =τ (m). (AssumewecalculatedU .)

    B(m)T 

    τ 

    (m) d V 

    (m) =R  (6.22)V  

    (m)m

    (m) =R ; F (m) = B(m)

    T τ 

    (m) d V 

    (m) (6.23)

    V  

    (m)m

    Twoproperties

    I. Thesumof theF (m)’satanynode isequaltotheappliedexternalforces.

    26

  • 8/20/2019 fea mit lecture

    28/95

    MIT2.094 6.Finiteelementformulation,example,convergence

    II. Everyelement isinequilibriumunderitsF (m)

     

    Û 

    (m) =Û T 

    B(m)T 

    τ 

    (m) d

    (m) (6.24)  

    V  

    (m) 

      

     

    =�(m)T 

    = �(m)T 

    τ 

    (m) d

    (m) (6.25)

    V  

    (m)

    =0 (6.26)

    whereU ˆ T 

    =virtualnodalpointdisplacement.

    Applyrigidbodydisplacement.

    If  we move the element virtually in the rigid body modes, �(m) is zero. Therefore the virtual workobtainedduetovirtualmotionof theelementiszero. ThentheelementisinequilibriumunderitsF (m).

    27

  • 8/20/2019 fea mit lecture

    29/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture7- Isoparametricelements

    Prof. K.J.Bathe MITOpenCourseWare

    Reading:

      Sec. 5.1-5.3

    WewantK =V  

    BT CB

    dV ,R B

    =V  

    H T f B dV . Uniquecorrespondence(x,y)⇔(r,s)

    (r,s)arenaturalcoordinatesystemorisoparametriccoordinatesystem.

    4

    x= hixi

    (7.1)i=1

    4

    y= hiyi (7.2)i=1

    where

    1h1

    = (1 +r)(1+s) (7.3)4 1 

    h2 =

    4

    (1−r)(1+s) (7.4)

    . . .

    4

    u(r,s) = hiui (7.5)i=1

    4

    v(r,s) = hivi (7.6)i=1

    28

  • 8/20/2019 fea mit lecture

    30/95

     

      

     

      

    MIT2.094  7.Isoparametricelements

    �=Bû   ûT  = u1

    u2

    v4 

    (7.7)· · ·

      ∂u  ∂x 

     

    ∂v =Bû   (7.8)

     

    ∂y

    ∂u + ∂v∂y

     

    ∂x

    ∂  ∂x ∂y ∂  ∂r ∂r ∂r ∂x 

    =   (7.9)∂  ∂x ∂y ∂  

    ∂s ∂s ∂s ∂y 

    ∂    ∂  ∂x ∂r 

    =

    J −1  

    (7.10)∂    ∂ 

     

    ∂y ∂s 

    J  mustbenon-singularwhichensuresthatthereisuniquecorrespondencebetween(x,y)and(r,s).

    Hence,   1   1

    K = BT CB tdet(J )drds  (7.11)

    −1 −1        d V   

    1

      1

    Also,R B

    = H T f B tdet(J )drds  (7.12)−1

    −1

    Numerical

    integration

    (Gauss

    formulae)

    (Ch.

    5.5)

    =t BT  det(J ij)×(weighti, j) (7.13)i j

    ∼ijCBij

    2x2Gaussintegration,

    (i=1,2) (7.14)

    ( j=1,2) (weighti, j=1 inthiscase) (7.15)

    29

  • 8/20/2019 fea mit lecture

    31/95

    MIT2.094 7.Isoparametricelements

    9-node

    element

    9

    x= hixi

    (7.16)i=1

    9

    y= hiyi (7.17)

    i=1

    9

    u= hiui

    (7.18)i=1

    9

    v= hivi (7.19)i=1

    Use3x3Gaussintegration

    Forrectangularelements,J  =const

    Considerthefollowingelement,

    Note,

    here

    we

    could

    use

    hi(x,

    y)

    directly.

    3 = 6 0J 

    = 2 3

    (7.20)0 2

    Then,wecandeterminethenumberof appropriateintegrationpointsbyinvestigatingthemaximumorderof BT CB .

    Forarectangularelement,3x3Gauss integrationgivesexactK  matrix. If theelement isdistorted,aK  matrixwhich isstillaccurateenoughwillbeobtained,(if highenoughintegrationisused).

    30

  • 8/20/2019 fea mit lecture

    32/95

     

    MIT2.094 7.Isoparametricelements

    Convergence

    Principle 

    of 

    virtual 

    work: Reading: 

    Sec. 5.5.5,

    4.3�T C�

    dV  =R(u) (7.21)

    V  

    Find u, solution, in V, vector space (any continuous function that satisfies boundary conditions),

    satisfying

    �T C�

    dV  = a(u,v) = (f ,v) forallv,anelementof V. (7.22)  

     

      

       V  

    bilinear

    form R(v)

    Example:

    Finite

    Element

    problem Finduh

    ∈Vh,whereVh

    isF.E.vectorspacesuchthat 

    a(uh,vh) = (f ,vh) ∀vh ∈Vh (7.23) 

    Sizeof Vh ⇒#of independentDOFs(hereit’s12).

    Note:

    a(w,w) >0forw∈V (w=0)  

     

      

    2x

    (strain

    energy

    when

    imposing

    w)

    Also,

    a(wh,wh)>0forwh ∈Vh (Vh ⊂V,wh =0)

    31

  • 8/20/2019 fea mit lecture

    33/95

      

     

      

    MIT2.094 7.Isoparametricelements

    Property

    I Define: eh =u−uh.

    From(7.22),a(u,vh) = (f ,vh) (7.24)

    From(7.23),a(uh,vh) = (f ,vh) (7.25)

    Hence,

    a(u−uh,vh)=0 (7.26)

    a(eh,vh)=0 (7.27)

    (errorisorthogonalinthatsensetoallvh inF.E.space).

    PropertyII

    (7.28)a(uh,uh)≤a(u,u)

    Proof:

    a(u,u) =a(uh

    +eh,uh

    +eh) (7.29)

    =a(uh,uh) +            

    0byProp. I2a(uh,eh) +a(eh,eh) (7.30)

    ≥0

    a(u,u)≥a(uh,uh) (7.31)

    32

  • 8/20/2019 fea mit lecture

    34/95

    2.094—FiniteElementAnalysisof SolidsandFluids  Fall‘08

    Lecture8- Convergenceof displacement-basedFEM

    Prof. K.J.Bathe  MITOpenCourseWare

    (A)  Find

    u∈Vsuchthata(u,v) = (f ,v) ∀v∈V(Mathematicalmodel) (8.1)

    a(v,v)>0 ∀v∈V, v=  0. (8.2)

    where(8.2)impliesthatstructuresaresupportedproperly. E.g.

    (B)

    F.E.

    Problem Find

    uh ∈Vh suchthata(uh,vh)=(f ,vh) ∀vh ∈Vh (8.3)

    a(vh,vh)>0 ∀vh ∈Vh,

    Propertieseh =u−uh

    vh =0 (8.4)

    (I)

    a(eh,

    vh)

    =

    0

    ∀vh ∈

    Vh (8.5)

    (II)a(uh,uh)≤a(u,u) (8.6)

    33

  • 8/20/2019 fea mit lecture

    35/95

     

    MIT2.094 8.Convergenceof displacement-based FEM

    (C)

    Assume Mesh “iscontainedin”Mesh

    h1 h2

    e.g. Mesh   notcontainedinMesh

    h1 h2

    Weassume(C),butneedanotherproperty(independentof (C))

    (III)

    a(eh,eh)≤a(u−vh,u−vh) ∀vh

    ∈Vh

    (8.7)

    uh

    minimizes! (Recalleh

    =u−uh)

    Proof: Pickwh ∈Vh.

    a(eh +wh,eh +wh) =a(eh,eh) +             02a(eh,wh) ( )+a   w wh, h  

    ≥0

    (8.8)

    Equalityholdsfor(wh =0)

    a(eh,eh)≤a(eh

    +wh,eh

    +wh) (8.9)

    =a(u−uh

    +wh,u−uh

    +wh) (8.10)

    Takewh =uh −vh.

    a(eh,eh)≤a(u−vh,u−vh) (8.11)

    Usingproperty(III)and(C),wecansaythatwewillconvergemonotonically,frombelow,toa(u,u):

    34

  • 8/20/2019 fea mit lecture

    36/95

    MIT2.094 8.Convergenceof displacement-based FEM

    Pascal

    triangle

    (2D)

    (Ch. 4.3)

    error indisplacement∼C ·

    4-nodeelementiscompletetok=1.⇒

    9-node

    element

    is

    complete

    to

    k

    =

    2.

    hk+1 (8.12)

    (C  isaconstantdeterminedbytheexactsolution,materialproperty...)

    errorinstresses∼C hk (8.13)·

    errorinstrainenergy∼C h2k ( theseC  aredifferent) (8.14)· ←

    Hence,

    E −E h

    =C h2k (roughlyequalto) (8.15)·

    Bytheory,

    log(E −E h)=logC + 2klogh (8.16)

    35

  • 8/20/2019 fea mit lecture

    37/95

    MIT2.094 8.Convergenceof displacement-based FEM

    Byexperiment,wecanevaluate log(E −E h)fordifferentmeshesandplotlog(E −E h)vs. logh

    Weneedtousegradedmeshesif wehavehighstressgradients.

