39
1 Física II: Termodinámica, ondas y fluidos Índice 4 – LA SEGUNDA LEY DE LA TERMODINÁMICA.................................................................................... 2 4.2 DIRECCIÓN DE LOS PROCESOS TERMODINÁMICOS..................................................................................... 2 4. 3 MAQUINÁS DE CALOR.................................................................................................................................... 3 Ejemplo 4.1 motor de gasolina ......................................................................................................................... 5 4.4 MOTORES A COMBUSTIÓN............................................................................................................................. 6 4.6 L A SEGUNDA LEY DE LA TERMODINÁMICA................................................................................................ 12 4.7 E L CICLO DE CARNOT ................................................................................................................................... 14 Ejemplo 4.2 Máquina de Carnot .................................................................................................................... 17 Ejemplo 4.3 Ciclo completo de la máquina de Carnot ................................................................................. 17 Ejemplo 4.4 Ciclo de Carnot como refrigerador .......................................................................................... 20 4.8 E SCALA DE TEMPERATURA KELVIN........................................................................................................... 22 4.9 E NTROPÍA....................................................................................................................................................... 23 Ejemplo 4.5 – Cambio de entropía relacionada con cambio de fase .......................................................... 24 Ejemplo 4.6 Cambio de entropía calentando agua....................................................................................... 25 Ejemplo 4.7 – Expansión reversible adiabática de un gas ........................................................................... 25 Ejemplo 4.8 – Expansión libre de un gas ideal ............................................................................................. 26 Ejemplo 4.9 - Entropía durante el ciclo de Carnot ....................................................................................... 27 Ejemplo 4.10 – Mezcla térmica ...................................................................................................................... 28 4.10 I NTERPRETACIÓN MICROSCÓPICA DE LA ENTROPÍA.............................................................................. 30 Ejemplo 4.11 – Es tados microscópicos y expansión libre de un gas........................................................... 32 PROBLEMAS ......................................................................................................................................................... 33

Física II: Termodinámica, ondas y · PDF file2 4 – La segunda ley de la termodinámica 4.2 Dirección de los procesos termodinámicos Los proce sos naturales son irreversibles

  • Upload
    dodieu

  • View
    218

  • Download
    2

Embed Size (px)

Citation preview

1

Física II: Termodinámica, ondas y fluidos

Índice

4 – LA SEGUNDA LEY DE LA TERMODINÁMICA....................................................................................2

4.2 DIRECCIÓN DE LOS PROCESOS TERMODINÁMICOS.....................................................................................2 4. 3 MAQUINÁS DE CALOR....................................................................................................................................3

Ejemplo 4.1 motor de gasolina .........................................................................................................................5 4.4 MOTORES A COMBUSTIÓN.............................................................................................................................6 4.6 LA SEGUNDA LEY DE LA TERMODINÁMICA................................................................................................ 12 4.7 EL CICLO DE CARNOT...................................................................................................................................14

Ejemplo 4.2 Máquina de Carnot .................................................................................................................... 17 Ejemplo 4.3 Ciclo completo de la máquina de Carnot................................................................................. 17 Ejemplo 4.4 Ciclo de Carnot como refrigerador .......................................................................................... 20

4.8 ESCALA DE TEMPERATURA KELVIN........................................................................................................... 22 4.9 ENTROPÍA....................................................................................................................................................... 23

Ejemplo 4.5 – Cambio de entropía relacionada con cambio de fase.......................................................... 24 Ejemplo 4.6 Cambio de entropía calentando agua....................................................................................... 25 Ejemplo 4.7 – Expansión reversible adiabática de un gas........................................................................... 25 Ejemplo 4.8 – Expansión libre de un gas ideal ............................................................................................. 26 Ejemplo 4.9 - Entropía durante el ciclo de Carnot....................................................................................... 27 Ejemplo 4.10 – Mezcla térmica ...................................................................................................................... 28

4.10 INTERPRETACIÓN MICROSCÓPICA DE LA ENTROPÍA.............................................................................. 30 Ejemplo 4.11 – Es tados microscópicos y expansión libre de un gas........................................................... 32

PROBLEMAS ......................................................................................................................................................... 33

2

4 – La segunda ley de la termodinámica

4.2 Dirección de los procesos termodinámicos

Los procesos naturales son irreversibles ⇒ se desarrollan en una dirección pero no el inverso Ej. el calor fluye de un cuerpo caliente a un cuerpo frió – la expansión libre de un gas Esta dirección sigue la segunda ley de la termodinámica Procesos reversibles – cerca del equilibrio termodinámico dentro de si y con su entorno

• Cualquier cambio de estado podrá invertirse solamente con modificación infinitesimal a las condiciones del sistema

Si el equilibre estaba perfecto nunca el sistema podrá cambiar de estado

• Un proceso reversible es una idealización – si hacemos los gradientes de temperatura y diferencia de presión en la sustancia muy pequeños el sistema se encontrara muy cerca del estado de equilibrio ⇒ proceso casi reversible

Hay una relación entre la dirección de un proceso y el desorden o aleatoriedad del estado resultante – la conversión de energía mecánica en calor implica un aumento de la aleatoriedad o desorden 2 clases de dispositivos:

