186
Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 R-07-56 Geology – Background complementary studies Forsmark modelling stage 2.2 Editors: Michael B Stephens, Geological Survey of Sweden Kristina Skagius, Kemakta Konsult AB September 2007

Geology – Background complementary studies

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Svensk Kärnbränslehantering ABSwedish Nuclear Fueland Waste Management CoBox 5864SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00Fax 08-661 57 19 +46 8 661 57 19

R-07-56

CM

Gru

ppen

AB

, Bro

mm

a, 2

007

Geology – Background complementary studies

Forsmark modelling stage 2.2

Editors:

Michael B Stephens, Geological Survey of Sweden

Kristina Skagius, Kemakta Konsult AB

September 2007

R-0

7-56

Geo

log

y – Backg

rou

nd

com

plem

entary stu

dies. F

orsm

ark mo

dellin

g stag

e 2.2

Tänd ett lager:

P, R eller TR.

Geology – Background complementary studies

Forsmark modelling stage 2.2

Editors:

Michael B Stephens, Geological Survey of Sweden

Kristina Skagius, Kemakta Konsult AB

September 2007

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se.

ISSN 1402-3091

SKB Rapport R-07-56

3

Preface

During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report.

The titles and authors of the seven background complementary studies are presented below. Necessary editing work has been carried out by Michael B. Stephens and Kristina Skagius. Summaries of the results of each study, with a focus on the implications for the geological mod-elling of deformation zones, are presented in the master geological report, stage 2.2 /Stephens et al. 2007/. The sections in the master report, where reference is made to each background com-plementary study and where the summaries are placed, are also provided below. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report.

• Scanlinefracturemappingandmagneticsusceptibilitymeasurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. Summary of results in section 3.9.3 in /Stephens et al. 2007/. Page 5

• Integratedinterpretationofsurfaceandborehole(VSP)reflectionseismic data along profiles 2 and 5, Forsmark, Sweden. Christopher Juhlin. Summary of results in section 3.10.1 and 3.10.2 in /Stephens et al. 2007/. Page 17

• Correlationof2Dsurfaceseismic,verticalseismicprofile(VSP),and geological and sonic data in boreholes KFM01A and KFM02A, Forsmark: Background analysis. Nicoleta Enescu and Calin Cosma. Summary of results in section 3.10.3 in /Stephens et al. 2007/. Page 61

• RefractionseismicdataandbedrockvelocitydistributionatForsmark. Johan Nissen. Summary of results in section 3.11.1 in /Stephens et al. 2007/. Page 107

• Correlationbetweenrefractionseismicdata,lowmagneticlineamentsand deformationzones(modelstage2.2).HansIsaksson.Summaryofresults in section 3.11.2 in /Stephens et al. 2007/. Page 113

• Interpretationoftomographyinversionmodelsforseismicrefractiondata alongprofileLFM001017inForsmark.HåkanMattsson.Summaryof results in section 3.11.3 in /Stephens et al. 2007/. Page 131

• Correlationoforientedradarreflectorswithgeologicalfeaturesinboreholes at Forsmark. Seje Carlsten. Summary of results in sections 3.12.1 and 3.12.2 in /Stephens et al. 2007/. Page 145

4

Referencetoeachreportinthemastergeologicalreport/Stephensetal.2007/iscarriedoutinaccordance with the following example:

Petersson J, Andersson U B, Berglund J, 2007. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark.InStephensMBandSkagiusK(edits.),Geology−Backgroundcomplementarystudies.Forsmarkmodellingstage2.2.SKBR-07-56,SvenskKärnbränslehanteringAB.

Reference

Stephens M B, Fox A, La Pointe P, Simeonov A, Isaksson H, Hermanson J, Öhman J, 2007. Geology.Forsmarkmodellingstage2.2.SKBR-07-45,SvenskKärnbränslehanteringAB.

5

Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark

Jesper Petersson, Ulf B Andersson, Johan Berglund

Vattenfall Power Consultant AB

Contents1 Introduction 6

2 Execution 8

3 Rock type and ductile structures 10

4 Fractures 11

5 Magnetic susceptibility 14

6 Discussion and conclusions 14

7 References 15

6

1 Introduction

AdetailedgroundmagneticsurveyintheForsmarkarea/Isakssonetal.2006/hasrevealedsev-eral low magnetic lineaments with NNE to NE trend in the north-western part of the candidate area.Inordertoconfirmtheirpossiblerelationtogeologicalstructures,suchasfracturezones,a relatively well exposed outcrop that clearly coincides with two of these lineaments was chosen for detailed investigations. The outcrop, referred to as PFM000704 in the bedrock mapping work/Stephensetal.2003/,islocatedabout400mnorthofdrillsite6(Figure1-1).Themoredistinctlowmagneticlineament(MFM2273G)isinferredtobe659minlengthandshowsanaveragetrendof29°,whereastheotherlineament(MFM2088G)is68minlengthandtrendsapproximately54°/cf.Isakssonetal.2006/.

Twomoreorlessparalleltraverses(LFM001027andLFM001028),7–10mapart,wereuncov-ered in a direction perpendicular to the low magnetic lineaments, with the purpose to investigate their geological character with the help of scan line fracture mapping and magnetic susceptibil-ity measurements. The total lengths of these two traverses are 40.5 and 46.0 m, respectively, and their widths range generally from 1.5 to 2.5 m. A summary of the results from the scan line mapping work is presented in Figure 1-2.

Figure 1-1. Lineament map based on the detailed ground survey of the magnetic total field /Isaksson et al. 2006/. Outcrops intersected by lineaments are marked by red contours, whereas the other outcrops have blue contours. The location of the traverses is also shown.

7

Fig

ure

1-2.

Sum

mar

y of

the

resu

lts fr

om th

e sc

an li

ne m

appi

ng a

long

LFM

0010

27 a

nd L

FM00

1028

. Ind

ivid

ual f

ract

ures

are

sep

arat

ed o

n th

e ba

sis

of th

eir

dip

and

pre­

dom

inan

t min

eral

filli

ng. T

he le

ngth

sho

wn

on th

e di

agra

m is

iden

tical

for

all f

ract

ures

rega

rdle

ss o

f the

ir a

ctua

l len

gth.

Red

deni

ng (o

xida

tion)

ass

ocia

ted

with

inte

rval

s of

in

crea

sed

frac

ture

freq

uenc

y is

illu

stra

ted

by a

gre

y to

ne o

f var

ying

inte

nsity

. Enc

ircle

d nu

mbe

rs m

ark

inte

rval

s re

ferr

ed to

in th

e te

xt. E

xact

loca

tions

of m

agne

tic s

us ce

p­tib

ility

mea

sure

men

t are

as a

re in

dica

ted

by b

lack

dot

s al

ong

the

scan

line

s. Th

e di

stan

ce b

etw

een

indi

vidu

al d

ots

is 1

m. G

PS c

oord

inat

es a

re g

iven

for

the

star

t and

end

po

ints

of t

he s

can

lines

. The

tren

d of

indi

vidu

al s

can

line

sect

ions

is in

dica

ted.

Not

e th

at, f

or p

rese

ntat

ion

purp

oses

, the

sca

n lin

es h

ave

been

rota

ted

32°

antic

lock

wis

e.

2 m

1

2

6

3

3

45

Frac

ture

with

no

visi

ble

fillin

g

Med

ium

-gra

ined

met

agra

nite

(101

057)

Pegm

atiti

c gr

anite

(101

061)

Fine

- to

med

ium

-gra

ined

met

agra

nito

id (1

0105

1)

Amph

ibol

ite (1

0201

7)

LFM

0010

27

LFM

0010

28

Aplit

ic m

etag

rani

te (1

0105

8)

Red

deni

ng o

f var

ying

inte

nsity

Adul

aria

fille

d fra

ctur

e

Chl

orite

fille

d fra

ctur

e

Qua

rtz fi

lled

fract

ure

Frac

ture

dip

ping

< 4

Tect

onic

folia

tion

Inte

rval

of s

peci

fic in

tere

st

Susceptibility (10–5 SI units) 120012

00

6700

159

1632

459

6700

144

1632

463

6700

141

1632

467

6700

138

1632

473

6700

130

1632

501

6700

128

1632

491

GPS

cal

ibra

tions

PP1

202

6699

539

163

1320

6699

537

163

1319

2006

-10-

11 0

7:55

2006

-10-

12 0

7:50

6700

131

1632

498

6700

135

1632

491

6700

163

1632

471

6700

165

1632

461

6700

136

1632

491

80080

0

40040

0

0

0

82°

73°

134°

9.45 m 42°

9.20 m 7

111°

141°

121°

107°

117°

123°

145°

179°

73°

75°

Susceptibility (10–5 SI units)

8

2 Execution

Scan lines were marked by measuring-tapes, lined up along the centre of each traverse. Coor-dinatesinRT90forthestartandendpointsofthescanlinesweredefinedbyGPSmeasure-ments. Fix point PP1202 was used for accuracy estimates. During the course of the work, the precisionoftheGPSmeasurementsturnedouttobeinadequate.TheGPSmeasurementswere,therefore, complemented by compass orientations of individual scan line sections. The magnetic declination in the area is 4.4°.