    Example Consideranalmost incompressiblematerial:

    �V  

    = vol. strain (8.17)

    or

    ∇·v→ verysmallorzero (8.18)

    Wecan“see”difficulties:

     p=−κ�V  

    κ= bulkmodulus (8.19)

    Asthematerialbecomesincompressible(ν = 0.3 0.4999)→

    κ

    → ∞

     p finitenumber (8.20)�V  

    0→

    (Smallerrorin�V   resultsinhugeerroronpressureasκ→ ∞,theconstantC  in(8.15)canbeverylargelocking)⇒

    36

  • 8/20/2019 fea mit lecture

    38/95

     

     

     

     

     

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture9-  u/ pformulation

    Prof. K.J.Bathe MITOpenCourseWare

    Wewanttosolve  Reading:Sec. 4.4.3

    I. Equilibrium

    τ ij,j +f iB

    =0 inVolume(9.1)S f τ ijnj =f i

    onS f 

    II. Compatibility

    III. Stress-strain law

    Usetheprincipleof virtualdisplacements

    �T C�

    dV  =R  (9.2)

    V  

    Werecognizethatif ν  0.5→

    �V  

    0 (�V  

    =�xx

    +�yy

    +�zz )  (9.3)→

    κ=3(1−2ν )

    → ∞ (9.4)

     p=−κ�V   mustbeaccuratelycomputed  (9.5)

    Solution

    τ ij

    =κ�V  

    δ ij

    + 2G�ij 

    (9.6)

    where

    1 i= jδ ij = Kroneckerdelta =  (9.7)

    0 i=   j

    Deviatoricstrains:

    �V  �ij =�ij − 3

    δ ij  (9.8)

    τ kkτ ij =− pδ ij + 2G�ij  p=− 3 

    (9.9)

    (9.2)becomes

    �T C � dV  + �V  

    κ�V  

    dV  =R (9.10)

    V V  

    �T C � dV  − �T V   pdV  =R (9.11)

    V V  

    37

  • 8/20/2019 fea mit lecture

    39/95

     

    � =

     

     

    MIT2.094 9.u/ pformulation

    Weneedanotherequationbecausewenowhaveanotherunknown p.

     p+κ�V  

    =0 (9.12)

     p( p+κ�V  

    ) dV  =0 (9.13)

     V   −

    V  

     p �V  

    +κ p

    dV  =0 (9.14)

    Foranelement,

    u=Hû   (9.15)

    � =BDû   (9.16)

    �V   =BV  û   (9.17)

     p=H  p p̂   (9.18)

    Planestrain(�zz4/1element

    =0)Example

    Reading:

    Ex. 4.32 in

    thetext

    �V   =�xx +�yy (9.19)

    131

    3

    (�xx +�yy )�xx −

    �yy −   (�xx +�yy )

    (9.20) γ xy(�xx +

    �yy )− 13

    Note:

    �zz

    =0but�   =0!zz

     p=H  p p̂ =[1]{ p0} (9.21)

     p(x,y) = p0

    (9.22)

    Weobtainfrom(9.11)and(9.14)

    K uu K up û   R 

    K  pu K  pp  p̂  =

    0(9.23)

    BT  

    V   

    K uu

    = DC BD

    dV  (9.24a)

    K up

    =− BV  T H  p

    dV  (9.24b) V  

    K  pu

    =− H  pT 

    BV  

    dV  (9.24c) V  

    1K  pp =− H  p

    κH  p dV  (9.24d)

    V  

    38

  • 8/20/2019 fea mit lecture

    40/95

        

     

     

      

      

     

    MIT2.094 9.u/ pformulation

    In practice, we use elements that use pressure interpolations per element, not continuous betweenelements. Forexample:

    Then ,unlessν = 0.5(whereK  pp =0),wecanusestaticcondensationonthepressuredof’s.

    Use p̂  equationstoeliminate p̂  fromtheû equations.

    K uu

    −K upK −1

     pp

    K  pu

    û =R  (9.25)

    (Inpractice,ν  canbe0.499999...)

    The“bestelement”isthe9/3element. (9nodesfordisplacementand3pressuredof’s).

     p(x,y)= p0

    + p1x+ p2y (9.26)

    The

    inf-sup

    condition Reading:

    Sec. 4.5

    =�V 

    Volq h∇·vh dVol

    inf sup   ≥β >0 (9.27) q    vh h  qh∈Qh vh∈Vh

    for

    normalization

    Qh: pressurespace.

    If “this”holds,theelementisoptimalforthedisplacementassumptionused(ellipticitymustalsobesatisfied).

    Note:

    infimum=largest lowerbound 

    supremum=leastupperbound 

    Forexample,

    inf {1,2,4}= 1 

    sup{1,2,4}= 4 

    inf {x∈R; 0< x

  • 8/20/2019 fea mit lecture

    41/95

    MIT2.094 9.u/ pformulation

    For (entry [3,1] inmatrix)assumethecircledentryistheminimum(inf)of  .

    Also,allentries inthematrixnotshownarezero.

    Case

    1

    β h = 0

    0 uh|i

    =0 (fromthebottomequation)·

    α uh

      + 0  ph

      = Rh

      (fromthetopequation)⇒

      

    · |i

    · |j

    |i

    =0

    ⇒noequationfor  ph|j

    spuriouspressure! (anypressuresatisfiesequation)⇒

    Case2 β h =small=�

    �·uh|i

    = 0 ⇒ uh|i

    = 0 

    ∴�·  ph|j

    +uh|i

    ·α= Rh|i

     

    i  ph|j =

    Rh|   displ. = 0as�issmall⇒

    ⇒pressure large→

    The behavior of  given mesh when bulk modulus increases: locking, large pressures. See Example4.39textbook.

    40

  • 8/20/2019 fea mit lecture

    42/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture10- F.E.largedeformation/generalnonlinearanalysis

    Prof. K.J.Bathe MITOpenCourseWare

    Wedeveloped 

    t V  

    tτ ij

    teij

    d

    V t = Rt

    Reading:

    Ch. 6

    (10.1)

    et ij =1

    2

    ∂ui∂  xt j

    +∂uj∂  xt i

    (10.2)

     

    t

    V  

    tτ ij

    δ teij

    d

    V t = Rt (10.3)

    δ teij =1

    2

    ∂ (δui)

    ∂ txj+

    ∂ (δuj)

    ∂ txi

    (≡ teij) (10.4)

    In

    FEA:

    tF  = tR  (10.5)

    Inlinearanalysis

    tF  =K tU  KU  =R  (10.6)⇒

    Ingeneralnonlinearanalysis,weneedto iterate. Assumethesolutionisknown“attimet”

    t

    0

    tx

    = x+ u (10.7)

    HencetF  isknown. Thenweconsider

    t+∆t t+∆tF 

    =

    (10.8)

    Considerthe loads(appliedexternalloads)tobedeformation-independent,e.g.

    41

  • 8/20/2019 fea mit lecture

    43/95

     

    MIT2.094 10.F.E.largedeformation/generalnonlinearanalysis

    Thenwecanwrite

    t+∆tF  =tF  +F  (10.9)t+∆tU 

    =tU  +U  (10.10)

    whereonlytF  andtU  areknown.