1. Máquinas de calor – convierten parcialmente calor en trabajo 2. Refrigeradores – transportan calor de cuerpos fríos a cuerpos calientes pero con

ayuda de trabajo

3

4. 3 Maquinás de calor

Una importante fuente de energía = quemar combustibles fósiles (carbón + petróleo + reacción nucleares)

La energía de los alimentos se quema (carbohidratos se combinan con oxígeno para producir agua y bióxido de carbono + energía) y se convierte parcialmente en energía mecánica

Un dispositivo que transforma calor parcialmente en trabajo o energía mecánica es una maquina de calor

Sustancia de trabajo = cantidad de materia en una máquina que gaña o pierde calor se expende o se compresa o cambia de fase

Ej. en motores a combustión = mezcla de aire + combustible – en turbina de vapor = agua

Máquinas más simples = usan proceso cíclico

Ej. en una turbina a vapor el agua es reciclado uno y otra vez – los motores a combustión cambian aire + combustible pero proceso similar a proceso cíclico

Todas las maquinas de calor absorben calor de un depósito caliente a temperatura HT realizan un trabajo W y rechazan algo de calor a un depósito frío a temperatura CT

• El calor rechazado es pura perdida – no se puede usar para hacer trabajo útil

Ej. Motor interna = gases de escape calientes – turbina a vapor = calor que escape del vapor de agua cuando se condensa

Durante un proceso cíclico 2 1 0U U U∆ = − = 0Q W⇒ − = o sea Q W=

• El calor neto que fluye hacia la máquina en un proceso cíclico es igual al trabajo realizado por la máquina

4

Esquema de la máquina de calor

2 cuerpos :

1. Depósito caliente – fuente de calor que puede ceder una grande cantidad de calor a la sustancia de traba jo a temperatura constante HT

2. Depósito frío – que puede absorber una grande cantidad de calor de la sustancia de trabajo a una temperatura constante CT

• Cantidades de calor transferidos – del depósito caliente HQ y del depósito frío CQ o 0Q > calor transferida a la sustancia de trabajo o 0Q < calor que sale de la sustancia de trabajo o 0HQ⇒ > y 0CQ <

Calor neto absorbido por ciclo :

(4.1) H C H CQ Q Q Q Q= + = −

Producto normal: (4.2) H C H CW Q Q Q Q Q= = + = −

La máquina ideal seré una máquina donde 0CQ = , pero esto es físicamente imposible porque siempre se desperdicia algo de calor (analogía mecánica = fricción) Eficiencia térmica:

(4.3) 1 1 CH C C

H H H H

QQ Q QWeQ Q Q Q

+= = = + = −

La eficiencia es siempre más pequeña que 1

5

Ejemplo 4.1 motor de gasolina

10000JHQ = y 2000JW = El calor se obtiene quemando gasolina con aire – la gasolina tiene calor de combustión

4 J5.0 10

gcL = ×

La eficiencia térmica del motor: 2000J0.2

10000JH

We

Q= = = o 20%

Esto es típico de coche o camión si asumimos W es el trabajo suministrado a las ruedas El calor que se desecha: 2000J 10000J 8000JC HQ W Q= − = − = − Este calor sale del motor a cada ciclo La cantidad de gasolina quemada: si m es la masa de gasolina quemada

4

10000J0.20g

5.0 10 J gH

H cc

QQ mL m

L= ⇒ = = =

×

Si el motor ejecuta 25 ciclos por segundo

ciclo g g s g g25 0.20 5.0 3600 5.0 18000

s ciclo s h s h⇒ ⋅ = ⇒ ⋅ =

Como la densidad de la gasolina es de 3

g0.7

cmla consumación de gasolina esta igual a

3 3g 1 cm cm18000 25700h 0.7 g h

⋅ = o 25.7 L/h

A una velocidad de km88

hse cubrirá solamente 3.4 km

L

La potencia del motor es: J ciclo2000 25 50000W

ciclo sP = ⋅ =

Como 1hp 746W= por lo tanto la potencia del motor es 67hp

6

4.4 Motores a combustión

4 carreras

1. Carrera de admisión – mezcla de aire + combustible fluye en el cilindro por válvula de admisión abierta, mientras el pistón desciende aumentando el volumen del cilindro de V a rV - donde r es la relación de compresión

2. Carrera de compresión – al final de la carrera de admisión la válvula se cierre y la mezcla de aire + combustible es comprimida por el pistón que sube – el proceso es casi adiabático

3. Carrera de potencia – luego la bujía enciende la mezcla y el gas caliente se expande – el proceso de nuevo es casi adiabático – el gas efectúa un trabajo empujando el pistón

4. Carrera de expulsión – se abre la válvula de escape y el pistón expulsa el producto de combustión fuera del cilindro

7

El ciclo Otto Modelo idealizado de los procesos termodinámicos para motores a gasolina

• Punto a – mezcla de aire + combustible ya entró en el cilindro • Tramo a-b: compresión adiabática • Tramo b-c: gas se enciende - gasolina agrega calor HQ • Tramo c-d: expansión adiabática • Tramo d-a: rechazado de calor