All rock descriptions and identification of fracture minerals were based solely on ocular inspec-tion. The orientation of ductile structures, rock contacts and fractures were measured by using a Silva compass with inclinometer. The scan line fracture mapping did not strictly follow the SKBmethoddescriptionfordetailedfracturemapping(SKBMD132.003,v.1.0).Themappinginvolveddocumentationoforientation(i.e.strikeanddip),width,aperture,mineralogyandpos-sible movement indicators. Other fracture parameters given in the method description, such as terminations, lithological relations, waviness, etc, were not registered in the present study. The truncation level was set to 4 dm.

The instrument used to measure magnetic susceptibility was a SM-20 magnetic susceptibility meter(GFinstruments,CzechRepublic)withasensitivityof10–6SIunits(seewww.gfinstru­ments.czformoredetails).Measurementswereregisteredatapproximately1mintervalsalongboth the scan lines. Each measurement represents the mean of eight instrument readings within an area with a radius less than about 0.5 m. Special care was taken to avoid composite measure-ments comprising readings from more than one rock type. Totally, scan lines LFM001027 and LFM001028comprise41and47measurementareas,respectively.ThestoragecapacityoftheSM-20 magnetic susceptibility meter is 100 readings. The total number of readings along the profileis704(i.e.8×88).SincenoportablePCwasavailable,allreadingswerewrittendownmanually, and later fed into Microsoft Excel. The digital data and the original protocol were checked twice for consistency, and after delivery exported to the SKB database Sicada. The data are also presented in Tables 2-1 and 2-2.

Table 2-1. Magnetic susceptibility measurements along LFM001027. The measurements start at the north-western end of the traverse and are given as 10–5 SI units.

Distance Readings Meanfrom NW 1 2 3 4 5 6 7 8

0 31.2 34.1 33.0 32.1 9.8 33.9 44.1 32.6 31.41 29.8 22.2 15.3 26.5 23.7 29.5 17.7 19.4 23.02 38.5 50.6 25.1 22.8 61.8 65.6 47.6 45.7 44.73 1,060 1,380 460 494 108 514 394 536 6184 1,460 1,430 1,220 1,040 1,200 1,420 1,220 1,310 1,2885 401 957 396 717 1,550 984 257 552 7276 20.7 26.9 356 190 86.8 21.5 126 30.0 1077 206 179 73.7 1,000 793 21.6 723 687 4608 926 365 79.6 992 61.6 1,380 690 142 5809 1,280 1,260 1,130 743 1,050 1,180 1,170 1,000 1,10210 1,200 1,040 797 629 1,080 997 1,220 833 97411 419 860 687 796 186 636 413 559 56912 1,050 734 238 14.8 363 72.8 453 933 48213 51.8 861 666 767 74.4 853 496 283 50614 40.2 23.6 47.6 79.8 19.4 58.3 66.3 74.4 51.215 77.4 67.7 11.5 11.6 55.1 46.5 54.7 30.1 44.316 20.7 45.2 31.6 38.9 25.1 114 31.1 40.5 43

9

Distance Readings Meanfrom NW 1 2 3 4 5 6 7 8

17 16.7 31.9 40.6 81.8 67.0 63.0 20.0 39.9 45.118 1,020 569 447 754 842 701 788 665 72319 35.8 16.6 20.2 54.9 37.6 9.3 7.0 9.2 23.820 55 27.7 7.0 18.9 6.5 87.3 10.8 8.8 27.821 619 1,210 368 511 371 41.6 921 537 57222 780 19.2 5.0 17 15.3 4.0 26.9 7.4 10923 805 10.6 58.1 404 736 554 159 357 38624 70 14.6 5.6 6.7 124 155 25.5 109 6425 17.4 12.6 179 10.9 30.1 8.0 6.6 8.0 34.126 11.6 9.8 8.7 6.4 7.6 12.5 10.9 10.2 9.727 267 208 194 281 269 410 276 285 27428 311 540 739 847 579 830 870 629 66829 25 5.2 219 835 617 274 24.6 279 28530 367 461 348 843 661 695 789 801 62131 11.3 223 9.0 8.4 13.4 49.4 9.6 14.4 42.332 8.7 12.9 11.7 7.3 9.1 8.5 6.8 9.1 9.333 13 8.4 22.4 5.2 169 102 6.7 29.7 4534 195 357 560 62.4 21.1 161 85 33.1 18435 197 481 828 831 751 879 1,010 813 72436 138 839 254 905 1,070 589 593 962 66937 434 737 908 442 1,070 1,090 756 449 73638 802 226 854 314 551 1,000 175 625 56839 224 284 344 408 193 418 220 134 27840 25.5 65.6 113 48.7 73.1 6.0 140 105 72

Table 2-2. Magnetic susceptibility measurements along LFM001028. The measurements start at the north-western end of the traverse and are given as 10–5 SI units.

Distance Readings Meanfrom NW 1 2 3 4 5 6 7 8

0 1,210 1,400 1,280 1,470 1,170 1,270 1,040 1,180 1,2521 387 1,550 787 1,180 816 780 1,070 649 9022 43.0 30.0 823 564 20.7 36.5 834 51.0 3003 207 418 177 149 161 729 132 736 3394 778 514 609 380 510 961 572 429 5945 1,020 367 793 840 168 775 426 617 6266 913 787 47.8 138 99.2 793 783 897 5577 838 757 649 712 808 436 692 818 7148 183 173 376 501 71.1 210 832 158 3139 879 160 921 1,260 883 25.3 850 806 72310 29.5 34.8 26.6 154 210 91.6 60.5 110 9011 1,160 51.6 677 874 674 1,040 1,240 816 81712 1,070 923 471 538 465 120 407 560 56913 1,110 1,320 466 517 1,210 1,250 1,280 1,250 1,05014 8 314 17.4 1,040 1,280 1,010 1,260 1,030 74515 1,000 890 70.2 1,310 1,110 1,030 1,370 907 96116 831 37.5 20.7 17.9 9.8 23.6 71.8 74.5 136

10

Distance Readings Meanfrom NW 1 2 3 4 5 6 7 8

17 883 27.7 14.8 241 110 32.9 33.8 3.5 16818 138 187 1,260 123 45.7 51.5 194 194 27419 36.8 125 757 989 690 25.0 567 46.2 40420 1,250 1,160 1,520 1,220 1,220 1,420 1,430 1,320 1,31821 119 77.3 101 175 133 71.1 176 132 12322 47.7 36.8 80.8 25.2 37.6 35.7 99.1 72.2 54.423 22.1 27.6 35.3 39.7 3.2 465 124 61.5 9724 110 1,220 16.2 553 38.4 22.1 93.2 40.1 26225 983 924 1,560 1,470 1,480 1,530 1,260 1,550 1,34526 11.8 12.9 51.9 1,380 15.7 34.1 16.2 15.3 19227 1,600 783 1,300 13.9 56 963 44.5 9.7 59628 1,230 1,800 1,090 1,440 1,290 966 1,090 1,110 1,25229 984 1,210 1,510 1,200 954 1,350 1,360 1,260 1,22830 827 815 1,280 1,120 1,250 1,490 1,190 946 1,11531 829 1,050 785 696 1,280 835 926 975 92232 1,140 676 1,040 813 960 1,160 1,020 1,080 98633 849 1,060 1,180 895 235 923 988 1,110 90534 904 472 1,080 15.0 12.5 1,220 1,090 23.6 60235 321 151 32.5 59.5 121 872 661 242 30836 175 606 611 10 387 116 89.8 117 26437 931 1,100 1,010 1,100 240 950 637 1,120 88638 76.7 76.3 1,230 490 55.0 337 904 807 49739 37.5 41.5 54.2 53 49.7 54.6 42.6 51.3 48.140 625 995 1,060 218 1,000 797 272 627 69941 441 495 900 637 1,180 754 477 1,200 76042 6.1 6.2 4.4 7.6 3.5 3.8 15.0 6.2 6.643 5.1 9.0 4.4 3.1 4.8 15.3 4.6 11.3 7.244 83.0 27.1 44.7 6.4 15.4 11.5 13.1 5.6 25.945 8.4 6.8 16.2 6.7 8.2 7.6 5.8 8.4 8.546 23.8 8.1 8.0 22.3 8.1 12.9 18.1 11.5 14.1

3 Rock type and ductile structures

More than 90% of the exposed bedrock along the two scan lines consists of a medium-grained metagranite(rockcode101057),whichexhibitsaweaktodistincttectonicfoliationwithagen-eralorientationof100–126°/73–82°.Otherrockunitsincludeafewoccurrencesofpegmatiticgranite(rockcode101061),twodecimetre-widedykesofamphibolite,anoccurrenceoffine-tofinelymedium-grainedmetagranitoid(rockcode101051)andtwovein-likeoccurrencesofapliticmetagranite(rockcode101058).

Allrocktrendsandcontactsaremoreorlessparallelwiththetectonicfabric.Individualoccur-rences are typically a few decimetres in scan line length. The most extensive occurrence of pegmatiticgraniteformsacontinuousoccurrenceat41.20–43.53mlengthalongLFM001027.Inaddition,thereisaca1mwideamphibolitedykewithminglingstructuresthatisparallelto

11

thescanlineandrunsafewmetressouth-westofLFM001028.Twoorientationmeasurementsofthenorth-easterndykecontactyielded121°/75°and126°/79°(right-hand-rulemethod).Allrocks along the scan lines have experienced metamorphism under amphibolite-facies conditions.