    =tK ∆U , tK  =tangentstiffnessmatrixattimet (10.11)F  ∼

    From(10.8),

    tK ∆U  =t+∆tR −tF  (10.12)

    WeusethistoobtainanapproximationtoU . WeobtainamoreaccuratesolutionforU  (i.e. t+∆tF )using

    t+∆tK (i−1)∆U (i) =t+∆tR −t+∆tF (i−1) (10.13)t+∆t

    (i)

    =

    t+∆t

    (i−

    1)

    + ∆U (i)

    (10.14)

    Also,

    t+∆tF 

    (0) =tF  (10.15)

    t+∆tK (0) =tK  (10.16)

    t+∆tU 

    (0) =tU  (10.17)

    Iteratefori= 1,2,3. . .untilconvergence. Convergenceisreachedwhen

    ∆U (i) < �D (10.18)2

    t+∆tR 

    t+∆tF 

    (i−1) (10.19)

    < �F 2

    Note:

    a2 = (ai)2

    i

    ∆U (i) =U i=1,2,3...

     

    ∆U (1) in(10.13)is∆U  in(10.12). 

    (10.13) isthe full Newton-Raphsoniteration. 

    Howwecould(inprinciple)calculatetK  

    Process

    IncreasethedisplacementtU i

    by�,withnoincrementforalltU j

    , j=i

    calculatet+�F •

    • thei-thcolumnin tK  = (t+�F  −tF )/�=∂ tF 

    .t∂ U i

    42

  • 8/20/2019 fea mit lecture

    44/95

     

     

    MIT2.094 10.F.E.largedeformation/generalnonlinearanalysis

    So, perform this process for i = 1,2,3, . . . , n, where n is the total number of  degrees of  freedom.Pictorially,

    tK =

    . .. .. .

    . .. .. . · · ·

    . .. .

    . .

    Ageneraldifficulty: wecannot“simply”incrementCauchystresses.

    t+∆tτ 

    referred

    to

    area

    at

    time

    t

    + ∆t• ij

    • tτ ij referredtoareaattimet.

    Wedefineanewstressmeasure,2nd Piola - Kirchhoff stress ,t+∆0

    tS ij

    ,where0intheleadingsubscriptreferstooriginalconfiguration. Then,

    t+∆t

    0S ij

    =0tS ij +0S ij (10.20)

    Thestrainmeasureenergy-conjugatetothe2ndP-Kstress0tS ij istheGreen-Lagrangestrain 0

    t�ij

    Then,

    0

    t

    0tS ij δ 0

    t�ij d V   = R   (10.21)0V  

    Also,

    t+∆t t+∆t 0 t+∆tS δ 

    � d V   = R (10.22)0 ij 0 ij0V  

    Example

    43

  • 8/20/2019 fea mit lecture

    45/95

    MIT2.094 10.F.E.largedeformation/generalnonlinearanalysis

    tF  =tR  (10.23)

    t+∆t t+∆tF  = R  (10.24)

    (everytimeit isinequilibrium)

    (10.13)and(10.14)give:

    i

    =

    1,

    t+∆tK (0) ∆U (1) =t+∆tR  t+∆tF (0) ≡fn(tU ) (10.25)−

    t+∆tU 

    (1) =t+∆tU (0) + ∆U (1) (10.26)

    i=2,

    t+∆tK (1) ∆U (2) =t+∆tR −t+∆tF (1) (10.27)

    t+∆tU 

    (2) =t+∆tU (1) + ∆U (2) (10.28)

    44

  • 8/20/2019 fea mit lecture

    46/95

     

     

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture11- Deformation,strainandstresstensors

    Prof. K.J.Bathe MITOpenCourseWare

    Westatedthatweuse Reading:Ch. 6

    tV  

    tτ ij δ eij d V t =

    0V  

    tS 

    t�   0V  =tR   (11.1)t 0 ij δ 0 ij d

    The

    deformation

    gradient Weuse txi

    =0xi

    +tui

    ∂ 

    tx1 ∂ tx1 ∂ 

    tx1∂ 0x1 ∂ 

    0x2 ∂ 0x3

    ∂ tx2 ∂ t

    x2 ∂ t

    x2

    tX 0

    (11.2)= 0 0 0∂  ∂  ∂ x x x1 2 3

    ∂ 

    x

    t

    3 ∂  xt

    3 ∂  xt

    3

    ∂ 

    x0 1 ∂  x0

    2 ∂  x0

    3

    td x1 dtx (11.3)td x= 2

    td x30d x1

    d0x   0 (11.4)

    (11.5)

    d x2

    0d x3

    Impliesthat

    dtx=0

    tX d0x

    =

    (0tX 

    is frequently denoted by0tF 

    or simply F , but we use F  forforcevector)

    WewillalsousetherightCauchy-Greendeformationtensor

    tC  tX T tX = (11.6)0 0 0

    Some

    applications

    45

  • 8/20/2019 fea mit lecture

    47/95

    MIT2.094  11.Deformation,strainandstresstensors

    Thestretchof afiber(tλ): 2t t

    t� 2

    dxT dx   d stλ = =  (11.7)

    d0xT d0x d0s

    Thelengthof afiberis

    0

    0 0d s = d xT d x12 (11.8)

    � 2 d0xT tX T tX d0xtλ

    =0

    0

    0

    0 ,

    from(11.5) (11.9)d s d s·

    Express

    0 0 0d

    x= d s   n  (11.10)

    0n

    = unitvector intodirectionof d x  (11.11)

    2 =

    0n

    T 0tC 

    0n

     

    (11.12)

    tλ= 0nT 0

    tC 

    0n

    12 (11.13)

    Also,�

    d x̂tT 

    ·�

    dxt

    =�

    d ŝt

    dst

    costθ, (a·b=abcosθ) (11.14)

    From(11.5),

    costθ =

    d

    x̂0 T  ˆtX T 0

    tX 0 d x0

    d ˆtsdst

    =d

    ŝ0 n̂0 T  tC 0 n0 d

    s0

    d ˆts·dst

    ˆtX 0 ≡tX 0

    (11.15)

    (11.16)

    0n̂T 0

    tC 0ncostθ=

    tλ̂tλ(11.17)

    Also,

    0ρtρ=det0

    tX 

    (seeEx. 6.5)  (11.18)

    Example  Reading:Ex. 6.6 in

    thetext

    46

  • 8/20/2019 fea mit lecture

    48/95

    MIT2.094 11.Deformation,strainandstresstensors

    1 0 0h1

    =4

    (1+ x1)(1+ x2) (11.19)

    ...

    t

    0

    txi = xi + ui (11.20)

    4

    = hktxi

    k, (i= 1,2) (11.21)

    k=1

    where txik

    arethenodalpointcoordinatesattimet(tx11

    =2, tx21

    = 1.5)

    Thenweobtain

    tX  =

     1 5 +0x2 1 +0x1 (11.22)0 4 12

    (1+0x2)12

    (9+0x1)

    At 0x1

    = 0, 0x2

    =0,

      1 5 10tX 

    0x

    =0x2=0=

    41 9

    (11.23)i

    2 2

    The

    Green-Lagrange

    Strain

    1� 1� 0t� =

    2 0tX T  0

    tX −I  =

    2 0tC 

    −I  (11.24)

    t

    0 t   t∂ xi

    ∂ xi

    + ui

    ∂ ui

    = =

    δ ij

    +

    (11.25)

    ∂ 0x ∂ 0x ∂ 0xj j j

    Wefindthat 

    1�  t�   = tu + tu + tu tu , sumoverk= 1,2,3 (11.26)0 ij 0 i,j 0 j,i 0 k,i0 k,j2where

    t∂ u0tui,j = 0

    i (11.27)

    ∂ xj

    47

  • 8/20/2019 fea mit lecture

    49/95

     

    MIT2.094 11.Deformation,strainandstresstensors

    Polar

    decomposition

    of 

    tX 

    tR   tU = 000   (11.28)

    tX 

    isarotationmatrix,suchthat

    0

    where tR 

    tR T 

    0

    tU 

    0

    0

    tR 

    isasymmetricmatrix(stretch)

    0

    =I  (11.29)

    and

    Ex.

    6.9

    textbook

    √ 3

    41 0−√ 

    32tX 

    =

    Then, � 2tC 

    tX T tX 

    tU = = 0

    t�   tU =

    0

    0

    2

    0

    0

    0

    0

    (11.30)3 301 222

    (11.31)

    (11.32)1   2

    I −

    2

    Thisshows,byanexample,thatthecomponentsof theGreen-Lagrangestrainareindependentof arigid-bodyrotation.