En realidad el gas del motor se escape – pero es reemplazado por mezcla equivalente ⇒ similar a proceso cíclico Eficiencia – los procesos b-c y d-a se hacen a volumen constante – no hay trabajo (4.4) ( ) ( )0 and 0H V c b C V a dQ nC T T Q nC T T= − > = − <

(4.5) H C c b a d

H c b

Q Q T T T Te

Q T T+ − + −

= =−

Usando la relación entre T yV para proceso de gas ideal adiabático:

( ) ( ) ( ) ( )1 1 1 1 y a b d cT rV T V T rV T Vγ γ γ γ− − − −= =

( ) ( )( ) ( )

( )( )( )

1 1 1

1 1 1

1d ad a a d

d ad a

T T rT r T r T Te

T T rT r T r

γ γ γ

γ γ γ

− − −

− − −

− −− + −= =

−−

(4.6) 1

11e

r γ −= −

Ej. para 8r = y 1.4γ = tenemos 0.56e =

La eficiencia puede aumentar aumentando r pero también aumenta la temperatura al final de la compresión adiabática de la mezcla aire + combustible – si el aumento de temperatura es excesivo la mezcla explota espontáneamente durante la compresión en lugar de quemar se homogéneamente = preignición o detonación – si no es controlado puede dañar le motor – el octano de la gasolina = medida de calidades ante-detonante

8

La relación de compresión para gasolina de alto octano es cerca de 10 El ciclo Otto ignora fricción + turbulencia + perdida de calor hacia las paredes del cilindro y muchos otras más efectos que reducen la eficiencia de un motor real Otra fuente de ineficiencia = combustión incompleta

• Mezcla de vapor de gasolina con apenas suficiente aire para quemar por completo los hidrocarbonos en agua y bióxido de carbono no se enciende fácilmente

• La combustión es generalmente incompleta y salen con gas de escape CO + hidrocarbonos ⇒ fuente importante de polución atmosférica

• También sale calor HQ < que para combustión total ⇒ otra fuente importante de polución

Ciclo Diesel

Similar a motor de gasolina pero no hay combustible en el cilindro al principio de la carrera de compresión

• Un poco antes del inició de la carrera de potencia los inyectores comienzan a inyectar combustible directamente al cilindro con la rapidez justa para mantener la presión casi constante

• A causa de la elevada temperatura desarrollada el combustible se enciende espontáneamente ⇒ no se necesita bujia

Ciclo Diesel

• En a – el aire se comprime adiabáticamente hasta b • Se caliente a presión constante hasta c – recibe calor de combustión • Se expande adiabáticamente hasta d - se hace un trabajo • Se enfría a volumen constante hasta a - se rechaza calor

Como no hay combustible en el cilindro durante la compresión no puede haber preignición y la relación de compresión r puede ser mayor (15 20)− ⇒ eficienc ia del motor es mayor

0.65 0.70e = − Motor es más pesado – no necesita carburador o bujías pero mecanismo de inyección de alta precisión más complicado y cuesta cara

9

Refrigeradores Nada más que una máquina de calor que funciona al inverso – toma calor de un lugar frío y lo ceda a un lugar más caliente ⇒el refrigerador requiere una fuente neta de trabajo mecánico (ej. electricidad)

0W < , 0CQ > y 0HQ <

Segunda la primera ley: 0H CQ Q W+ − = o sea 0H CQ Q W− = − = donde H CQ Q> (4.7) H CQ Q W= +

Para máquina de calor o refrigerador: (4.8) H CQ Q W= +

El mejor ciclo de refrigeración CQ⇒ máximo para W mínimo y la relación pertinente

es CQ

W

El coeficiente de rendimiento K

(4.9) C C

H C

Q QK

W Q Q= =

10

Principio del refrigerador

• La sustancia de trabajo es fluido refrigerante (antiguamente 2 2CCl F - gas freón) – no se usa más porque principal responsable de reducir la capa de ozono del atmósfera

• Espiras de enfriamiento (al interior de l refrigerador) - baja presión y temperatura • Espiras de condensación (fuera del refrigerador) - alta temperatura y presión • El compresor admite fluido + comprima adiabáticamente y lo subministra al

condensador a alta presión • La temperatura es mayor que de l aire ambiente y se ceda calor HQ - el fluido se

condensa parcialmente en líquido • Luego el fluido se expande adiabáticamente en el evaporador a una razón

controlada por la válvula de expansión • A expandir se el fluido se enfría considerablemente – más frío quel aire en el

refrigerador acepta calor CQ

• El fluido pasa de nuevo por compresor y ciclo recomienza • El compresor requiere energía constante para realizar un trabajo W sobre el fluido

Las cantidades pertinentes aquí son la razón de eliminación de calor H y la potencia de

entrada WP

t=

Si se elimina el calor CQ en un tiempo t CQH

t⇒ = y CQ Ht HK

W Pt P= = =

Con valor típica 5000H = hasta Btu10000

h y potencia eléctrica de 600 a 1200 W

K⇒ del orden de 2.5

11

Si [ ] Btuh

H = y [ ] WP = la razón HP

= calificación de rendimiento energético (EER)

con unidad Btu hW

y valor típica de 7 a 10

El principio de funcionamiento de un aire acondicionado es el mismo que del de uno refrigerador Otra variante = Bomba de calor – con un diseño correcto HQ puede ser mucho mayor

que W IMPORTANTE – es imposible hacer un refrigerador que transporte calor de un cuerpo más frío a uno más caliente sin agregar trabajo (esto es consecuencia directa de la segunda ley de termodinámica)