4 Fractures

ThetotalnumberoffracturesregisteredalongscanlinesLFM001027andLFM001028is208and 229, respectively, i.e. approximately 5 fractures/metre. Confident fracture dips were only possibletomeasurefor270ofthefractures(i.e.62%).Themajorityoffracturesdipsteeply,generallygreaterthan70°.However,thereare13fractureswithdipslessthan40°.Thestrikeof the fractures varies considerably along the scan lines. The most conspicuous fracture set, towhichthemajorityofthefracturesbelong,strikesNE–SW.ThegentlydippingfracturesstrikeWNW–ESEandmainlyoccurinthenorth-westernendsofthetwoscanlines.Naturally,acertainbiascanbeexpectedduetothescanlineorientations.However,thefocushereisonthe presentation of raw data without any line bias correction.

Fracturefillingmineralsaredetectablein122ofthefractures.Inorderofdecreasingabundance,thesemineralsincludeadularia,chloriteandquartz.Individualfracturesmaycontainmorethanone mineral. 153 fractures exhibit oxidized or reddened walls. Two thirds of these fractures occuralongscanlineLFM001028.Moreextensivereddening,whichcannotbeboundtoindi-vidual fractures, occurs in some of the sections with increased fracture frequency.

There are five intervals of highly increased fracture frequency. Two intervals occur along scan lineLFM001027andthreealongscanlineLFM001028(Figure1-2).Thefracturefrequencytypically exceeds 10 fractures/metre in these intervals. The majority of the fractures within all fiveintervalsbelongtothesteepNE–SWfractureset.Furthermore,themoregentlydipping,WNW–ESEfracturesarefrequentinsomeoftheseintervals.Individualintervalsofhighlyincreased fracture frequency, as well as the fractures associated with two amphibolite dykes, aredescribedbrieflybelow.Eachintervalisgivenanumber(1–6),whichcorrespondstothenumbers in Figures 1-2, 4-1 and 4-2.

LFM001027

1. 3.93–7.01m.PredominantlysteeplydippingfractureswithNNE-SSWstrike(Figure4-2).Subordinate,yetdistinct,fractureswithWNW-ESEstrike,whichtypicallydipgently(<40°)towardsNNE,arealsopresent.Adulariaistheonlydistinguishablefracturefilling.Some fractures exhibit oxidized or reddened walls. Additionally, the entire interval has been affectedbyaweakoxidation(Figure4-1).

2. Amphibolitedykesintersectingthescanlineat35.52–35.74and39.01–39.28m.Thedykesareabout1dminwidthandstrikeapproximately80–95°.Bothdykesareintenselyfracturedalongtheirsoutherncontacts(Figure4-1).However,thisdoesnotemergeinthescanlinemapping, since virtually all the fractures are shorter than the truncation level.

3. 41.42–45.66m.Predominantlysteep,NE-SWfractureset(Figure4-2).Fracturesthatbelongto this set, but are shorter than the truncation level are frequent. The high fracture frequency appears to persist under the vegetation cover in the southeastward continuation of the scan line. Adularia and quartz, typically in close association, are the only distinguishable infilling minerals. Oxidation of the fracture wall rock occurs frequently. Some of the fractures exceed 1 mm in width. The entire interval has been affected by oxidation of weak to medium inten-sity(Figure4-1).

12

Figure 4-1. Photographs that show intervals of highly increased fracture frequency and altered (oxidised) bedrock along LFM001027 and LFM001028. (1) A steep, NE­SW fracture set intersected by gently dipping fractures that strike WNW­ESE. View towards the south. (2) Decimetre­wide amphibolite dyke with intensely fractured southern contact. The general strike of the dyke is approximately 90°. View towards the west. (3) Steep, NE­SW fractures. The majority are shorter than the truncation level (i.e. 4 dm). View towards the east. (4) Steep, approximately NE–SW fractures intersected by a gently dipping, WNW­ESE fracture set. View towards the NE. (5) Steep, approximately NE­SW fractures inter­sected by a gently dipping, WNW­ESE fracture set. View towards the NE. (6) Steep, NE­SW fractures. The majority are shorter than the truncation level (i.e. 4 dm). View towards the east. Scales: compass 10×6.5 cm, pen length 14 cm, brush length 23 cm and length of pocket knife 9 cm.

13

Figure 4-2. Rose diagrams that show the strike of all fractures in the five intervals of highly increased fracture frequency along LFM001027 and LFM001028. All gently dipping fractures belong to the WNW set. The strikes of fractures outside these intervals are presented in a separate diagram for comparison (background). Note that the frequency contours vary between the diagrams.

14

LFM001028

4. 2.84–7.43m.PredominantlysteeplydippingfracturesthatstrikefromNNE-SSWtoNE-SW(Figures4-1and4-2).Subordinate,yetdistinct,fractureswithWNW-ESEstrike,whichtypi-callydipgently(<40°)towardstheNNE,arealsopresent.Adulariaistheonlydistinguish-able fracture filling. A few fractures exhibit oxidized walls.

5. 19.74–21.08m.PredominantlysteepfractureswithNNE-SSWstrike,andsubordinately,fractureswithWNW-ESEstrike(Figure4-2).Adulariaistheonlydistinguishablefracturefilling. Some fractures exhibit oxidized walls. Most of the interval has been affected by faint oxidation(Figure4-1).

6. 37.81–40.40m.PredominantlysteepNE-SWfractureset.Fracturesthatbelongtothisset,but are shorter than the truncation level are frequent. The high fracture frequency appears to persist under the vegetation cover in the southeastward continuation of the scan line. Except for one chlorite-bearing fracture, adularia is the only distinguishable fracture filling. The entireintervalhasbeenaffectedbyoxidationofweakintensity(Figure4-1).

5 Magnetic susceptibility

Magnetic susceptibility was primarily measured in the predominant medium-grained meta-granite(101057),sincemostoftheotherrockunitsaretoothintoyieldreliabledata.However,fourofthe88measurementareaswerelocatedinoccurrencesofpegmatiticgranite(101061).

Typically, the metagranite exhibits a rather low magnetic susceptibility, averaging at c.480·10–5SIunits.However,thesusceptibilitydoes,evenindecimetrescale,varyconsiderablyandrangesfrom3.2·10–5to1,490·10–5SI.Theaveragesusceptibilityofthepegmatiticgraniteisc.190·10–5,witharangefrom3.5·10–5to1,600·10–5SI.Generally,thesusceptibilitytendstodecreasewithanincreasingintensityofoxidation(seeFigure1-2).However,theoverallpatternis not always clear. The distinct susceptibility decrease at interval 3 may be related, in part, to the pegmatitic granite. Furthermore, it must be emphasized that the exposed surface of this highly fractured area largely corresponds to gently dipping fracture planes, which are variably affected by oxidation. For this reason, it is not clear to what extent the decrease in magnetic susceptibility is related to these gently dipping fracture planes.

6 Discussion and conclusions

The spatial relationship between the more intensely fractured intervals along the two scan linesisnotobvious.However,thegeneralcharacteristicsoftheintervals,suchaspredominantfracture orientations and infilling mineralogy, suggest that there is a correlation between the highly fractured intervals 1 and 4, and 3 and 6, and that each of these pairs belongs to the same fracturezone.However,apossiblecontinuationofinterval5inLFM001027ismoredoubtful,suggesting that the extent of some fracture zones in the area is limited.

The principal purpose of the investigation concerned a possible relationship between the more intensely fractured and altered intervals in the bedrock and the two low magnetic lineaments with NNE and NE trend, revealed by the detailed ground magnetic survey. A direct correlation using the magnetic susceptibility values is obviously not possible because of the equivocal susceptibility pattern along the scan lines. The uncertainty in the position of the lineaments as wellasintheGPSmeasurementsinthisfieldstudyalsolimitsconfidenceinsuchcorrelationwork.However,reducedmagneticsusceptibilityvaluesarepresentinthevicinityofthehighly

15

fracturedintervals1and4,and3and6(seealsoabove).Furthermore,thehighlyfracturedintervalsalsoshowrockalteration(oxidation).Thus,althoughtherearesomelimitations,itissuggestedthatintervals1and4correspondtothewesternmostlineament,i.e.MFM2273G,whereasintervals3and6correspondtolineamentMFM2088G.

Inconclusion,thescanlinefracturemappinghasrevealedthatatleasttwolowmagneticlin-ea ments with NNE and NE trend correspond to intervals of high fracture frequency and rock alteration(oxidation).Thecorollaryfollowsthattheselineamentsrepresentminorfracturezones in the bedrock.

7 References

Isaksson I, Thunehed T, Pitkänen T, Keisu M, 2006. Forsmark site investigation. Detailed groundandmarinemagneticsurveyandlineamentinterpretationintheForsmarkarea–2006.SKBP-06-261,SvenskKärnbränslehanteringAB.

Stephens M B, Bergman T, Andersson J, Hermansson T, Wahlgren C-H, Albrecht L, Mikko H, 2003.Forsmark.Bedrockmapping.Stage1(2002)–Outcropdataincludingfracturedata.SKBP-03-09,SvenskKärnbränslehanteringAB.