    48

  • 8/20/2019 fea mit lecture

    50/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture12- TotalLagrangianformulation

    Prof. K.J.Bathe MITOpenCourseWare

    Wediscussed:

    t

    tX  =

    ∂ 

    ∂  x

    xi

    j

    ⇒ dtx= tX d0x, d0x=�

    tX 

    −1

    dtx (12.1)0   0 0 0

    tC  = tX T tX  (12.2)0

    0 0

    d0x=0tX d

    tx

    where 0tX  =�

    0tX 

    −1

    =∂ 

    t

    0xi (12.3)∂ xj

    TheGreen-Lagrangestrain:

    1

    � 1

    0

    t� = 0

    tX T 0

    tX −I  = 0

    tC −I  (12.4)

    2 2

    Polardecomposition:

    1� 2

    0tX 

    =0tR 0

    tU  ⇒0

    t�  =2 0

    tU  −I  (12.5)

    Wesee,physicallythat:

    wheredt+∆tx anddtx  arethesame lengthsthe components of  the G-L strain do not⇒

    change.

    Note

    in

    FEA  

    0 0 kxi

    = hk xi

    k

    foranelement (12.6)t t kui

    = hk ui

     

    t

    0

    t

    xi =

    xi +

    ui →

    for

    any

    particle

    (12.7)

    Hencefortheelement

    t

    0

    k

    t kxi = hk xi + hk ui (12.8)

    k k

    = hk0

    xik

    +tuik

    (12.9)k

    = hktxk

    k (12.10)k

    49

  • 8/20/2019 fea mit lecture

    51/95

     

     

     

    MIT2.094 12.TotalLagrangianformulation

    E.g.,k= 4

    2ndPiola-Kirchhoff  stress

    0

    tS  =

    0t X 

    tτ 

    0tX 

    T  → componentsalso independentof arigidbodyrotation (12.11)

    Then

    t 0 t ttS ijδ �ijd V   =tτ ijδ eijd V   = R   (12.12)0 0 t 

    0V   tV   

    Wecanusean incrementaldecompositionof stress/strain.

    t+∆0

    tS  =0

    tS +0S  (12.13)

    t+∆tS  = tS  +0S    (12.14)0

    ij

    0 ij ij 

    t+∆t �= t� +0� (12.15)0   0

    t+∆

    0

    t�ij =0t�ij +0�ij (12.16)

    Assumethesolutioniskownattimet,calculatethesolutionattimet+ ∆t. Hence,weapply(12.12)attimet+ ∆t:

    t+∆t t+∆t 0

    t+∆tS δ 

    � d V   = R (12.17)0

    ij

    0

    ij0V  

    Lookatδ �0

    t

    ij

    :

    1� t t t t tδ �   =δ u + u + u u (12.18a)0 ij 0 i,j 0 j,i 0 k,i0 k,j2t t1 ∂δui

    ∂δuj

    ∂δuk

    ∂ u ∂ u ∂δukt k k

    δ �   =

    +

    +

    +

    (12.18b)

    0

    ij 2

    ∂ 0x ∂ 

    0x ∂ 0x   ·

    ∂ 0x ∂ 0x   ·

    ∂ 0xj i i j i j

    1� δ �0

    tij

    =2

    δ 0ui,j

    +δ 0uj,i

    +δ 0uk,i

    0

    tuk,j

    +0

    tuk,iδ 0uk,j

    (12.18c)

    Wehave

    t+∆t�ij −t�ij =0�ij (12.19)0   0

    0�ij

    =0eij

    +0ηij

    (12.20)

    50

  • 8/20/2019 fea mit lecture

    52/95

      

       

      

     

      

      

     

           

    MIT2.094 12.TotalLagrangianformulation

    where 0eij isthe linear incrementalstrain,0ηij isthenonlinearincrementalstrain,and

    1 t t

    0eij

    = 0ui,j

    +0uj,i

    +0uk,i

    0uk,j

    +0uk,i

    0uk,j

    (12.21)2

      

     

      

    initial displ. effect

    1

    0ηij =

    0uk,i0uk,j (12.22)2

    where

    ∂uk t+∆t   t

    0uk,j

    = 0

    ,

    uk

    = uk

    uk

    (12.23)∂ xj

    Note

    t+∆t   tδ � =δ �   ∵δ �   =0whenchangingtheconfigurationatt+ ∆t (12.24)ij 0 ij 0 ij

    From(12.17):

    � �

    tS δ    ij +δ η d V  0 ij +0S ij 0e   0 ij0

    0V  

    = tS  + + tS ijδ η   + ijδ η d V     (12.25)0 ijδ 0eij 0S ijδ 0eij 0 0 ij 0S    0 ij0

    0V  

    =t+∆tR (12.26)

    Linearization

    tt K U K 

    0V  

    0S    0e   +tS ijδ η

     

    d V   = R −0V  

    tS  0eijd V    (12.27)

    ijδ    ij 0 0 ij0

    t+∆t

    0 ijδ   0

    L  

    U  0 NL0 tF 0

    Weuse,

    0S ij �0C ijrs0ers (12.28)

    Wearriveat,withthefiniteelementinterpolations,

    0

    tK L

    +0

    tK NL

    U  =t+∆tR − 0

    tF  (12.29)

    whereU  isthenodaldisplacementincrement.

    51

  • 8/20/2019 fea mit lecture

    53/95

     

    MIT2.094 12.TotalLagrangianformulation

    Lefthandsideasbeforebutusing(k−1)andrighthandsideis

    t+∆t   t+∆t   t+∆t (k−1) 0= R −0V  

    S δ �

    d V    (12.30)0 ij 0 ij

    gives

    t+∆tR −

    t+∆0tF 

    (k−1)(12.31)

    InthefullN-Riteration,weuse

    t+∆t (k−1) t+∆t (k−1)∆U (k) t+∆t

      t+∆t (k−1)0

    K L

    +0

    K NL

    = R −0

    F  (12.32)

    52

  • 8/20/2019 fea mit lecture

    54/95

     

     

     

     

     

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture13- TotalLagrangianformulation,cont’d

    Prof. K.J.Bathe MITOpenCourseWare

    Exampletrusselement. Recall:

    Principleof virtualdisplacementsappliedatsometimet+ ∆t:

    t+∆t   t+∆t t+∆tτ ijδ t+∆teijd V  = R (13.1)t+∆tV  

    t+∆t t+∆t 0 t+∆tS δ 

    � δ V   = R (13.2)0 ij 0 ij0V  

    t+∆0

    tS ij

    =0

    tS ij

    +0S ij

    (13.3)

    t+∆0t�ij =0

    t�ij

    +0�ij

    (13.4)

    0�ij =0eij +0ηij (13.5)

    where0

    tS ij

    and 0

    t�ij

    areknown,but0S ij

    and 0�ij

    arenot.

    1� 0eij = 2 0

    ui,j +0uj,i +0tuk,i0uk,j +0

    tuk,j0uk,i (13.6)

    1� 0ηij = 0uk,i0uk,j (13.7)2

    Substituteinto(13.2)andlinearizetoobtain

    0 0 t+∆t 0δ 0e   0C    0ers   + ijδ ηijd V   = δ 0eij ijd V 0V  

    ij ijrs d V 0V  

    0tS  0 R −

    0V  0tS  (13.8)

    F.E.

    discretization

    gives

    0

    tK L

    +0

    tK NL

    ∆U  =t+∆tR −0

    tF  (13.9)

    53

  • 8/20/2019 fea mit lecture

    55/95

     

     

    MIT2.094 13.TotalLagrangianformulation,cont’d

    tK 

    tBT tB

    0

    0 L = 0 L 0C 0 Ld V    (13.10)0V  

    0tK  = tB   tS  tBNL d V    (13.11)0 NL 0 NL 0 0

    0V      

    matrix

    T  0tF  = tB   tS ˆ d V    (13.12)0 0

    L

    00V  

      

    vector

    Theiteration(fullNewton-Raphson)is

    t+∆tK 

    (i−1)

    +t+∆t

    K (i−1)

    ∆U (i) =t+∆tR t+∆t

    (i−1)

    (13.13)0 L 0 NL − 0

    t+∆tU (i) =t+∆tU (i−1) + ∆U (i) (13.14)

    Truss

    element

    example (p. 545)

    Herewehavetoonlydealwith0

    tS 11, 0e11, 0η11

    t

    0e11

    =∂u1

    +∂ uk

    ∂uk(13.15)

    ∂ 0x1

    ∂ 0x1

    ·∂ 0x1

    1 ∂uk

    ∂uk

    0η11

    =2 ∂ 0x1

    ·∂ 0x1

    (13.16)

    Weareafter

    1u1

    u1

    tB 2 tB0e11 =0 L

    2

    =0

    L

    û   (13.17)u12u2

    2

    ui = hkuki (13.18)

    k=1 

    t t kui = hk ui (13.19)k=1

    54

  • 8/20/2019 fea mit lecture

    56/95

       