12

4.6 La segunda ley de la termodinámica

Establece un límite sobre el cambio de calor en trabajo: Segunda ley de la termodinámica (primera versión) Es imposible que un sistema efectúe un proceso en el que se absorba calor de un depósito a una temperatura uniforme y lo convierte por completo en trabajo mecánico terminando el sistema en el mismo estado en que empezó

Segunda ley de la termodinámica (segunda versión) Es imposible que una máquina tenga como único resultado la transferencia de calor de un cuerpo más frío a un cuerpo más caliente La figura (a) ilustra la segunda forma de la ley de termodinámica – un refrigerador perfecto (no necesita trabajo) – violando la segunda forma de la segunda ley de la termodinámica - podría ser usado en conjunción con una máquina a calor bombeando el calor rechazado por la máquina de nuevo al depósito caliente para reutilizar lo La figura (b) ilustra la primera forma de la ley de termodinámica – una máquina de calor perfecta (no rechaza calor) – viola ndo la primera forma de la segunda ley de termodinámica - podría ser usada para hacer funcionar un refrigerador que bombea calor del depósito frío al deposito caliente sin necesidad de trabajo Cualquier dispositivo que viole una forma de la segunda ley de termodinámica puede ser usado para hacer funcionar un dispositivo que viole la otra forma ⇒estas dos formas son equivalentes

13

A la base de la segunda ley de la termodinámica tenemos la diferencia entre la naturaleza de la energía interna y la de la energía mecánica macroscópica

• La energía interna es la energía cinética + potencial asociadas al movimiento aleatorio de las moléculas

El movimiento organizado puede ser transformado en movimiento aleatorio pero dado que no se puede controlar los movimientos aleatorios de las moléculas individualmente no podemos convertir este movimiento aleatorio otra vez en movimiento organizado La segunda ley no se deduce de la primera ley

• La primera ley niega la posibilidad de crear o destruir energía • La segunda ley limita la disponibilidad de la energía y las formas que se puede

usar la y convertir la

• La conversión en calor por fricción o flujo de fluidos viscosos o el flujo de calor de caliente a frío por gradiente de temperatura finita son todos procesos irreversibles

• Los gases se filtran espontáneamente por una apertura de una región de alta

presión a una de baja presión – nunca el reverso

• Los gases y líquidos miscibles sin ser sometidos a ninguna perturbación siempre tienden a mezclar se no a separar se

Todos estos procesos siguen la segunda ley de la termodinámica – la segunda ley es la expresión inherente unidireccional de los procesos irreversibles

14

4.7 El ciclo de Carnot

Sadi Carnot (1796-1832) – ingeniero en el reno de Napoleón primero

Carnot determino cual es la eficiencia máxima de una máquina de calor con depósitos de calor a temperatura HT y CT La máquina de Carnot = máquina puramente hipotética (no puede existir) Principios:

• Conversión de calor en trabajo = proceso irreversible • Propósito de máquina de calor = reversión parcial de este proceso • Para obtener la eficiencia máxima ⇒ evitar procesos irreversibles • Ej. flujo de calor por caída de temperatura finita = proceso irreversible

o Durante el ciclo de Carnot no hay diferencia de temperatura finita § Cuando la máquina toma calor del depósito caliente a HT la

sustancia de trabajo debe haber HT § Así mismo cuando la máquina desecha el calor al depósito frío a

CT la sustancia de trabajo ya debe haber la temperatura CT • Todos los procesos de transferencia de calor deben ser isotérmicos

• Del otro lado, en cualquier proceso en el que la temperatura de la sustancia de

trabajo es intermediar entre HT y CT no debe haber transferencia de calor entre la máquina y los depósitos

• Cualquier proceso donde la sustancia de trabajo cambia de temperatura debe ser adiabático

• Además se debe mantener el equilibrio térmico y mecánico a todo momento ⇒ todos los procesos son reversibles

15

1. a b→ : El gas se expande isotermicamente a temperatura HT absorbiendo calor

HQ 2. b c→ : El gas se expande adiabaticamente hasta que la temperatura baja a CT

3. c d→ : El gas se comprima isotermicamente a la temperatura CT rechazando el calor CQ

4. d a→ : El gas se comprime adiabaticamente hasta que la temperatura aumenta a

HT

Si la sustancia de trabajo es un gas ideal – la eficiencia térmica es: Para a b→ , 0abU∆ = y H abQ W=

(4.10) ln bH ab H

a

VQ W nRT

V= =

De forma similar

(4.11) ln lnd cC cd C C

c d

V VQ W nRT nRT

V V= = = −

Como 0d c CV V Q< ⇒ < y sale calor del gas durante su compresión isotérmica

16

(4.12) lnln

C C c d

H H b a

Q T V VQ T V V

= −

Como el proceso es adiabático: 1 1 1 1 y H b C c H a C dT V T V T V T Vγ γ γ γ− − − −= =