17

Integrated interpretation of surface and borehole (VSP) seismic data along profiles 2 and 5, Forsmark, Sweden

Christopher Juhlin

Dept. of Earth Sciences, Uppsala University

ContentsSummary 18

1 Introduction 18

2 Reprocessing of profiles 2 and 2b, the central part of profile 5 and the northern part of profile 5 20

2.1 Profiles 2 and 2b 20

2.2 Central part of profile 5 around KFM02A 23

2.3 Northern part of profile 5 23

3 VSP data from KFM02A 34

3.1 Background 34

3.2 VSP Processing 35

4 Discussion of results 46

4.1 Profile 2 and 2b 46

4.2 Interpretation of reflectivity in KFM02A 46

4.3 Porous granite 56

4.4 Northern part of profile 5 – reflectors F1, F2, F3 and A8 57

4.5 Concluding remarks 58

4.5.1 VSP 58

4.5.2 Profiles 2 and 2b 59

4.5.3 Profile 5 59

4.5.4 Sonic velocity log 59

4.6 Possible future studies 59

5 References 60

18

Summary

Borehole KFM02A intersects several hydraulically conductive fracture zones, in particular amajorzoneat415–520m.ThiszoneandtwooftheotherscanbecorrelatedtoreflectionsobservedonthesurfaceseismicdataacquiredduringtheStage1surveys.However,the3Dgeometry of the fracture zones and the fact that the borehole does not lie on the profiles makes a definite correlation uncertain. Moreover, the presence of higher density mafic rock in the bore-hole implies that the reflections could conceivably result from lithological contrasts rather than fromthefracturezones.Therefore,surfaceseismicandverticalseismicprofile(VSP)datahavebeen quantitatively integrated and compared to geological and geophysical data from KFM02A.

The main result is that the F1 reflection, the strongest reflection on the surface seismic data near the borehole, can definitely be identified as intersecting the borehole at about 500 m. Thisisclosetothebaseoftheheavilyfracturedintervalat415–520mandfarfromanyhighdensity mafic rocks, indicating that the F1 reflection is generated from the base of this fractured interval.TheA2reflectionisnotasclearlyobservedontheVSPdata,butappearstointersectthe borehole somewhat below 400 m, suggesting that it originates from the top of the fractured interval.ThedeeperB4reflectorwasnotcoveredbytheVSPsurveyanditsexactintersectiondepth with the borehole cannot be determined, but it probably intersects the borehole at around 920 m. A thick section of high density tonalitic rock at this depth with a 10 m thick fracture zone on top suggests that the nature of the B4 reflector differs from that of the A2 and F1 reflectors.

Surface seismic profiles 2 and 5 from the Stage 1 survey, acquired in 2002, cross one another near borehole KFM02A. Profile 2 was extended to the south-west in the Stage 2 survey in 2004 and a prominent south-west moderately dipping reflection, J1, was observed on this extension.Itprojectstothesurfacealongthesouthernmostpartofprofile2fromtheStage1survey, but was not observed on the profile. Therefore, profile 2 from Stage 1 and profile 2b from Stage 2 were merged and reprocessed in order to increase the potential of tracing J1 to thesurface.Inspiteofdetailedprocessing,ithasnotbeenpossibletotracethereflectortoshallowerthan200mfromthesurface.Inthereprocessedsectionofprofiles2and2b,severalreflections are clearer than on the original processing, due to using slightly different processing parameters. Thus, the central part of profile 5 was also reprocessed along a new CDP line with a more advantageous geometry for migrating profile 5 and correlating with the KFM02A borehole. Migration of the reprocessed section shows that the A2, A3 and F1 reflections contain small offsets that may be related to sub-vertical faulting.

Finally, the northern part of profile 5 was reprocessed to see if F1 could be further traced to the north. The reflection has been split into 3 sections with the northernmost section extending to about 6699400 N, where it is either cut by a sub-vertical fracture zone or by weaker south-east dippingreflectors.Anewreflectionwasidentifiedinthereprocessing,A8,thatstrikesWSW-ENEanddipsabout35°totheSSE.Itsorientationissomewhatuncertainsincenocrossinglinedataareavailable.However,itisobservedonrawshotgathersandhasanorientationsimilartoother reflections in the set A group.

1 Introduction

ReflectionseismicdatawereacquiredintheForsmarkareainnorth-easternUppland,Swedenin2002(Stage1)and2004(Stage2)byUppsalaUniversity,undercontractfromSKB.Approx-imately40kmofhigh-resolution(10mshotandreceiverspacing)reflectionseismicdatahavebeenshotalong15differentprofilesduringthetwocampaigns(Figure1-1).Resultshavebeen

19

reported in /Juhlin et al. 2002, Juhlin and Bergman 2004, Juhlin and Palm 2005/. Borehole seismicdata(VSP)wereacquiredin2004byVibrometricOyandtheresultswerereportedin/Cosma et al. 2005/.

Thepurposeofthepresentstudywastwo-fold.Aclearsouth-westdippingreflection(J1)wasobserved in the stage 2 data on profile 2. The structure generating this reflection appears to cut acrosstheEckarfjärdendeformationzone(ZFMNW0003)andextendsontoprofile2ofthestage 1 data, but could not be traced to the surface. Profiles 2 of Stage 1 and Stage 2 were proc-essedindependentlyofoneanothereventhoughtheyoverlap(Figure1-1).Byreprocessingthetwo profiles together, it was hoped that an improved section of where the profiles overlap could be obtained and that it would easier to determine if the J1 reflection can or cannot be traced to the surface.

The second goal of this study was make an integrated interpretation of the surface seismic data from profiles 2 and 5 together with the borehole seismic data and geophysical logs from bore-hole KFM02A. The integrated interpretation focuses on studying the source of the reflectivity observedonthesurfaceseismicsectionsinthevicinityoftheborehole.Verticalseismicprofile(VSP)dataallows,inprinciple,theexactintersectionpointsofreflectorswiththeboreholetobedetermined.IfreflectionsintheVSPcanbecorrelatedtoreflectionsinthesurfaceseismics,thenthesourceofthesurfaceseismicreflectionscanbedetermined.Inordertoimplementthisexercise, part of profile 5 was also reprocessed to facilitate this integration and interpretation.

Figure 1-1. Stage 2 profiles acquired in 2004 are shown as light blue lines. Station locations for profiles acquired in 2002 (Stage 1) are shown with red lines. Green circles are deep, cored boreholes available at model stage 2.2. Candidate area is marked by purple line.

20

2 Reprocessing of profiles 2 and 2b, the central part of profile 5 and the northern part of profile 5

2.1 Profiles 2 and 2bDatafromprofiles2and2bwereprojectedontoasinglestraightline(Figure2-1)priortostacking. Processing parameters from the Stage 2 data /Juhlin and Palm 2005/ were used for the entiremergedprofile.Alargewindow(1001100ms)wasusedforresidualstaticsinordertoomit any bias in the final image. The merged final stacked time section is shown in Figure 2-2. Forcomparison,theindependentlyprocessedstackedsectionsfromprofile2(Stage1)and2b(Stage2)areshowninFigure2-3.

The sections differ primarily in the central portions where the merged processing appears to haveperformedbetter.Intheupper0.3snorth-eastoftheEckarfjärdendeformationzone(ZFMNW0003),anumberofshortsouth-westdippingreflectionshaveappearedthatwerenotobservedearlier.Inspectionofshotgathersindicatesthatthesearenotartifacts,butreal.

Figure 2-1. CDP stacking lines (red) used for the reprocessing of profiles 2 and 2b and the central and northern parts of profile 5 in this report plotted on top of the geological map of the Forsmark area. Candidate area is marked by purple line. The longer NE­SW running line represents merged profiles 2 and 2b while the shorter NW­SE running line represents the reprocessed central and northern parts of profile 5.

21

Figure 2-2. Stacked section of merged profile 2 down to 1.3 seconds. Location of section indicated in lower left corner.

22

Figure 2-3. Stacked sections of profiles 2 and 2b from /Juhlin and Palm 2005/ down to 1.3 seconds. Location of sections indicated in lower left corners.

23

Inadditiontothesereflections,theimagealongprofile2(Stage1)appearssharperthanintheearlier processing. This may be due to that somewhat lower frequencies were used in the filter-ing and the longer residual statics window. Figures 2-4 and 2-5 show more detailed sections of themergedandpreviousprocessing,respectively,neartheEckarfjärdendeformationzone.Itshould be noted that the apparent break in the prominent south-west dipping reflection directly belowtheEckarfjärdendeformationzoneinFigure2-4movestothenorth-eastaftermigra-tion(Figure4-2)andisnotadirectindicationoftheverticalorientationoftheEckarfjärdendeformation zone. Figures 2-6 and 2-7 show more detailed sections of the merged and previous processing, respectively, near the KFM02A borehole.

2.2 Central part of profile 5 around KFM02AIntheoriginalprocessingofprofile5/Juhlinetal.2002/,aCDPlinewaschosenthatcontainsabend south of the KFM02A borehole. The location of this bend was somewhat arbitrary, but was required to follow the general trend of the source-receiver midpoints. For migrating data along the central portion of profile 5, the selected location of this bend is not an optimum, since reflec-tions have to “migrate around the bend”. Therefore, the central part of profile 5 was reprocessed along a new CDP line that continues further to the south-east, allowing data from further south to be included in the migration. Processing parameters were chosen as in the reprocessing of profiles 2 and 2b. The somewhat lower frequencies used and the wider residual statics window alsoresultinasectionwherethereflectionsaresomewhatmoredistinct(Figure2-8)comparedtotheearlierprocessing(Figure2-9).