       

       

       

    MIT2.094 13.TotalLagrangianformulation,cont’d

    t t

    =∂u1

    +∂ u1 ∂u1 +

    ∂ u2 ∂u2 (13.20a)0e11 ∂ 0x1

    ∂ 0x1

    ∂ 0x1

    ∂ 0x1

    ∂ 0x1

    2 0L cosθ−0L (13.20b)t + ∆L=u1

    2

    0Lt + ∆L sinθ (13.20c)=u2

    1−1 0 1 0 û0e11

    =0L

    0L+ ∆L 1ûcosθ−1 −1 0 1 0+ ·

    0L

    0L

    tu1

    0∂ x1

    0L+ ∆L 1   û

    =0tBLû   (13.20e)

    Hence,

    0

    −1 0 1sin

    θ

    (13.20d)

    +

    ·0L

    0L

    tu2

    ∂ x01

    0e11 =0L+ ∆L

    (0L)2−cosθ −sinθ cosθ sinθ û   (13.20f)

    where the boxed quantity above equals 0

    tBL. In small strain but large rotation analysis we assume∆L0L,

    1  θcos− −sinθ cosθ sinθ û   (13.20g)0e11

    =0L

    1 ∂u1

    ∂u1

    ∂u2

    ∂u2+ (13.21a)0 0 0 0x x

    =0η11 2 ∂  ∂  ∂  ∂ x x1 1 1 1

    1δ η   =0

    11 2 1

    ∂δu1

    ∂u1

    ∂u1

    ∂δu1

    ∂δu2

    ∂u2

    ∂u2

    ∂δu2+ + + (13.21b)0 0

    0 0

    0 0

    0 0x x∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ x x x x x x1

    1

    1

    1

    1

    1

    1

    ∂δu1

    ∂u1

    ∂δu2

    ∂u2

    = 0 0 + 0 0 (13.21c)∂ x1 ∂ x1 ∂ x1 ∂ x1

    ∂u1tS  00

    0∂δu1 ∂δu 2 ∂ 11tS  x1 (13.21d)11δ η   =0 11 0 0 0 0

    tS 

    ∂u2∂  ∂ x x1 1011

    ∂  x1

    tS 0

    ∂u10 1 −1 0 1 0

    0∂ 

    x1 = û   (13.21e)∂u2 0L −1 0 1∂ 

    0x1

    BNL

    55

    0

  • 8/20/2019 fea mit lecture

    57/95

       

       

    MIT2.094 13.TotalLagrangianformulation,cont’d

    0C  =E  (13.22)

    tS ˆ = tS  (13.23)0 0 11

    Assumesmallstrains

    EAtK  =0   0L

    cos2θ cosθsinθ −cos2θ −cosθsinθsin2θ −sinθcosθ −sin2θ

    cos2θ sinθcosθ

    =

    sym sin2θ

    tK  (13.24)0 L

    1 0 −1 00tP 

    0

    L

    0 1 −1

    0 + −1 0 10 −1 0 1

    tK 0 NL

    Whenθ=0,0tK L doesn’tgivestiffnesscorrespondingtou2

    2,but0tK NL does.

    56

  • 8/20/2019 fea mit lecture

    58/95

     

     

     

     

      

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture14- TotalLagrangianformulation,cont’d

    Prof. K.J.Bathe MITOpenCourseWare

    Trusselement. 2Dand3Dsolids.

    t+∆t   t+∆t t+∆tτ ij

    δ t+∆teijd V  = R (14.1)t+∆tV  

    t+∆t t+∆t 0

    t+∆t

    0S ijδ  0�ijδ V   = R (14.2)0V  

    linearization 

    δ    ij

    δ V   + tS ij

    δ ηij

    δ V   = tS  ij

    δ V    (14.3)0V  

    0C ijrs

    0ers   0e  0

    0V  0

    00 t+∆tR −

    0V  0

    ij

    δ 0e  0

    Note:

    tδ    =δ �0eij

    0

    ij

    varyingwithrespecttotheconfigurationattimet.

    F.E.

    discretization

    0 0

    k

    t t k

    t+∆t t+∆t kxi = hk xi xi = hk xi xi

    = hk xi

    (14.4a)k k k

    t t k t+∆t   t+∆t k kui = hk ui ui = hk ui

    ui = hkui (14.4b)k k

    k

    (14.4)

    into

    (14.3)

    gives

    0tK L +0

    tK NL U  =t+∆tR − 0

    tF  (14.5)

    57

  • 8/20/2019 fea mit lecture

    59/95

    MIT2.094 14.TotalLagrangianformulation,cont’d

    Truss

    ∆L 1smallstrainassumption:0L

    0E AtK 

    =

    0   0L

    cos2θ cosθsinθ −cos2θ −cosθsinθcosθsinθ sin2θ −sinθcosθ −sin2θ

    cos2θ sinθcosθ

    =−cos2θ

    −cosθsinθ

    −cosθsinθ−sin2θ

    (14.6)sinθcosθ sin2θ

    1 0 −1 00tP 

    0L

    0 1 −10

    +−1 0 1

    0 −1 0 1

    (noticethatthebothmatricesaresymmetric)

    cosθ sinθu1 u1 (14.7)=v1

    −sinθ cosθ v1

    Correspondingtotheuandv displacementswehave:

    0E AtK  = (14.8)0L

    1 0 −1 00

    1 0 −1 00

    + tP 0L

    0 0 0 0 1 −10 (14.9)= −1 0 1 00 0

    −1 0 100 0 −1 0 1

    58

    0

  • 8/20/2019 fea mit lecture

    60/95

      

     

      

    MIT2.094  14.TotalLagrangianformulation,cont’d

    tP 0 tP Q L = ∆ Q= ∆  (14.10)0L

    · ⇒ ·

    tP where the boxed term is the stiffness. In axial direction, 0L is not very important because usually

    E 0A tP  tP 0L

    0L

    . But, inverticaldirection, 0L

    is important.

    −cosθ 

    tF  tP 

      −sinθ

     

    0

    =

      cosθ

    (14.11)

    sinθ

    2D/3D

    (e.g.

    Table

    6.5)

    2D:

    1� 2 � 20�11

    =  0u1,1 +0tu1,1 0u 1,1 +0tu2,1 0u2,1  

    +2 0

    u1,1

    + 0u2,1

    (14.12)

    0e11 0η11

    0�22

    =  (14.13)· · ·

    0�12

    =  (14.14)· · ·

    (Axisymmetric)

    0�33 = ? (14.15)

    1� 2 t� =2

    tU  −I  (14.16)0 0

    × × 0× × 0

    0

    tU 2 = 0 0 ×  (14.17)

    (tλ

    )2

    t

    0 td s   2π x1

    + u1tλ= =

    0   0d s   2π x1

    (14.18)

    t

    = 1 +u1

    0x1

    2 0

    t�33

    =2

    11 + 0

    tu

    x1 −1 1

     

    (14.19) 2tu1 1 tu1= +0x1

    2 0x1

    59

  • 8/20/2019 fea mit lecture

    61/95

    MIT2.094  14.TotalLagrangianformulation,cont’d

    2tu   +u1 1 tu   +u1t+∆t 1 1� = +  (14.20)0 33 0

    0x1

    2 x1

    2u1 tu u1 1

    u10�33 =

    t+∆0

    t�33

    −0t�33 = 0x1

    + 0x1

    1

    · 0x1+

    2 0x1 (14.21)

    How

    do

    we

    assess

    the

    accuracy

    of 

    an

    analysis?  Reading:

    Sec. 4.3.6

    • Mathematicalmodel∼u

    • F.E.solution∼uh 

    Findu−uhandτ −τ h. 

    References

    [1] T.SussmanandK.J.Bathe.“Studiesof FiniteElementProcedures- onMeshSelection.”Computers 

    Structures ,

    21:257–264,

    1985.

    [2] T. Sussman and K. J. Bathe. “Studies of  Finite Element Procedures - Stress Band Plots and theEvaluationof FiniteElementMeshes.”Journal of Engineering  Computations ,3:178–191,1986.

    60

  • 8/20/2019 fea mit lecture

    62/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture15- Fieldproblems

    Prof. K.J.Bathe MITOpenCourseWare

    Heattransfer,incompressible/inviscid/irrotationalflow,seepageflow,etc.  Reading:Sec. 7.2-7.3

    Differentialformulation•

    Variationalformulation•

    Incrementalformulation•

    F.E.discretization•

    15.1 Heattransfer

    AssumeV  constantfornow:

    =

    S θ ∪

    S q s

     θ(x,y,z,t)isunkownexceptθ|S θ

    =θ pr. Inaddition, q   |S q isalsoprescribed.