Dividiendo la primera por la segunda

1 1

1 1 o b c b c

a d a d

V V V VV V V V

γ γ

γ γ

− −

− −= =

(4.13) o CC C C

H H H H

QQ T TQ T Q T

= − =

La eficiencia térmica de una máquina de Carnot:

(4.14) 1 C H CCarnot

H H

T T Te

T T−

= − =

Solo depende de las temperaturas de los depósitos

17

Ejemplo 4.2 Máquina de Carnot

Con 2000JHQ = , 500KHT = y 350KCT = La ecuación 4.14 da:

350K1 1 0.30

500KC

H

Te

T= − = − = o 30%

Ahora determinamos W y CQ Usando la ecuación 4.13:

( ) 350K2000J 1400J

500KC

C HH

TQ Q

T= − = − = −

Usando la primera ley

( )2000J 1400J 600JH CW Q Q= + = + − = Ejemplo 4.3 Ciclo completo de la máquina de Carnot

Con sustancia de trabajo usamos 0.200 mol de un gas diatómico ( )1.40γ = en una

máquina de Carnot con 500KHT = y 300KCT = La presión en le punta a 510.0 10 Paap = × y durante la expansión isotérmica a la temperatura superior el volumen se duplica a) Queremos determinar los valores de p y V en los diferentes puntos a, b, c y d b) Después queremos Q , W y U∆ para cada paso y por el ciclo completo c) También queremos la eficiencia Primero usando pV nRT= determinamos aV

( ) ( )4 3

5

J0.200mol 8.315 500Kmol K 8.31 10 m

10.0 10 PaH

aa

nRTVp

⋅ = = = ×

×

Durante la expansión el volumen se duplica 4 32 16.6 10 mb aV V −= = ×

18

Como la expansión es isotérmica tenemos la relación valida

2a a

a a b b b ab

V pp V p V p p

V= ⇒ = =

En el camino b c→ la expansión es adiabática 1 1H b C cT V T Vγ γ− −⇒ =

12.51

4 3 4 3500K16.6 10 m 59.6 10 m

300KH

c bC

TV V

T

γ −− − = = × = ×

Usando de nuevo la ecuación de los gases ideales

( ) ( )

54 3

J0.200mol 8.315 300Kmol K 0.837 10 Pa

59.6 10 mC

cc

nRTpV −

⋅ = = = ×

×

Durante la compresión adiabática de d a→ tenemos 1 1

C d H aT V T Vγ γ− −= 1

2.514 3 4 3500K

8.31 10 m 29.8 10 m300K

Hd a

C

TV V

T

γ −− − = = × = ×

y la presión: ( ) ( )

54 3

J0.200mol 8.315 300Kmol K 1.67 10 Pa

29.8 10 mC

dd

nRTpV −

⋅ = = = ×

×

b) Durante la expansión isotérmica a b→ 0abU∆ =

El trabajo durante la expansión esta igual a ln 576Jbab H H

a

VW Q nRT

V= = =

Durante la expansión adiabática b c→ 0bcQ = y por lo tanto bc bcU W∆ = − Pero ( )bc V V C HU nC T nC T T∆ = ∆ = − por lo tanto ( ) 832Jbc bc V H CW U nC T T=−∆ = − = Durante compresión isotérmica c d→ 0cdU∆ = y el trabajo

ln 346Jdcd C C

c

VW Q nRT

V= = = −

19

Finalmente para la compresión adiabática d a→ 0daQ = y el trabajo

( ) 832Jda da V H CW U nC T T=−∆ = − − = − Tabulamos los resultados Proceso Q(J) W (J) U∆ (J) a b→ 576 576 0 b c→ 0 832 -832 c d→ -346 -346 0 d a→ 0 -832 832 total 230 230 0 Para todo el ciclo

230Jtotal ab cdQ Q Q= − =

576J 832J 346J 832J 230Jtotal ab bc cd daW W W W W= + + + = + − − =

0bc daU U U∆ = ∆ + ∆ = Para todo el ciclo tenemos que Q W= y 0U∆ = c) La eficiencia térmica es igual a:

230J0.40

576JH

We

Q= = = similar a 300K

1 1 0.4500K

C

H

Te

T= − = − =

20

Refrigerador de Carnot Como el ciclo de Carnot es reversible la máquina de calor puede se convertir en un refrigerador Combinando 4.9 con 4.13

1C C H

H C C H

Q Q QK

Q Q Q Q= =

− −

Pero como C H C HQ Q T T=

(4.15) CCarnot

H C

TK

T T=

Si la diferencia de temperatura es pequeña K puede ser mucho mayor que 1 Se bomba mucho calor desde la temperatura inferior a la temperatura superior con muy poco gasto de trabajo Ejemplo 4.4 Ciclo de Carnot como refrigerador

Calculamos el coeficiente de rendimiento para el ciclo de Carnot funcionando al reverse como refrigerador Por la ecuación 4.19