A migrated section of the reprocessed stack is shown in Figure 2-10. Note that the image is blurred and biased in the south-east, since the reflections dip in this direction. Aside from this geometrical effect, the image gives a good representation of the true subsurface geometry of the main reflectors along the CDP line. This is confirmed by the observation that the location of the main reflectors, as determined from the cross dip analysis of profiles 2 and 5 /Juhlin and Bergman2004/,fallnearlyontopofthemainreflectorsinthemigratedimage(Figure2-11).Only B5 does not fall on top of its corresponding reflection in the migrated image. This is due to that the orientation of B5 was based on where profiles 3 and 5 cross, not where profiles 2 and 5 cross, and has, therefore, been projected a long distance. The true location of B5 corresponds closelytothestrongreflectionbelowB4inthemigratedimage(Figure2-11).Basedonthemigrated image, the main reflectors expected to be encountered in the KFM02A borehole are A3, A2, F1 and B4.

2.3 Northern part of profile 5The CDP line chosen for reprocessing is shown in Figure 2-1. Note that the CDP numbering system is again different from that in the original processing and from the processing from the central part of profile 5 near KFM02A. The same processing parameters were used as for the central part of profile 5 and profiles 2 and 2b in this report. The reprocessed stacked section showsthereisagroupofsetFreflections,consistingof3sections(Figure2-12),F1,F2andF3. A migrated version is shown in Figure 2-13. After reprocessing, a new reflection has been identified,A8(Figures2-12and2-13).AlthoughnotasclearastheothersetAreflections,itis seen on shot gathers and can be traced nearly to the surface on these gathers.

24

Figure 2-4. Stacked section of merged profile 2 near the Eckarfjärden deformation zone and down to 0.5 seconds. Location of section indicated in lower left corner.

25

Figure 2-5. Stacked sections of profiles 2 and 2b from /Juhlin and Palm 2005/ near the Eckarfjärden deforma­tion zone and down to 0.5 seconds. Location of sections indicated in lower left corners.

26

Figure 2-6. Stacked section of merged profile 2 near to borehole KFM02A and down to 0.5 seconds. Location of section indicated in lower left corner.

27

Figure 2-7. Stacked section of profile 2 as presented in Stage 1 /Juhlin et al. 2002/ near to borehole KFM02A and down to 0.5 seconds. Location of section indicated in lower left corner.

28

Figure 2-8. Reprocessed stacked section of profile 5 near to borehole KFM02A and down to 0.5 seconds. Location of section indicated in lower left corner.

29

Figure 2-9. Stacked section of the central part of profile 5 as presented in Stage 1 /Juhlin et al. 2002/ near to borehole KFM02A and down to 0.5 seconds. Location of section indicated in lower left corner.

30

Figure 2-10. Migrated section of reprocessed profile 5 near to borehole KFM02A and down to 0.5 seconds. Location of section indicated in lower left corner.

31

Figure 2-11. Migrated section of reprocessed profile 5 near to borehole KFM02A and down to 0.5 seconds. Location of section indicated in lower left corner. Depths of the selected reflectors have been projected onto the section. The depths of these reflectors correspond to the depths where the reflectors would be intersected if a borehole were to be drilled along the profile. They should be viewed as nearly true depths.

32

Fig

ure

2-12

. Re

proc

esse

d st

acke

d se

ctio

n of

the

nort

hern

par

t of p

rofil

e 5

dow

n to

0.5

sec

onds

. Loc

atio

n of

sec

tion

indi

cate

d in

low

er le

ft co

rner

.

33

Fig

ure

2-13

. M

igra

ted

sect

ion

of re

proc

esse

d no

rthe

rn p

art o

f pro

file

5 do

wn

to 0

.5 s

econ

ds. L

ocat

ion

of s

ectio

n in

dica

ted

in lo

wer

left

corn

er. D

epth

s of

the

sele

cted

refle

ctor

s ha

ve b

een

proj

ecte

d on

to th

e se

ctio

n. T

he d

epth

s of

thes

e re

flect

ors

cor­

resp

ond

to th

e de

pths

whe

re th

e re

flect

ors

wou

ld b

e in

ters

ecte

d if

a bo

reho

le w

ere

to b

e dr

illed

alo

ng th

e pr

ofile

. The

y sh

ould

be

vie

wed

as

near

ly tr

ue d

epth

s.

34

3 VSP data from KFM02A

3.1 BackgroundVerticalseismicprofile(VSP)datawereacquiredintheKFM02Aboreholein2004using10differentsourcepoints(Figure3-1).Thedepthintervalofthesurveywas100mto775mwithareceiverintervalspacingof5m.TheseVSPdatawereprocessedandinterpretedby/Cosmaetal.2005/usingmethodsdevelopedspecificallyformulti-sourceVSPsurveys.Theorientationof both gently and steeply dipping reflectors was obtained.

The main aim of the present study is to investigate the origin of the gently dipping reflections observed on the surface seismic profiles near the KFM02A borehole, in particular reflectors A2, F1andB4.ReflectionsfromthesezonesshouldalsobepresentintheVSPdata.Bytracingthesereflections to where they intersect the borehole, it should be possible to determine the exact depth the reflector is penetrated by the borehole. Changes in rock properties in the bore hole at this depth provide clues to the source of the reflection. This procedure is, in prin ciple, straightforward. However,complicatingfactorsgenerallyariseinacrystallinerockenvironment.Theseinclude:

Figure 3-1. Location of KFM02A VSP source points (cyan circles) and reprocessed profiles 2 and 5 (red lines) in relation to the KFM02A borehole (DS2 green circle). Black dots show midpoint spread along the seismic profiles.

35

1. The surface seismic profile does not cross exactly over the borehole, implying that the reflections observed are not generated where the reflector intersects the borehole.

2. Even if the profile crosses exactly over the borehole, the reflections may come from out-of-the-plane of the profile, implying again that the borehole does not intersect the reflector where the reflections are generated.

3. VSPdataaresinglefoldwhereassurfaceseismicprofilesaremulti-fold,resultinginthatreflectionswillbesignificantlyweakerintheVSPdata.ThismaymakeitdifficulttocorrelatereflectionsonthesurfaceseismicswithreflectionsontheVSP.

4. AnglesofincidencearegenerallyhigherinVSPdata,resultinginthatP-wavesthathavebeenconverted to S-waves, both transmitted and reflected, are more often present in the data. These converted waves may mask P-wave reflections, or be mistaken for P-wave reflections.

3.2 VSP ProcessingVSPprocessinginthisstudyfollowedstandardmethodsdevelopedforimaginggentlydippingreflectors(Table3-1).Figure3-2showsessentiallytherawdataaftersomepreliminaryprocess-ing. The wave-field is dominated by downgoing P- and S-waves, the arrival time of which increaseswithincreasingdepth.Reflectionsfromsub-horizontalzones,whichwillgenerallyhavearrivaltimesthatdecreasewithincreasingdepth,aredifficulttoidentify(Figure3-3).Afterspectralwhiteningandfiltering(Figure3-4),therearemoreindicationsofreflectionsfromsub-horizontalzonesintheVSPdata(Figure3-5).Afterremovalofdown-goingP-andS-waves,reflectedwavesdominatethewave-field(Figures3-6to3-9).However,itisstilldifficulttopickoutdistinctreflectionsasispossibleonthesurfaceseismicdata.Reflectionsfrommoresteeplydipping zones, and even interference between reflections from sub-horizontal zones, mask the potentiallydistinctreflections.TheclearestreflectionobservedintheVSPdataisfoundonSP2andintersectstheboreholeatabout500m(Figure3-8).Itstravel-timecorrespondscloselytothatexpectedofareflectionfromtheF1zone(Figure3-9).Reflectionswithtravel-timescorrespondingtotheF1zonearealsorelativelyclearlyseenonSP1andSP8(Figure3-9),alsothere intersecting the borehole at about 500 m.

Table 3-1. Processing parameters applied to VSP data from KFM02A.

Step Process

1 Read decoded vertical component SEGY data2 Apply –50 ms shift to zero time3 Gain by t0.5

4 Bandpass filter: 40-60-300-450 Hz5 Kill noisy traces6 Infill killed traces: aperture size 77 Spectral whitening: 40-60-200-250 Hz8 Bandpass filter: 60-90-240-360 Hz9 Align first breaks at 5,750 m/s10 Mute at first break11 Remove downgoing Pwaves: 15/1/5,750 (traces/samples/velocity)12 Bandpass filter: 40-60-300-450 Hz13 Remove downgoing Swaves: 15/1/3,300 (traces/samples/velocity)14 Bandpass filter: 40-60-300-450 Hz15 Trace equalization: 0–500 ms16 Convert to two-way travel-time: velocity 5,750 m/s17 2D median filter: enhance sub-horizontal events

36

Fig

ure

3-2.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

6 in

Tab

le 3

­1. H

oriz

onta

l axi

s is

dep

th in

met

res

in b

oreh

ole.

