FiO-2015-JW2A.36 [Gmendoza]

Embed Size (px)

Citation preview

  • 8/17/2019 FiO-2015-JW2A.36 [Gmendoza]

    1/2

    JW2A.36.pdf Frontiers in Optics/Laser Science 2015 © OSA 2015

    AND gate in a nonlinear subwavelength dielectric

    waveguide array

    G. Mendoza-Gonzáleza and Erwin A. Martı́-Paname ˜ noa,ba Benem´ erita Universidad Aut´ onoma de Puebl a, Facultad de Ciencias Fı́sico-Matem´ aticas, Posgrado en Fı́sica

     Aplicada, Av. San Claudio y 18 sur, Colonia San Manuel, Puebla 72570, Mexico.b Benem´ erita Universidad Aut ́  onoma de Puebla. Laboratorio Nacional de Superc´ omputo del Sureste de M ́  exico, Blvd.

    Valsequillo y Ave. Las Torres, Puebla 72570, Mexico. http://www.lns.buap.mx

    [email protected]

    Abstract:   In this work we present numerical results regarding the possibility to control

    the output position of the light in nonlinear arrays of subwavelength dielectric parallel

    waveguides. The main result is an AND logic gate due the interaction of two input beams.

    © 2015 Optical Society of AmericaOCIS codes:   050.6624, 190.0190, 190.3270, 200.4660.

    1. IntroductionA large number of optical effects can be observed in discrete systems that are not possible in homogeneous media.

    The discretized nature of light propagation gives rise to phenomena like: discrete diffraction, diffraction management,

    temporal and spatial discrete solitons and self-phase modulation of the radiation [1–3]. At subwavelength scales,

    new optical phenomena have been recently discovered such as auto-accelerated beams propagating along curved

    paths, plasmonic subwavelength solitons in nonlinear metamaterials, nanoplasmonics, etc. [4, 5]. In the pursuit of 

    low-dimensional optical systems, one can find reports that focus on the waveguide dimensions. Particularly interest-

    ing results have been found in nonlinear interactions. Foster et al. [6, 7] focused on the balance between core size and

    power confinement with the aim of maximizing nonlinear interactions in waveguides. They found that the optimal core

    size is subwavelength and that structures with asymmetric cross sections maximize the effective nonlinearity. [6, 7].

    The numerical study is based in to resolve Maxwell’s equations considering the constitutive relations of the medium

    in the time domain, for that, we apply the finite difference time domain (FDTD) method [8, 9]. In this report we show

    the propagation and interaction of optical radiation along one-dimensional arrays of nonlinear parallel dielectric sub-

    wavelength waveguides (SWG). A homogeneous dielectric medium, with a refractive index lower than the waveguides

    linear index, surrounds the whole system. The result of the interaction is the behavior of AND logic gate.

    1.1. Theoretical model

    The nonlinear media considered in this work is isotropic and non magnetic. In this case, the mathematical model for

    light propagation is based on the following Maxwell’s equations:

    ∂ H

    ∂ t =−   1

    µ 0∇×E,   (1)

    ∂ D

    ∂ t = ∇×H,   (2)

    This model will provide a set of partial nonlinear differential equations for the six electromagnetic field components.

    The model is closed considering the boundary and initial conditions. The vector of displacement electric  D  is:

    D = ε 0(1+ χ (1)+ χ (3) |E|2)E = ε 0(ε r  + χ (3) |E|2)E,   (3)

    where χ (1) and χ (3) are the linear and nonlinear electrical susceptibilities of the medium, respectively. ε r  is the linearrelative dielectric constant and is related to the linear refractive index by  n0 =

    √ ε r  . Considering the local intensity  I 

    (power per unit of area) for a monochromatic propagating wave [10], as  I  =  n0 

    ε 0/µ 0 |E|2. The nonlinear electricalsusceptibility in function of the Kerr coefficient  n2  is:

     χ (3) = 2n2on2 

    ε 0/µ 0.   (4)

  • 8/17/2019 FiO-2015-JW2A.36 [Gmendoza]

    2/2

    JW2A.36.pdf Frontiers in Optics/Laser Science 2015 © OSA 2015

    2. Numerical results

    The incident field is a monochromatic Gaussian beam, linearly polarized in the   x−direction with wavelengthλ  =  800nm   and amplitude   E i  = 4.5× 108 V /m. The values for the nonlinear medium are:   n0  =  1.455 and   n2 ≈2×10−16 m2/W . r  = 300nm and  D = 850nm (see fig.1 (a)).