346J 1.5230J

CQK

W= = =

También podemos haber usado la ecuación 4.15 C

H C

TK

T T=

En realidad no se necesita determinar Q oW porque e y K solamente depende de T

Calculo más detallado es necesario cuando ciclo incluye procesos irreversibles

21

Ciclo de Carnot y segunda ley

Ninguna máquina puede ser más eficiente que la máquina de Carnot operando con las mismas temperaturas

Demostración:

• Supongamos que tenemos una máquina más eficiente • Máquina de Carnot funciona al inverso como refrigerador – el trabajo es negativo

W− y se toma calor CQ del depósito frío y expulsa calor HQ al depósito caliente

• La máquina supereficiente expulsa CQ pero para hacer lo debe tomar HQ + ∆del depositó caliente – el trabajo es por lo tanto W + ∆

• Esto implica que hay una cantidad de calor ∆ que es transformada a 100% en trabajo ⇒violando la segunda ley de la termodinámica

Todas las máquinas de Carnot operando entre las mismas dos temperaturas tienen la misma eficiencia sin importar la naturaleza de la sustancia de trabajo ⇒ Máquina de Carnot establece limita superior para eficiencia de máquina real

• Alta eficiencia implica H CT T>>

• Pero HT limitado por resistencia mecánica de caldera – limita de caldera actual

500 Co y 235 atmp =

También el más alto es CT y el más alto los efectos negativos de las máquinas reales sobre su ambiente

22

4.8 Escala de temperatura Kelvin

Se puede usar la máquina de Carnot para definir la escala de temperatura absoluta o Kelvin (no hay dependencia con propiedades de la sustancia de trabajo)

Eficiencia 1H C C

H H

Q Q Qe

Q Q+

= = +

Pero C C

H H

Q TQ T

=

Si la temperatura esta en Kelvin tenemos:

(4.16) CC C

H H H

QT QT Q Q

= = −

Por lo tanto, el hecho que la eficiencia es la misma para cualquier máquina de Carnot hace

que C

H

QQ

es el mismo para cualquier máquina de Carnot ⇒ hace la escala Kelvin una

escala absoluta ⇒ independiente de la naturaleza del la sustancia de trabajo, basado en máquina de Carnot y segunda ley de termodinámica Ahora si usamos con punto de referencia la temperatura del punto triple de agua ⇒ temperatura Kelvin consistente con temperatura de termómetro de gas ⇒ hace la escala Kelvin similar a la escala para los gases ideales Cero absoluto ⇒ el sistema tiene el mínima de energía interna (potencial + cinemática) Tercera ley de la termodinámica Es imposible alcanzar el cero absoluto en un número finito de pasos termodinámicos Posiblemente, es imposible llegar a cero absoluto de manera experimental ( 710T −= K más baja obtenido a la hora) – el más cerca llegue el más difícil bajar más

23

4.9 Entropía

La segunda ley = un enunciado de imposibilidad Podemos dar una forma cuantitativa usando el concepto de entropía Entropía ∝al grado de desorden de un sistema

• Flujo de calor aumenta el grado de desorden – moléculas inicialmente clasificadas en regiones más calientes y frías – a calentar se pierde ordenamiento

• Aumentación de calor ⇒aumentación de velocidades molecular = aumentación de la aleatoriedad del movimiento molecular

• Expansión libre ⇒ aumentación de la aleatoriedad de las posiciones de las moléculas

Entropía = medida cuantitativa de desorden

• Consideramos la expansión isotérmica infinitesimal de un gas ideal • Agregamos calor dQ al sistema y dejamos el gas expandir se manteniendo a

temperatura constante 0dU⇒ =

• nRTdQ dW pdV dV

V⇒ = = =

• dV dQV nRT

⇒ =

• La expansión libre hace que moléculas se mueven en volumen mayor – haciendo

las posiciones más aleatorias dVV

⇒consistente con noción de desorden

• Definimos la entropía S de manera que

(4.17) dQS

T=

• Si agregamos calor a temperatura constante

(4.18) 2 1

QS S S

T∆ = − =

La unidad de entropía es [ ] JK

S =

24

Relación Q T con desorden • Si Q sustancial pero T pequeño se aumenta de manera importante el movimiento

aleatorio • Pero si T ya es alto no hay aumento importante de desorden • Q T es buena caracterización del movimiento de aleatoria o desorden cuando

tiene flujo de calor en el sistema Ejemplo 4.5 – Cambio de entropía relacionada con cambio de fase

1kg de hielo se funde y se convierte en 1kg de agua a 0 Co

El calor de fusión es 5 J3.34 10kgfL = ×

Durante el cambio de fase 273KT = es constante Calor liberada 53.34 10 JfQ mL= = × Por definición la aumentación de entropía corresponde a

53

2 1

3.34 10 J J1.22 10

273 K KQ

S S ST

×∆ = − = = = ×

Tiene un aumento importante de desorden en el sistema – el proceso inverso implica una disminución importante de desorden

25

Cualquier proceso puede se decomponer con una seria de pasos reversibles infinitesimales Esto permite generalizar el cambio de entropía a cualquier proceso