37

Fig

ure

3-3.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

6 in

Tab

le 3

­1 w

ith p

redi

cted

trav

el­ti

mes

for

refle

ctor

s A2,

B4

and

F1

supe

rim

pose

d. X

­axi

s is

dep

th in

met

res.

38

Fig

ure

3-4.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

10 in

Tab

le 3

­1. X

­axi

s is

dep

th in

met

res.

39

Fig

ure

3-5.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

10 in

Tab

le 3

­1 w

ith p

redi

cted

trav

el­ti

mes

for

refle

ctor

s A2,

B4

and

F1

supe

rim

pose

d. X

­axi

s is

dep

th in

met

res.

40

Fig

ure

3-6.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

12 in

Tab

le 3

­1. X

­axi

s is

dep

th in

met

res.

41

Fig

ure

3-7.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

12 in

Tab

le 3

­1 w

ith p

redi

cted

trav

el­ti

mes

for

refle

ctor

s A2,

B4

and

F1

supe

rim

pose

d. X

­axi

s is

dep

th in

met

res.

42

Fig

ure

3-8.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

14 in

Tab

le 3

­1. X

­axi

s is

dep

th in

met

res.

43

Fig

ure

3-9.

VSP

dat

a fro

m a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

14 in

Tab

le 3

­1 w

ith p

redi

cted

trav

el­ti

mes

for

refle

ctor

s A2,

B4

and

F1

supe

rim

pose

d. X

­axi

s is

dep

th in

met

res.

44

Fig

ure

3-10

. VS

P da

ta fr

om a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

17 in

Tab

le 3

­1. X

­axi

s is

dep

th in

met

res.

InordertocomparetheVSPdatamoredirectlywiththesurfaceseismicdata,thesectionswereconvertedtotwo-way-travel-time(TWT).Ifthesource-receiveroffsetisnottoolarge,reflec-tions from sub-horizontal interfaces will now have an approximate sub-horizontal orientation (Figures3-10and3-11),andwillarriveatapproximatelythesameTWTasthecorrespondingreflections on the surface seismic profiles.

45

Fig

ure

3-11

. VS

P da

ta fr

om a

ll 10

sou

rce

poin

ts p

roce

ssed

up

to s

tep

17 in

Tab

le 3

­1 w

ith p

redi

cted

trav

el­ti

mes

for

refle

ctor

s A2,

B4

and

F1

supe

rim

pose

d. X

­axi

s is

dep

th in

met

res.

WhenviewingtheVSPdata,theonsetofareflectioncorrespondstothetopofareflector.Thus,the maximum amplitude of a reflection will not correspond to the top of a reflector. To deter-mine where a reflector intersects the borehole, the location of the onset of the reflection needs to be identified.

46

4 Discussion of results

4.1 Profile 2 and 2bSelected reflections from Stage 1 and Stage 2 have been plotted on top of the new merged section(Figure4-1).Inspectionofthisfigureshowsthatnonewpronouncedreflectionshaveappearedinthereprocessing.ReflectionsfromJ1fallclosetopredictedlocationsstartingonthe south-western end of the profile at 0.75 s and continuing to about CDP 500 at 0.2 s. Above 0.2 s, it is still difficult to trace J1 to the surface. The strong reflectivity along J1 at about 0.3 s at CDP 575 should also be noted. The high amplitude of the reflections may be due to larger quantities of mafic rock.

InordertostudythegeometryofJ1andtheshortSWdippingreflectionsaboveit,themergedsectionhasbeenmigrated(Figure4-2).Themigrationis2Dandassumesthatallreflectionsare from within-the-plane of the profile. This assumption is nearly correct for the J1 reflection, buttheorientationoftheshortSWdippingreflectionsaboveJ1isnotknownanditispossiblethattheyemanatefromout-of-the-planeoftheprofile.Iftheyarefromwithintheplane,thenthe migrated image indicates that they form a cap on the J1 reflector and are part of the J1 structure or zone. A borehole at CDP 450 down to 300 m would then penetrate the J1 structure. Bysimpleprojectiononthetimesection(Figure4-1),J1ispredictedtointersectthesurfaceatabout CDP 300. The migrated image indicates that J1 steepens as it approaches the surface and projects to about CDP 400, although it cannot be traced closer than 200 m from the surface. Thisiswithinazoneofstronglyfoliatedorbandedrockonthegeologicalmap(Figure2-1),suggesting that there may be some connection between the reflector and this banded rock.

Althoughnotveryreliable,itshouldbenotedthattherearetwo,steeplySWdipping,weakreflectionsonthemigratedsection(Figure4-2)thatprojecttothesurfaceclosetotheEckar-fjärdendeformationzone.Thesemaybeanindicationofitsorientationandwouldexplainwhyit does not offset the J1 reflector directly below it.

4.2 Interpretation of reflectivity in KFM02ASeismic reflections arise when the down-going wave encounters changes in the velocity and/or density of the rock, provided that these changes occur over a large enough area and are rea son-ablycontinuous.Iftheboundarybetweengeologicalunitsislimitedornotsufficientlycon-tin uous, then the down-going wave will be scattered and little energy will be reflected back, even if the velocity and density contrasts are large. Signs of scattered waves may be found in dif fraction patterns in the seismic data.

Inordertoidentifywheresub-horizontalreflectionsoriginateintheborehole,theVSPdatafromselectedsourcepointsthatweretransformedtotwo-way-time(Figure3-10)havebeendepth-convertedusingavelocityof5,750m/s.Thesedepth-convertedVSPsectionshavebeenplotted alongside the migrated surface seismic and the sonic and density logs from KFM02A (Figures4-3to4-6).Itneedstobekeptinmindthattherearetwointervalswherethesonicvelocityhasnotbeenproperlycalculated,theseareat350–380mandbelow900m.Thefullwaveformsonicdisplayshowsnoindicationofsuchlowvelocitiesovertheseintervals.Intheinterval250–300m(correspondingtotheporousgranitedescribedby/Mölleratal.2003/),thesonicvelocityisalsoextremelylow(aslowas3.5km/s),butherethefullwaveformsonicshows clear delays, indicating that these velocities have been correctly determined. The full waveformsonicishighlyirregularintheinterval415–520m,indicatingthisintervaltobesig-nificantlyfracturedandaltered.Itshouldalsobenotedthatthedepthsofthereflectorsindicatedin the surface seismics in Figures 4-3 to 4-6 refer to depth below the wellhead of the KFM02A borehole(location:1633182E,6698712N).Theydifferfromtheintersectiondepthsreportedin /Juhlin and Bergman 2004/, where the planned location of the KFM02A borehole was used (location:1633200E,6698670N),nottheactuallocation.

47

Figure 4-1. Stacked section of merged profile 2 down to 1.3 seconds with selected reflections marked. Location of section indicated in lower left corner.

48

Figure 4-2. Migrated section of merged profile 2 down to 1.5 km. Location of section indicated in lower left corner. Migration assumes all reflections originate from within­the­plane of the profile.

TheclearestreflectionobservedontheVSPdataisfoundonSP2andintersectstheboreholeatabout500m(Figure4-3).ItsonsettimeagreeswellwiththatpredictedfortheF1reflectorand this reflector is also clearly imaged on profile 5 near the KFM02A borehole at this depth. Adepthof500misclosetothebottomofthehighlyfracturedinterval415–520m/Carlstenet al. 2004/, suggesting that the F1 reflection originates from the base of this interval. Thus, it is the contrast between the fractured rock above and the more intact rock below that generates thestrongF1reflectionobservedonthesurfaceseismics.ReflectionsthatcanbecorrelatedtotheF1reflector,althoughnotasclearlyasonSP2,arealsoobservedonVSPdatafromSP1andSP8(Figures4-4and4-5),alsointersectingtheboreholeatabout500m.SignsoftheF1reflectionareseenontheVSPdatafromtheothersourcepoints(Figure3-11),buteitherthepredicted onset time is not sub-horizontal, or the arrivals from the A2 reflector are predicted to interferewiththeF1reflection,andtherebymaskoneanother.SP1,SP2andSP8arethosesource points closest to the borehole, and have the best geometry for mapping the F1 reflector closetotheborehole.ItshouldalsobenotedthattheF1reflectionisclearestnorthofthebore-hole(Figure4-7),whichsuggeststhatSP2shouldcontainthebestimageofthereflection,inagreement with observations.

ReflectionsthatcanbecorrelatedtotheA2reflectorarealsoobservedonSP1,SP2andSP8(Figures4-3and4-5).Theonsetsofthesereflectionsdonotmatchthepredictedonsetsbased

49

on the surface seismic data as well as the F1 onsets do. This can be explained by the orienta-tion of the A2 reflector being somewhat different near the borehole than predicted from the surface seismic data. The correlated reflections are also not as clear as the ones correlated to the F1 reflector. This is to be expected from the surface seismic data, where the F1 reflection is strongerandmoreclearlyimagedbelowtheKFM02Aboreholeonprofiles2and5(Figures2-6and2-11).TheonsetoftheseapparentA2reflectionsontheVSPdataintersectstheboreholeat about 410 m. This is about 30 m shallower than predicted from the surface seismic data, but coincidescloselywiththetopoftheheavilyfracturedintervalat415–520m/Carlstenetal.2004/.InspectionoftheselectionoftheA2reflectiononthesurfaceseismicdata(Figure4-7)shows that it could indeed intersect the borehole somewhat shallower than what is predicted based on the selection procedure.