    15.1.1

    Differential

    formulation

    I. HeatflowequilibriuminV  andonS q.

    II. Constitutive lawsq x =−k∂θ .∂x

    ∂θ

    q y

    =−k  (15.1)∂y

     

    ∂θ 

    q z =−k  (15.2)∂z

    III. Compatibility: temperaturesneedtobecontinuousandsatisfytheboundaryconditions.

    61

  • 8/20/2019 fea mit lecture

    63/95

    | |

    MIT2.094 15.Fieldproblems

    Heatflowequilibriumgives

    ∂ ∂θ

    ∂ ∂θ

    ∂ ∂θ Bk

    + k + k =−q  (15.3)∂x

    ∂x

    ∂y

    ∂y

    ∂z

    ∂z

    whereq B istheheatgeneratedperunitvolume. Recall1Dcase:

    unitcross-section

    dV  =dx (1) (15.4)·

    q   x

    −q   x+dx

    +q Bdx=0 (15.5)

    ∂q xq |x − q |x +

    ∂xdx

    +q Bdx=0 (15.6)

    ∂ 

    ∂θ B

        −∂x

    −k∂x

        dx+q  dx =0 (15.7)

    ∂ 

    ∂θ Bk =−q  (15.8)

    ∂x

    ∂x

    We

    also

    need

    to

    satisfy

    k

    ∂θ

    =q S  (15.9)∂n

    onS q.

    15.1.2

    Principle

    of 

    virtual

    temperatures

    θ

    ∂ k

    ∂θ+ +q B =0 (15.10)

    ∂x ∂x· · ·

    (θ =0andθ tobecontinuous.)S θ   

    θ

    ∂ k

    ∂θ+ +q B dV  =0 (15.11)

    V  

    ∂x ∂x· · ·

    62

  • 8/20/2019 fea mit lecture

    64/95

     

     

     

      

     

     

     

     

     

     

     

     

    MIT2.094 15.Fieldproblems

    Transformusingdivergencetheorem(seeEx4.2,7.1)

    S qθ

    T kθ   dV  = θq BdV  + θ q S dS q

    (15.12)V   V S q

    heat flow

    ∂θ ∂x

    θ =   ∂θ   (15.13)

    ∂y

    ∂θ

    ∂z

    k 0 0

    k= 0 k 0 (15.14)

    0 0 k

    Convection

    boundary

    condition

    S  =h θe −θS  (15.15)

    where

    θe is

    the

    given

    environmental

    temperature.

    Radiation

    S  =κ∗

    (θr)4

    −�

    θS 4

    (15.16)

    =κ∗

    (θr)2 +�

    θS 2

    θr +θS  �

    θr −θS 

    (15.17)

    =κ θr −θS  (15.18)

    whereκ=κ(θS )andθr isgiventemperatureof source. Attimet+ ∆t

    θT  t+∆tkt+∆tθdV  = θ t+∆tq BdV  + θ

    S t+∆tq S dS q (15.19)V   V S q

    Let t+∆tθ =tθ+θ (15.20)

    or t+∆tθ(i) =t+∆tθ(i−1) + ∆θ(i) (15.21)

    with t+∆tθ(0) =tθ (15.22)

    From(15.19)

    θT  t+∆t

    (i−1)∆θ(i)k dV V  

    = θt+∆tq BdV  − θT  t+∆tk(i−1)t+∆tθ(i−1)dV  (15.23)

    V V  

    S (i−

    1)

    ∆θS (i)

    θ

    S t+∆th(i−1) t+∆t e t+∆t+

    θ θ

    +

    dS q−S q

    wherethe∆θS (i)

    termwouldbemovedtothe left-handside.

    Weconsideredtheconvectionconditions

    θS t+∆th

    t+∆tθe −t+∆tθS 

    dS q (15.24)S q

    Theradiationconditionswouldbeincludedsimilarly.

    63

  • 8/20/2019 fea mit lecture

    65/95

     

     

     

     

     

     

     

    MIT2.094 15.Fieldproblems

    F.E.

    discretization

    t+∆t   t+∆tθ =H 1x4

    · θ̂4x1 for4-node2Dplanarelement

    t+∆tθ   t+∆tθ̂2x1 =B2x4 · 4x1t+∆tθS  =H S t+∆tθ̂·

    For(15.23)

    t+∆t (i−1)∆θ(i)  gives t+∆t (i−1)θ

    T k

    dV  = BT  k B   dV ∆θ̂(i)⇒   

      

     

      

      

      

    V V  

    4x2 2x2 2x4 4x1

    θt+∆tq 

    BdV 

    H T t+∆tq 

    BdV ⇒

    V V  

    θT  t+∆tk(i−1)t+∆tθ(i−1)dV 

    BT t +∆tk(i−1)BdV 

    t+∆tθ̂(i−1)⇒        V V   known

     

    S q

    θS T t+∆th(i−1) t+∆tθe − t+∆tθS 

    (i−1)

    + ∆θS (i)

    dS q =⇒

    H S T  t+∆th(i−1) H S t+∆tθ̂e t+∆tθ̂(i−1)+∆θ̂(i)dS q   

        

     

      

    −  

     

      

      

    S q 4x1

    1x4 4x1

    4x1

    4x1

    15.2

    Inviscid,

    incompressible,

    irrotational

    flow

    2Dcase: vx,vy

    arevelocitiesinxandy directions.

    ∇·v= 0

    or∂vx

    +∂vy

    =0 (incompressible)∂x

    ∂y

    ∂vx

    ∂vy

    ∂y

    −∂x

    =0 (irrotational)

    Usethepotentialφ(x,y),

    ∂φ

    ∂φ

    vx =

    vy =

    ∂x

    ∂y

    ∂ 2φ ∂ 2φ+ = 0 inV ⇒

    ∂x2 ∂y 2

    (Sameastheheattransferequationwithk=1,q B =0)

    64

    (15.25)

    (15.26)

    (15.27)

    (15.28)

    (15.29)

    (15.30)

    (15.31)

    Reading:

    Sec. 7.3.2

    (15.32)

    (15.33)

    (15.34)

    (15.35)

    (15.36)

  • 8/20/2019 fea mit lecture

    66/95

     

     

     

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture16- F.E.analysisof Navier-Stokesfluids

    Prof. K.J.Bathe MITOpenCourseWare

    Incompressibleflowwithheattransfer

    Reading:

    Sec.Werecallheattransferforasolid: 7.1-7.4,

    Table7.3

    Governing

    differential

    equations

    (kθ,i),i +q B = 0 inV  (16.1)

    isprescribed,k =q S ∂θ

    (16.2)θ∂nS θ

    S q S q

    Sθ ∪

    Sq = S

    Sθ ∩

    Sq =

    (16.3)

    Principle

    of 

    virtual

    temperatures

    θ,ikθ,idV  = θq B

    dV  + θ

    S q 

    S dS q

    (16.4)V  

    V S q

    forarbitrarycontinuousθ(x1, x2, x3)zeroonSθ

    Forafluid,weusetheEulerianformulation.

    65

  • 8/20/2019 fea mit lecture

    67/95

    MIT2.094 16.F.E.analysisof Navier-Stokesfluids

    ρc pvθ|x

    ρc pvθ|x

    +∂ 

    ∂x

    (ρc pvθ)dx

    + conduction + etc (16.5)

    Ingeneral3D,wehaveanadditionaltermforthe lefthandsideof  (16.1):

    −∇

    ·

    (ρc pvθ)=−ρc p∇·(vθ)=−ρc p(      ∇·v)θ−ρc p(v·∇)θ  

     

      

    term (A)

    (16.6)

    where∇·v=0inthe incompressiblecase.

    ∇·v=vi,i

    =div(v)=0 (16.7)

    So(16.1)becomes

    (kθ,i),i +q B =ρc pθ,ivi

    ⇒(kθ,i),i +

    B −ρc pθ,ivi

    =0 (16.8)

    Principle

    of 

    virtual

    temperatures

    is

    now

    (use

    (16.4)) 

    V  

    θ,ikθ,idV  +

     

    V  

    θ(ρc pθ,ivi)dV  =

     

    V  

    θq BdV  +

     

    S q

    θS 

    q S dS q

    (16.9)

    Navier-Stokes

    equations

    • Differential  form 

    τ ij,j +f Bi =ρvi,jvj (16.10)

    withρvi,jvj liketerm(A) in(16.6)=ρ(v·∇)v inV .