(4.19) 2

1

dQS

T∆ = ∫

La entropía depende solamente del estado – no depende del camino (historia) ⇒ entropía debe haber valor definida para cualquier estado dado de un sistema También para cambio irreversible la variación de entropía es igual que el cambio durante un proceso reversible Como U solamente se define S∆ ⇒ asumimos un estado de referencia y calculamos la diferencia S∆ entre dos estados Ejemplo 4.6 Cambio de entropía calentando agua

Calculamos el cambio de entropía de 1kg de agua a 100 Co Para usar la ecuación 4.19 necesitamos asumir que la temperatura de agua sube por una seria de pasos reversibles infinitesimales dT El calor para cada paso es: dQ mcdT= El cambio de entropía es igual a:

( )2

1

2 322 1 1

1

J 373K Jln 1.00kg 4190 ln 1.31 10kg K 273K K

T

T

TdQ dTS S S mc mcT T T

∆ = − = = = = = × ⋅ ∫ ∫ En práctica, el calentamiento del agua es irreversible, pero el cambio de entropía es el mismo (porque no depende del camino)

Ejemplo 4.7 – Expansión reversible adiabática de un gas

Como no sale o entra calor en el sistema 0S∆ = ⇒ todo proceso adiabático reversible es de entropía constante - el aumento en el desorden debido a que el gas ocupa un volumen mayor es exactamente igual a la disminución del desorden asociada a la disminución de temperatura

26

Ejemplo 4.8 – Expansión libre de un gas ideal

La caja en a tiene 2 compartimientos de volumen V - la parte superior es vacía, la parte inferior contiene n moles de un gas ideal a temperatura T Cuando se rompe la membrana el gas se expande en todo el volumen Durante este proceso 0Q = (adiabático), 0W = (expansión libre) y 0U∆ = - pero como el proceso es irreversible 0S∆ ≠ No se puede usar 4.19 porque el proceso es irreversible Pero podemos imaginar una seria de proceso reversible con el mismo cambio de entropía – expansión isotérmica – el volumen pasa de 1 2 2V V V V= → =

El trabajo 2

1

ln ln2V

W nRT nRTV

= =

Como 0U W Q∆ = ⇒ = y el cambio de entropía es l n2Q

S nRT

∆ = =

Para una mole: ( ) J J1mol 8.315 ln2 5.76

mol K KS ∆ = = ⋅

- es un cambio chico que no

depende del tipo de la naturaleza de la materia

27

Ejemplo 4.9 - Entropía durante el ciclo de Carnot

Segundo el ejemplo 4.2 2000JHQ = , 1400JCQ = , 500KHT = y 350CT K= No hay cambio de entropía durante la expansión o compresión adiabática

Durante le expansión isotérmica: 2000J J4.0

500K KH

HH

QS

T∆ = = =

Durante la compresión isotérmica 1400J J4.0

350K KC

CC

QS

T−

∆ = = = −

De manera que el cambio total de entropía 0H CS S S∆ = ∆ + ∆ = Esto es porque no hay proceso irreversible durante el ciclo de Carnot El ejemplo muestra que una máquina de Carnot tiene 0S∆ = - esto es la consecuencia de la ecuación 4.13

(4.20) 0CH

H C

QQT T

+ =

Esto es verdad para cualquier máquina de Carnot

De manera general – el cambio de entropía durante cualquier proceso reversible cíclico es 0S∆ =

En el diagrama pV el ciclo forma un camino cerrado – para cualquier ciclo de procesos reversible

(4.21) 0dQT

=∫Ñ

Cuando un sistema sufre un proceso reversible que lo lleva de un estado a cualquier otro, el cambio de entropía es independiente del camino

28

Entropía en procesos irreversibles

Todos los procesos irreversibles implican un aumento de la entropía ⇒ la entropía no es una cantidad que se conserva

En particular, un sistema aislado no puede disminuir de entropía – Ej. expansión libre de un gas

Ejemplo 4.10 – Mezcla térmica

Pongamos junto 1.00kg de agua a 100 Co (373K) con 1.00kg de agua a 0 Co (273K)

El flujo de calor = proceso irreversible ¿Si la temperatura final de la mezcla es 50 Co (323K) cual es el cambio de entropía? Un flujo de calor de 4190J que pasa del agua caliente al agua frío enfría el agua caliente a 99 Co

El cambio de entropía: 4190J 4190J J4.1

373K 273K KS

−∆ = + =

Ocurrirá aumento adicional al acercarse del equilibrio térmico a 50 Co Asumimos seria de proceso reversible: Para el agua caliente:

( )2

1

323K

373K

J J 323 J1.00kg 4190 4190 ln 603kg K K 373 K

T

cal T

dT dTS mcT T

∆ = = = = − ⋅ ∫ ∫

Para el agua fría:

2

1

J 323 J4190 ln 705

K 273 K

T

fria T

dTS mc

T∆ = = =∫

Por lo tanto, durante el proceso va aumentar la entropía

J102

KtotalS∆ = +

29

Entropía y la segunda ley En el caso especial de un proceso reversible, los aumentos y reducciones de entropía son igual En general, los procesos naturales son irreversibles ⇒ los aumentos de entropía siempre son mayores que las reducciones La mezcla de tinta y agua forma parte de un sistema con estado de orden alto (baja entropía) – cada fluido esta separado De manera natural el sistema evolucionara a un estado con más bajo orden (alta entropía) – la tinta se mezcla por completo con el agua El fenómeno es irreversible – nunca se observe el inverso, la tinta se separa de manera espontánea del agua