The depth to reflector B4 is about 950 m directly below the KFM02A wellhead. Since the bore-holedipsat85°tothenorth,thepredicteddepthofpenetrationisatabout930m,some50moffsetfromthewellheadandcorrespondingtoaboutCDP185onprofile5.Itisexpectedtobemostclearlyimagedonsourcepointslyingsouthoftheborehole(Figure4-7).Clearreflec-tionsfromVSPdataonSP7canbecorrelatedwiththeB4reflector(Figure4-6),althoughsignsofitareobservedonallsourcepointssouthoftheborehole.SincetheVSPsurveydidnotextend down deeper than 775 m, the exact depth at which it penetrates the borehole cannot be determined.However,thereflectionprojectsintotheboreholeatabout920m,closetothedepthexpected based on the surface seismic data. This is in the middle of a high density, tonalitic metagranitoid /Carlsten et al. 2004/, suggesting that it is the density contrast between this unit and the surrounding lower density granitic rock that is generating the B4 reflection.

This interpretation requires that this high density rock is continuous, with approximately the same thickness laterally away from the borehole for several hundreds of metres, if not more. Note that the density log shows a rather gradual transition between the surrounding rock and the tonalitic rock, indicating the boundary may not be sharp. There are also a number of fracture zones close to the B4 reflector, the uppermost one is at about 900 m and is characterized by a clear 10 m thick low velocity anomaly signature. This low velocity zone could also contribute to thereflectivity.Giventhatthereflectivityappearstostartshallowerthan900mattheboreholelocation, it is possible that it is a combination of this fracture zone and the high density rock that is generating the reflectivity associated with the B4 reflection that is observed on the surface seismic data.

The A3 reflector is projected to intersect the borehole at about 115 m, too shallow to be imaged bytheVSPdata.However,thefracturezoneandunderlyingamphiboliteat120–130marecandidates for this reflector. The amphibolite is quite thin and its contribution to the reflection coefficient from the density contrast is less than that from the velocity contrast of the fracture zone.Inaddition,otheramphibolites,inparticularthoseatabout800mand850mdonotgenerate any clear reflections. Thus, it is possible that the A3 reflection is generated by the low velocityzoneat120–130m.

Apartfromtheporousgraniteat250–300m,theonlyotherprominentlowvelocityzonethat does not have a corresponding reflection identified on the surface seismic data is the one 160–180m.ThiszonealsocorrespondstotheA3reflector.Sincetheboreholeisoffsetfromthe profiles by about 100 m, it is not possible to draw any definite conclusions about this zone.However,anothermorespeculativepossibilityexists.Thezoneat160–180mcouldcorrespond to the more steeply dipping reflection seen on profile 2 and tentatively referred to as J4(Figure4-8).ThisreflectionwouldhavethesamestrikeastheprominentJ1reflectiontothesouthanddipatabout40°tothesouth-west.TheearlierinterpretedH1reflectionmayactuallyhavebeenmistakenforthisevent.IftheJ4reflectionhastheassumedorientation,itoverlapstheA3reflectiononprofile5(Figure4-7),makingitdifficulttoensureareliableorientation.A migrated image of profile 2 shows that the potential J4 zone could limit the F1 and A2 reflec-torstowardsthesouth-west(Figure4-9).ItshouldalsobenotedthatonlytheJ4reflectionismigrated reasonably properly on the section. The other reflections have a significant out-of-the-plane of the profile component.

50

Figure 4-3. Density and sonic logs from the KFM02A borehole compared to the migrated seismic sec­tion along profile 5 and SP 2 from the VSP. P­wave sonic velocity is plotted on top of the full waveform sonic seismograms from the near receiver. Shaded portions in the FZ core panel indicate where the major deformation zones in the core have been identified /Carlsten et al. 2004/. Reflection coefficients (RC) have been calculated using only the sonic and only the density log, to allow a comparison of the importance of the contrasts in these two parameters. They are plotted on a scale ranging from –0.1 to 0.1. Borehole was cased to 100 m.

51

Figure 4-4. Density and sonic logs from the KFM02A borehole compared to the migrated seismic sec­tion along profile 5 and SP 1 from the VSP. P­wave sonic velocity is plotted on top of the full waveform sonic seismograms from the near receiver. Shaded portions in the FZ core panel indicate where the major deformation zones in the core have been identified /Carlsten et al. 2004/. Reflection coefficients (RC) have been calculated using only the sonic and only the density log, to allow a comparison of the importance of the contrasts in these two parameters. They are plotted on a scale ranging from –0.1 to 0.1. Borehole was cased to 100 m.

52

Figure 4-5. Density and sonic logs from the KFM02A borehole compared to the migrated seismic sec­tion along profile 5 and SP 8 from the VSP. P­wave sonic velocity is plotted on top of the full waveform sonic seismograms from the near receiver. Shaded portions in the FZ core panel indicate where the major deformation zones in the core have been identified /Carlsten et al. 2004/. Reflection coefficients (RC) have been calculated using only the sonic and only the density log, to allow a comparison of the importance of the contrasts in these two parameters. They are plotted on a scale ranging from –0.1 to 0.1. Borehole was cased to 100 m.

53

Figure 4-6. Density and sonic logs from the KFM02A borehole compared to the migrated seismic sec­tion along profile 5 and SP 7 from the VSP. P­wave sonic velocity is plotted on top of the full waveform sonic seismograms from the near receiver. Shaded portions in the FZ core panel indicate where the major deformation zones in the core have been identified /Carlsten et al. 2004/. Reflection coefficients (RC) have been calculated using only the sonic and only the density log, to allow a comparison of the importance of the contrasts in these two parameters. They are plotted on a scale ranging from –0.1 to 0.1. Borehole was cased to 100 m.

54

Figure 4-7. Parts of profiles 2 and 5 viewed from the south (left) and the north (right). Predicted reflection onset times based on /Juhlin and Bergman 2004/ are marked with lines.

55

Figure 4-8. Stacked section of merged profile 2 down to 0.5 seconds with selected reflections marked. Location of section indicated in lower left corner.

56

4.3 Porous graniteAn interesting discovery in the KFM02A borehole was the long interval between 250 m and 300mcontainingporous(vuggy)graniteorepisyenite/Mölleretal.2003/.Thisintervalhasanomalouslylowvelocitiesanddensities.Ifitwerelaterallycontinuousitwouldgenerateverystrongreflections.However,noclearresponseinthesurfaceseismicdataisseenfromthisbody,suggestingthatitislimitedinitslateraldimensions.IsitobservedontheVSPdata?

TheclearestindicationofthisbodyontheVSPisfoundinthevariationsinarrivaltimeofthedirectS-waveatadepthofabout250montheunprocessedVSPdata(Figure3-2).Noclearreflections appear to be generated by it, suggesting that it is limited laterally and that it has an irregular geometry. SP 6 shows the greatest variations in the direct S-wave arrival in the interval 150 m to 300 m at about 0.3 s. Since the body intersects the borehole between 250 m and 300 m, this suggests that the body extends towards the surface on the south side of the borehole towards SP 6 and does not extend much deeper towards the north. Diffraction patterns with anapexatabout300mdeptharealsoseenindatafromsomeoftheunprocessedVSPsourcepoints,inparticularSP2(Figure3-2).ThesediffractionshaveanS-wavevelocity,suggestingthey originate from forward scattering at the base of the body on the north side of the borehole.

Figure 4-9. Migrated section of merged profile 2 near the KFM02A borehole down to 1.5 km. Location of section indicated in lower left corner. Migration assumes all reflections originate from within­the­plane of the profile.

57

4.4 Northern part of profile 5 – reflectors F1, F2, F3 and A8The orientation of F1 is well constrained from crossing profile 2, while the orientations of F2 andF3aremoreuncertain.InorientingF2andF3,astrikesimilartoF1hasbeenassumedandthedipadjustedtomatchthereflectiontravel-times.Inspectionofthemigratedsection(Figure2-13)showsthatthesetFreflectionsappeartoformanundulatingsurfacethatmaycontainoffsetsatsomelocations.ThissurfaceappearstoendataboutCDP375(6699400N),where it either terminates or becomes more diffuse, perhaps merging into the B7 reflection zone. Towardsthesouth,thesetFreflectionsextendtoabout6698500N,consistentwithobservationson profile 2.

Giventheconstraintsfromshotgathersandthestackedsection,ithasbeenpossibletogiveanestimateoftheorientationoftheA8reflector(Table4-1)andlocatewhereitprojectstothesurface(Figure4-10).ItpossiblycutstheF1reflector(Figure2-13),andperhapsevenextendsfurtherdownthanmodelled.ItshouldbenotedthattheA8reflectionisnotobservedoncross-ingprofile1.Itprojectsintoprofile1atveryearlytimeswhereprofile1crossesprofile5andit

Figure 4-10. Location of boreholes at drill site 6, the A8 reflector and profile1 (running WE). A8 is seen to intersect the surface close to receiver 5,465 (cyan circle) and to project up to the surface close to CDP 520 on the reprocessed northern part of profile 5. A8 cuts profile 1 at too shallow a depth to be imaged near the crossing point of the profiles. Black dots show midpoint spread along the seismic profiles.