    τ ij

    =− pδ ij

    +2µeij

    eij

    =1

    2

    ∂vi∂xj

    +∂vj∂xi

    (16.11)

    • Boundary conditions (needbemodifiedforvariousflowconditions)

    τ ijnj =f S f i

    onS f  (16.12)

    Mostly used as f n = τ nninflowconditions).

    = prescribed, f t = unknown with possibly∂vn

    ∂n= ∂vt

    ∂n= 0 (outflow or

    Andvi prescribedonS v,andSv ∪Sf  = SandSv ∩Sf  =∅.

    66

  • 8/20/2019 fea mit lecture

    68/95

     

     

     

     

     

    MIT2.094 16.F.E.analysisof Navier-Stokesfluids

    Variational 

     form •

    viρvi,j

    vj

    dV  + eij

    τ ij

    dV  = vif i

    BdV  + vi

    S f f i

    S f dS f 

    (16.13)V  

    V V S f 

     p∇·vdV  =0 (16.14)V  

    F.E.

    solution •

    Weinterpolate(x1, x2, x3),vi,vi,θ,θ, p, p. Goodelementsare

    ×: linearpressure: biquadraticvelocities◦

    (Q2, P 1),9/3element

    9/4celement

    Bothsatisfytheinf-supcondition.

    Soingeneral,

    Example:

    ForS f  e.g.

    τ nn = 0,∂vt

    =0; (16.15)∂n

    67

  • 8/20/2019 fea mit lecture

    69/95

    MIT2.094 16.F.E.analysisof Navier-Stokesfluids

    and ∂vn issolvedfor. Actually,wefrequently justset p=0.∂t

    Frequentlyused isthe4-nodeelementwithconstantpressure

    Itdoesnotstrictlysatisfythe inf-supcondition. Oruse Reading:Sec. 7.4

    3-nodeelementwithabubblenode.Satisfies inf-supcondition

    1D

    case

    of 

    heat

    transfer

    with

    fluid

    flow, v= constant Reading:

    Sec. 7.4.3

    Re

    =

    vL

    Pe

    =

    vL

    α

    =

    k

    (16.16)

    ν 

    α

    ρc p

    Differential 

    equations •

    kθ =ρc pθv (16.17)

    θ|x=0 =θL θ|x=L =θR (16.18)

    Innon-dimensionalform Reading:p. 683

    1(nowθ andθ arenon-dimensional) (16.19)θ =θ

    Pe

    exp Pexθ−θL   L

    −1⇒

    θR −

    θL

    =

    exp

    (Pe)

    1

    (16.20)

    68

  • 8/20/2019 fea mit lecture

    70/95

    MIT2.094 16.F.E.analysisof Navier-Stokesfluids

    • F.E.discretization 

    θ =Peθ (16.21)

      1

    0

    θθdx+Pe

      1

    0

    θθdx=0+{effectof boundaryconditions =0here}

    Using2-nodeelementsgives

    (16.22)

    1 Pe

    (h∗)2(θi+1

    −2θi

    +θi−1) =2h∗

    (θi+1

    −θi−1) (16.23)

    vL

    Pe= (16.24)α

    Define

    h

    vh

    Pee =Pe = (16.25)·L α

    Pee Pee−1−

    2θi−1 + 2θi +

    2−1 θi+1

    =0 (16.26)

    whatishappeningwhenPee islarge? Assumetwo2-nodeelementsonly.

    θi−1 =0 (16.27)

    θi+1 =1 (16.28)

    1 Peeθi =

    21−

    2(16.29)

    69

  • 8/20/2019 fea mit lecture

    71/95

    MIT2.094 16.F.E.analysisof Navier-Stokesfluids

    1 Peeθi

    =2

    1−2

    (16.30)

    ForPee >2,wehavenegative θi

    (unreasonable).

    70

  • 8/20/2019 fea mit lecture

    72/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture17- Incompressiblefluidflowandheattransfer,cont’d

    Prof. K.J.Bathe MITOpenCourseWare

    17.1 Abstractbody

    Reading:

    Sec. 7.4

    Fluid 

    Flow 

    Heat 

    transfer 

    Sv, Sf 

    Sθ, Sq

    Sv

    ∪Sf 

    ∪Sq

    =S  =S Sv ∩Sf  = 0 Sθ ∩Sq = 0

    17.2 Actual2Dproblem(channelflow)

    71

  • 8/20/2019 fea mit lecture

    73/95

     

     

     

     

     

     

     

     

     

    MIT2.094 17.Incompressiblefluidflowandheattransfer,cont’d

    17.3 Basicequations

    P.V.

    velocities

    viρvi,jvjdV  + τ ijeijdV  = vif iB

    dV  + viS f f i

    S f dS f  (17.1)V   V V S f 

    Continuity

     pvi,idV  =0 (17.2)V  

    P.V.

    temperature

    θρc pθ,ividV  + θ,ikθ,idV  = θq B

    dV  + θ

    S q 

    S dS 

    (17.3)V  

    V V S q

    F.E.

    solution

    xi

    = hkxki

    (17.4)

    vi

    = hkvik (17.5)

    θ= hkθk (17.6)

     p= h̃k pk (17.7)

    F (u) =R   u=

     p

    nodalvariables (17.8)⇒

    θ

    17.4 Modelproblem

    1Dequation,

    d2θ

    ρc pv =k (17.9)dx

    dx2

    (v isgiven,unitcrosssection)

    Non-dimensionalform(Section7.4)

    d2θPe = (17.10)

    dx

    dx2

    72

  • 8/20/2019 fea mit lecture

    74/95

     

     

    MIT2.094 17.Incompressiblefluidflowandheattransfer,cont’d

    vL

    kPe= , α= (17.11)

    α

    ρc p

    θ∗ isnon-dimensional

    θ

    θL

    exp

    PeLx

    θR

    −θL

    =exp(Pe)−1

    (17.12) 

    (17.10) inF.E.analysisbecomes

    dθ dθ dθθPe dV  + dV  =0 (17.13)

    dx dx dxV V  

    Discretizedby linearelements:

    hh∗ =

    L

    ξ ξ 

    θ(ξ ) = 1− θi−1

    + θi

    (17.14)h∗ h∗

    Fornodei: 

    Pee Pee −θi−1 −

    2θi−1 + 2θi −θi+1 +

    2θi+1 =0 (17.15)

    where

    vh

    hPee = =Pe (17.16)

    α L

    Thisresultisthesameasobtainedbyfinitedifferences

    1(θi+1 −2θi +θi−1) (17.17)θ =

    i (h∗)2

    θ =θi+1 −θi−1

    (17.18)i 2h∗

    73

  • 8/20/2019 fea mit lecture

    75/95

    MIT2.094 17.Incompressiblefluidflowandheattransfer,cont’d

    Consideredθi+1 =1,θi−1 =0. Then

    θi

    = 1−(Pee/2)

    (17.19)2

    PhysicallyunrealisticsolutionwhenPee >2. Forthisnottohappen,weshouldrefinethemesh—averyfinemeshwouldberequired. Weuse“upwinding”

    dθ=

    θi −θi−1(17.20)

    h∗dx i

    Theresultis

    (−1−Pee)θi−1 +(2+Pee)θi −θi+1 =0 (17.21)

    Verystable,e.g.

    θi−1

    =0=

    1(17.22)

    θi+1

    = 1⇒θi

    2+Pee

    Unfortunately

    it

    is

    not

    that

    accurate.

    To

    obtain

    better

    accuracy

    in

    the

    interpolation

    for

    θ,

    use

    the

    function

    exp PexL

    −1

    exp(Pe)−1(17.23)

    TheresultisPee dependent:

    This impliesflow-conditionbasedinterpolation. Weusesuch interpolationfunctions—seereferences.

    References

    [1] K.J. Bathe and H. Zhang. “A Flow-Condition-Based Interpolation Finite Element Procedure for

    Incompressible

    Fluid

    Flows.”

    Computers 

    Structures ,

    80:1267–1277,

    2002.

    [2] H. Kohno and K.J. Bathe. “A Flow-Condition-Based Interpolation Finite Element Procedure forTriangularGrids.”International Journal  for Numerical Methods  in Fluids ,51:673–699,2006.

    74

  • 8/20/2019 fea mit lecture

    76/95

    MIT2.094  17.Incompressiblefluidflowandheattransfer,cont’d

    17.5 FSIbriefly 

    Lagrangianformulationforthestructure/solid

    Arbitrary

    Lagrangian-Eulerian

    (ALE)

    formulation Letf  beavariableof aparticle(e.g. f  =θ).