En general: si se incluyen todos los sistemas que participan en un proceso, la entropía se mantiene constante o aumenta Segunda ley en términos de entropía No puede haber proceso en el que la entropía total disminuya si se incluyen todos los sistemas que participan en el proceso Consideramos la mezcla de agua caliente con agua fría – podríamos haber usado el agua con depósitos calientes y frío y sacar trabajo del sistema Pero una vez que el agua llega a la misma temperatura no hay más capacidad de hacer un trabajo No hay disminución de energía – que se pierde es la posibilidad de cambiar calor en trabajo Por lo tanto, cuando la entropía aumenta la energía esta menos disponible y el sistema se vuelve más aleatorio o gastado

30

4.10 Interpretación microscópica de la entropía

Calculo microscópico de la energía interna de un sistema ⇒sumar energías cinéticas + potenciales de interacciones de todas las partículas constituyentes del sistema También se puede evaluar la entropía al nivel microscópico = medida del estado de desorden global de un sistema Estados microscópicos vs estados macroscópicos de un sistema

• Lanzo de N monedas – la ½ son cruz y la ½ son cara • Esto es descripción estado macroscópico del sistema • Descripción estado microscópico = estado de cada monedas individual

Puede haber muchos estados microscópicos que corresponden a la misma descripción macroscópica (multiplicidad)

Para 4N = tiene 5 estados macroscópicos posibles y 16 ( )42 estados microscópicos

posibles En general, tiene 2N estados microscópicos posibles ⇒ aumenta muy rápidamente - para

100 30100 2 1.27 10N = ⇒ = ×

31

El estado macroscópico más probable ⇒ mayor número de estado microscópico (o más alta multiplicidad) Probabilidad de 2 caras + 2 cruces = 6/16 - probabilidad de 4 caras o 4 cruces = 1/16 El estado macroscópico con 4 caras o 4 cruces tiene más alto nivel de orden que el estado con 2 cruces y 2 caras ⇒sistema con más alta probabilidad tiene más bajo nivel de orden o más alta entropía Estados macroscópicos con más alta entropía tiene más alta multiplicidad ⇒ más probables

Consideramos ahora un gas con 236.02 10AVN = × moléculas • Estado macroscópico determinado por , ,p V T • Estado microscópico determinado por ,r v

r r de todas las moléculas • Para , ,p V T dados el sistema puede estar en cualquier de un número

astronómicamente grande de estados microscópicos • Si el gas se expande libremente aumenta gama de posición posibles ⇒aumento

los estados microscópico posibles ⇒ aumenta desorden (entropía) • Para cualquier sistema el estado macroscópico más probable es el que tiene el

mayor número de estados microscópicos correspondiente (multiplicidad) – el mayor nivel de desorden o mayor entropía

Si wes el número de estados microscópicos posibles de un sistema, la expresión microscópica de la entropía es: (4.22) lnS k w=

Donde Ak R N= es la constante de Boltzmann En realidad, que importa es S∆ por lo tanto la definición microscópica formal de la entropía es lnS k w C= + donde Ces una constante que cancela cuando se calcula S∆ Si definimos 0C = encontramos que el estado de más baja entropía ln1 0S k= = La entropía nunca puede ser negativa En práctica es muy difícil evaluar w , pero siempre se puede determinar S∆

(4.23) 22 1 2 1

1

ln ln lnw

S S S k w k w kw

∆ = − = − =

La ecuación 4.22 sugiere que procesos reversibles conectan los diferentes estados

32

Ejemplo 4.11 – Estados microscópicos y expansión libre de un gas

En el ejemplo 4.8 ya calculamos el cambio de entropía durante la expansión libre de un gas de un volumen V a 2V ⇒ l n 2S nR∆ = Vamos hacer el calculó de nuevo pero del punto de vista de los estados microscópicos

• Sea 1w el número de estados microscópicos cuando el gas ocupa el volumen V • Cuando se expande el gas las velocidades de las moléculas no cambia porque no se

hace trabajo • Pero las moléculas tiene 2 veces más espacio para mover se ⇒ así que el número

de estados posibles aumenta por un factor 2N donde N es la cantidad de moléculas AN nN=

En términos de estados microscópicos tenemos que 2 12Nw w=

El cambio de entropía: 2

1

ln ln2 ln2 ln2 ln2NA

A

w RS k k Nk nN nR

w N∆ = = = = =

Probabilidad de violar la segunda ley La segunda ley de la termodinámica estipula que la entropía de un sistema cerrado no puede disminuir Ejemplo = aire en una habitación – la probabilidad que todas las moléculas se mueven espontáneamente en la ½ de la habitación implica una reducción de entropía por factor 2N

La probabilidad para que este fenómeno acontece es de 12

N

p = ; para una habitación

típica 261000 6.02 10AN N= = × , por lo tanto 2610p −≈ ⇒ extremamente baja probabilidad En práctica, la segunda ley de termodinámica nunca se viola

33

Problemas

34

35

36

37

38

39