    Ei2

    Output 

    Input optical signals

    c m1

    Ei1

    x

    y

    z

     r  D

    θ  

    (a)

    Output

    (ii)

    input

    0

    20

    40

    x [ ]μm

    0   10-10

    z[m]

    μ

    0   10-10

    x [ m ]μ

    0

    2

    4

               E

         x       1       0 

         [       V     /     m     ]  

            8 

    (b)

    (i)

    "AND01.txt"

    "AND10.txt"

    "AND11.txt"

          P    e     a 

          k      A    m    p  

          l      i     t     u       d     e 

          [        V       /     m      ]  

         x       1      0 

            8 

    4

    3

    2

    1

    0

     AND01 AND10 AND11

    0   8 16 24 32 40z [ ]μm

    (f)

    0

    2

    4

    0   10-10

    x [ m ]μ

    InOut

              E

         x       1       0 

         [       V     /     m     ]  

           8 

    0   10-10

    x [ m ]μ

    InOut

    0

    2

    4

              E

         x       1       0 

         [       V     /     m     ]  

           8 

    ( )c

    (d) (e)

    Fig. 1. (a)Schematic representation of the SWGs array. Normal incidence of both Ei1 and  Ei2 fields.

    (b) Beams profiles, input (blue-line) output (red-line). (c) Evolution of the propagation of light along

    the array. (d,e) Beams profiles with only one input beam. (f) Summary of behavior of AND logic

    gate.

    Figure  1(b,c) shows the interaction of two input beams, forming one output in the central SWG, this result is

    behavior of the AND logic gate –the output will be ”high”  (1) if and only if all inputs are ”high” (1). If any input(s)are ”low” (0), the output is in a ”low” state–. Fig. 1(d,e) show the behavior with only one input beam, the output beamnot is self-trapped in the central SWG, we observe radiative losses, for this reason, we have not a good output beam

    and we can consider lack of the output beam. (f) show the summary of the behavior for different propagation length.

    In analogy with microelectronics, for values between 1.5×108V /m to 3.0×108V /m we could consider an active-highsignal, and before this value is an active-low signal.

    References

    1. D. N. Christodoulides and R. I. Joseph,“Discrete self-focusing in nonlinear arrays of coupled waveguides”, Opt.

     Lett. 13, 794–796 (1988).

    2. H. S. Eisenberg et al., “Diffraction management”, Phys. Rev. Lett. 85, 1863–1866 (2000).

    3. R. Morandotti et al., “Self-focusing and defocusing in waveguide arrays”,   Phys. Rev. Lett.   86, 3296–3299

    (2001).

    4. Y. Liu et al., “Subwavelength discrete solitons in nonlinear metamaterials”, Phys. Rev. Lett. 99, 153901 (2007).

    5. C. Zhigang, S. Mordechai, and N. C. Demetrios, “Optical spatial solitons: historical overview and recent ad-

    vances”,  Rep. Prog. Phys. 75(086401), 21 (2012).

    6. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions”, Opt. Express 12,

    2880–2887 (2004).

    7. M. A. Foster et al., “Nonlinear optics in photonic nanowires”, Opt. Express 16, 1300–1320 (2008).

    8. K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic

    media”, Antennas and Propagation, IEEE Transactions on, 14, 302–307 (1966).

    9. C. M. Reinke et al., “Nonlinear finite-difference time-domain method for the simulation of anisotropic,  χ (2),and χ (3) optical effects”, J. Lightwave Technol. 24, 624 (2006).

    10. S. Kasap and P. Capper,  Springer Handbook of Electronic and Photonic Materials: Part D-45, Springer Sci-

    ence+Business Media, New York (2006).