    Consider1D

    f ̇∂f 

    ∂f 

    = + vparticle

    ∂t

    ∂x

    (17.24)

    where

    v

    is

    the

    particle

    velocity.

    For

    a

    mesh

    point,

    f ∗ =∂f 

    ∂f 

    + vm 

    (17.25)mesh point ∂t ∂x

    wherevm

    f ̇

    isthemeshpointvelocity. Hence,

    ∂f =f ∗ +

    ∂x(v−vm)  (17.26)

    particle mesh point

    Use(17.26) inthemomentumandenergyequationsanduse forceequilibriumandcompatibilityattheFSIboundarytosetupthegoverningF.E.equations.

    References

    [1] K.J.Bathe,H.ZhangandM.H.Wang.“FiniteElementAnalysisof IncompressibleandCompressibleFluidFlowswithFreeSurfacesandStructuralInteractions.” Computers & Structures ,56:193–213,1995.

    [2] K.J.  Bathe, H. Zhang and S. Ji. “Finite Element Analysis of  Fluid Flows Fully Coupled withStructuralInteractions.”Computers  & Structures ,72:1–16,1999.

    [3] K.J.BatheandH.Zhang.“FiniteElementDevelopmentsforGeneralFluidFlowswithStructuralInteractions.”International Journal  for Numerical  Methods  in Engineering ,60:213–232,2004.

    75

  • 8/20/2019 fea mit lecture

    77/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture18- Solutionof F.E.equations

    Prof. K.J.Bathe MITOpenCourseWare

    Instructures, Reading:Sec. 8.4

    F (u, p)=R . (18.1)

    Inheattransfer,

    F (θ) =Q (18.2)

    Influidflow,

    F (v, p,θ) =R  (18.3)

    Instructures/solids

    (m)

     

    t (m)T  tˆ(m)   0 (m)F  = = 0BL

    0S    d V    (18.4)0V  (m)

    m m

    Elasticmaterials

    Example p. 590textbook

    76

  • 8/20/2019 fea mit lecture

    78/95

  • 8/20/2019 fea mit lecture

    79/95

     

    MIT2.094  18.Solutionof F.E.equations

    Plasticity

    •  yieldcriterion

    flowrule•

    •  hardeningrule

    ttτ 

      =t−∆tτ  + dτ  (18.16)t−∆t

    Solution

    of 

    (18.1)

    (similarly

    (18.2)

    and

    (18.3))

    Newton-Raphson FindU ∗ asthezeroof f (U ∗)

    t+∆t t+∆tR f (U ∗) = (18.17)F −

    ·t+∆t (i−1)U 

    U ∗ −t+∆tU (i−1) +H.O.T.  (18.18)∂ f t+∆t

    (i−1) +=f  U 

    ∂ U 

    where t+∆tU (i−1) isthevaluewe justcalculatedandanapproximationtoU ∗.

    Assume t+∆tR  isindependentof thedisplacements.

    ·∆U (i)  (18.19)∂ t+∆tF t+∆tR 

    t+∆tF 

    (i−1)0= − −

    ∂ U  t+∆t (i−1)U 

    Weobtain 

    t+∆tK (i−1)∆U (i) =t+∆tR −t+∆tF (i−1) (18.20) 

    (18.21)∂ 

    t+∆tF 

    ∂ F t+∆tK (i−1) = =∂ U 

    t+∆t (i−1) ∂ U  t+∆t (i−1)U  U 

    Physically

    ∆t+∆t

    F 1(i−1)

    t+∆t (i−1)K 11 =  (18.22)∆u

    78

  • 8/20/2019 fea mit lecture

    80/95

     

    MIT2.094 18.Solutionof F.E.equations

    Pictorially

    for

    a

    single

    degree

    of 

    freedom

    system

    i=1; tK ∆u(1) =t+∆tR−tF  (18.23)

    i=2; t+∆tK (1)∆u(2) =t+∆tR t+∆tF (1) (18.24)−

    Convergence Use

    ∆U (i)2

    < � (18.25)

    a2 = (ai)

    2

    (18.26)

    i

    But,if incrementaldisplacementsaresmall ineveryiteration,needtoalsouse

    t+∆tR −t+∆tF (i−1)2 < �R (18.27)

    18.1 Slenderstructures

    (beams,plates,shells)

    t

    1 (18.28)Li

    79

  • 8/20/2019 fea mit lecture

    81/95

    MIT2.094 18.Solutionof F.E.equations

    Beam

    t 1e.g.L

    = 100

    (4-nodeel.) The element does not have curvature we have aspuriousshearstrain

    → 

    (9-node

    el.)

    Wedonothaveashear(better)→But, still for thin structures, it has problems→

    likeill-conditioning.

    We need to use beam elements. For curved structures also spurious membrane strain can be⇒present.

    80

  • 8/20/2019 fea mit lecture

    82/95

    2.094—FiniteElementAnalysisof SolidsandFluids Fall‘08

    Lecture19- Slenderstructures

    Prof. K.J.Bathe MITOpenCourseWare

    Beamanalysis,   tL

     1(e.g.   tL

    =   11100

    ,1000

    ,· · ·) Reading:Sec. 5.4,

    6.5

    (plane

    stress)

    2L 0

    (19.1)J  =0

    1

    t

    2

    (1−r) (1+s) (19.2)h2 =41

    (1−r)(1−s) (19.3)h3

    =4

    ∗ ∗=v v32

    3

    2

    Beamtheoryassumptions(Timoshenkobeamtheory):

    u∗

    u∗

    (19.4)

    (19.5)

    (19.6)

    =v2t

    =u2

    + θ22t

    =

    u2

    2

    θ2

    ∗ ∗ ∗ ∗u v u v3322

    1 2L

      0 − 14 (1−s)2L

      0

    2(1 )−rt

    (1+s)− 4

    0

    etc (19.7)B∗ =1

    42(1 )−rt

    (1+s)

    1

    42(1 )−rt

    2(1−s)

    0 −

    1 2L

      − 142(1 )−rt

    81

    − 14− 4   L

    14

  • 8/20/2019 fea mit lecture

    83/95

       

    MIT2.094 19.Slenderstructures

    u2

    v2

    θ2 ∂u

    ∂x1 t0− s

    L 2L

    Bbeam =

    · · ·0

    (19.8)0 0 0 ∂v  

      ∂y

    0 −1 −1(1−r)∂y

    ∂x

    L

    2

    ∂u + ∂v

    1v(r)=

    2(1−r)v2

     

    1 st u(r)=

    2(1−r)u2

    −4

    (1−r)θ2

    atr=−1,

    v(−1)=v2

    st

    u(−1)=−2

    θ2

    +u2

    Kinematics is

    1u(r)=

    2(1−r)u2

    resultsinto�xx

    ∂u 2 1

    �xx

    =∂r

    ·

    L

    =−L

    st

    u(r,s) =−4

    (1−r)θ2

    resultsinto�xx,γ xy

    st

    �xx =→2L

    ∂u 2 1

    γ xy =∂s

    ·t

    =−2

    (1−r)

    1v(r)=

    2(1−r)v2

    resultsintoγ xy

    1→γ xy

    =−L

    (19.9)

    (19.10)

    (19.11)

    (19.12)

    (19.13)

    (19.14)

    (19.15)

    (19.16)

    (19.17)

    (19.18)

    (19.19)

    82

  • 8/20/2019 fea mit lecture

    84/95

    MIT2.094 19.Slenderstructures

    Forapurebendingmoment,wewant 

    1 1 −

    Lv2 −

    2(1−r)θ2 =0 (19.20)

    forallr! Impossible (exceptforv2 =θ2 =0) So,theelementhasaspuriousshearstrain!⇒ ⇒

    Beam

    kinematics (Timoshenko,Reissner-Mindlin)

    dwγ 

    =dx

    −β  (19.21)

    1I = bt3 (19.22)

    12

    Principle

    of 

    virtual

    work

    EI 

      L

    0

    dβ 

    dx

    dβ 

    dx

    dx+AS 

    G

      L

    0

    dw

    dx

    −β 

    dw

    dx

    −β 

    dx=

      L

    0

     pwdx (19.23)

    As

    =kA=kbt (19.24)

    Tocalculatek Reading: 

    A

    1

    2G(τ a)

    2dA=

     

    AS

    1

    2G

    As

    2

    dAs (19.25)

    p. 400

    where

    τ a is

    the

    actual

    shear

    stress:

    τ a

    =3

    A