58

wouldnotbeexpectedtobeseenthere.However,itisalsonotseenfurtherwestalongprofile1,whereitwouldbeexpectedtobeobservedat100–200ms.Therefore,itslateralextenttowardsthe west appears to be very limited.

As noted in /Juhlin et al. 2002/, many of the reflections appear to die out towards the north on profile 5, particularly the set A and set B reflections. The set F reflections also follow this pat-tern.BoththeB7andA8reflections,whichlieinthenorthernmostpartoftheprofile,arequitediffuse here. This may be due to the reflectors that generate them being “broken up” and not as laterally homogeneous as further towards the south-east.

4.5 Concluding remarks4.5.1 VSPIntegrationoftheVSPdatawiththesurfaceseismicdatahasprovenusefulfor:

1. Obtaining a realistic velocity profile that can be used for depth conversion of the seismic data.

2. IdentificationofwheretheF1andA2reflectorsintersecttheborehole.TheF1reflectionoriginatesfromnearthebaseoftheheavilyfracturedintervalat415–520mandtheA2reflection from near the top of this fractured interval.

3. Confirmation that the porous granite is probably limited in its lateral extent.

4. EventhoughtheB4reflectorwasnotintersectedbytheVSPsurvey,itislikelythatitintersects the borehole at about 920 m, in good agreement with the surface seismics. A thick section of high density tonalitic rock is present at this depth, but also a 10 m thick fracture zone. Both probably contribute to the reflectivity of the B4 reflector.

ItissurprisingthatfirstarrivalsfromallsourcepointstoallreceiverpointsintheKFM02Aborehole, and also in the KFM01A borehole /Cosma et al. 2005/, indicate a nearly constant velocitymediaof5,750m/s,irrespectiveofazimuthordepth.Giventhevariationsinfracturingand the metamorphic grade of the rock, one would expect some azimuthal or depth dependence. Perhaps the lack of velocity variations is due to the high stresses in the bedrock. Alternatively, itcouldbeduetosomepreprocessingthathasbeenappliedtotheVSPdatathathasnotbeenmentioned in the reports.

OneprobleminusingtheVSPdataisthelowersignaltonoiseratiocomparedtothesurfaceseismicdata.ThisisduetotheVSPdatabeingsinglefold.Itcouldbeusefulinthefuturetocarryoutmovingsourceprofiling(MSP).ThisallowsstackingofVSPdatatoincreasethesignal to noise ratio. Such profiles would focus on certain depths so as to more clearly map the lateral extent of certain reflectors.

Table 4-1. Orientation of the new reflectors discussed in this report. F1 is also included from earlier reports. Distance refers to distance from the arbitrary origin (6699 km N, 1633 km W) to the closest point on the reflector at the surface. Depth refers to depth below the surface at this origin. Strike is measured clockwise from north. Rank indicates how sure the observation of each reflection is on profiles that the reflection is observed on; 1 – definite, 2- probable, 3-possible.

Reflector Strike Dip Distance (m) Depth (m) Rank Profiles observed on

F1 20 20 400 1 2.5F2 20 5 420 2 5F3 20 5 500 2 5A8 80 35 1,150 2 5

59

4.5.2 Profiles 2 and 2bReprocessingofprofiles2and2basoneprofileproducedaseismicsectionthatwassuperiortosimply merging of the two previously processed profiles. This was partly due to taking advan-tage of the overlapping data, but also to using slightly different processing parameters. A major goalfortheprocessingwastodetermineiftheJ1reflectorcanbetracedtothesurface.Inspiteof detailed velocity analysis and inspection of shot gathers, it was not possible to trace the reflectorshallowerthanabout200mfromthesurface.Inthereprocessedasection,areflection(J4)withasimilarapparentdipastheJ1reflectionandpossiblyasimilarstrikewasobserved.Ifcorrectlyoriented,itwouldintersectboreholeKFM02Aatabout150m,inafracturezone.However,thisdepthalsocorrespondsapproximatelytothepositionoftheA3reflector.TheJ4orientationishighlyspeculativeandhasnotbeenconfirmed.However,ifcorrect,theJ4reflec-tor could limit the F1 and A2 reflectors to the south-west.

4.5.3 Profile 5Aninterestingpointtonoteonthemigratedsectionofprofile5(Figures2-10and2-11)isthatthe A3, A2 and F1 reflectors appear to be faulted with offsets on the order of 10 m to 20 m. F1 alsoappearstobefaultedonthemigratedsectionofprofile2(Figure4-9).Ifreal,itmaybepossible to use 3D reflection seismics to map sub-vertical faults in this area. On the reprocessed northernpartofprofile5,apreviouslyunidentifiedreflection,A8,isindicated.Itappearstohave a strike and dip similar to the previously identified set A reflections.

4.5.4 Sonic velocity logSonic velocities were not calculated properly along two sections of borehole KFM02A. Plotting the sonic waveform data together with the sonic velocity provides a method of control for determining where the sonic log is reliable. The waveform data should be reprocessed and a dependable sonic log be archived in the SKB database, rather than the one that is presently archived.

4.6 Possible future studiesApart from carrying out a 3D surface seismic survey over the KFM02A borehole, which is probably necessary to fully understand the geometrical relationships between the reflectors and the observations in the borehole and on the surface, there are several smaller studies that could be made:

1. Due to the crooked line acquisition geometry, there is considerable spread in the mid-points fromprofiles2and5neartheKFM02Aborehole(Figure3-1).Thisimpliesthattherealreadyissome3Dsub-surfacecoverageinthearea.ItmaybepossibletomaptheA3,A2 and F1 reflections to limited extent in 3D in this area and tie borehole observations to observations on the CDP stacking lines.

2. A2Dveryhighresolution(1mor2mstationspacing)surveyoverboreholeKFM02AandrunningintheSW-NEdirectionmaydetecttheporousgraniteandallowitslateraldimensions to be estimated. Such a survey would also better tie the borehole observation to the profile 5.

3. Moving source profiling to better image the F1 and A2 reflectors. This could be carried out in conjunction with point 2 above, with simultaneously recording on the surface and in the borehole simultaneously.

60

5 References

Carlsten S, Petersson J, Stephens M, Mattsson H, Gustafsson J, 2004.Geologicalsingle-holeinterpretationofKFM02AandHFM04–05(DS2).Forsmarksiteinvestigation.SKBP-04-117,SvenskKärnbränslehanteringAB.

Cosma C, Enescu N, Balu L, 2005.VerticalseismicprofilingfromtheboreholesKFM01AandKFM02A.Forsmarksiteinvestigation.SKBP-05-168,SvenskKärnbränslehanteringAB.

Juhlin C, Bergman B, 2004.ReflectionseismicsintheForsmarkarea.UpdatedinterpretationofStage1(previousreportR-02-43).Updatedestimateofbedrocktopography(previousreportP-04-99).SKBP-04-158,SvenskKärnbränslehanteringAB.

Juhlin C, Bergman B, Palm H, 2002.ReflectionseismicstudiesintheForsmarkareaStage1.SKBR-02-43,SvenskKärnbränslehanteringAB.

Juhlin C, Palm H, 2005.ReflectionseismicstudiesintheForsmarkarea,2004Stage2.SKBR-05-42,SvenskKärnbränslehanteringAB.

Möller C, Snäll S, Stephens M B, 2003. Dissolution of quartz, vug formation and new grain growth associated with post-metamorphic hydrothermal alteration in KFM02A. Forsmark site investigation.SKBP-03-77,SvenskKärnbränslehanteringAB.

61

Correlation of 2D surface seismic, vertical seismic profile (VSP), and geological and sonic data in boreholes KFM01A and KFM02A, Forsmark: Background analysis

Nicoleta Enescu, Calin Cosma

Vibrometric AB

Contents 1 Aims of the study 62

2 Background data 62

3 Refined interpretation of the VSP data, in relation to 2D seismic profiles 1, 2, 4 and 5 and the single-hole interpretations for KFM01A and KFM02A 64

3.1 Borehole KFM01A, and 2D profiles 1 and 4 78

3.2 Borehole KFM02A, and 2D profiles 2 and 5 81

3.3 Combined interpretation of reflectors from boreholes KFM01A and KFM02A together with 2D profiles 1, 2, 4 and 5, and some geological features presented in geological model, stage 2.1 84

4 References 89

Appendix 1 Parameters of reflector elements interpreted from the VSP and 2D seismic data 90

62

1 Aims of the study

The purpose of this work was to:

• Refinetheverticalseismicprofile(VSP)resultsfromboreholesKFM01AandKFM02AatForsmark /Cosma et al. 2005/.

• Attempttocorrelatetheseresultswiththe2Dsurfaceseismicaswellasthegeologicalandsonic wave data in each borehole, as inferred from the respective single-hole interpretations /Carlsten et al. 2004ab/.

TheworkinvolvedananalysisandanintegrationoftheVSPdatawiththe2Dsurfaceseismicand geological and sonic wave data from the two boreholes. The results of the correlation work are presented in tabular format in this report. They form a basis for a broader evaluation that is presented in section 3.10.3 in the main stage 2.2 geological report /Stephens et al. 2007/.

2 Background data

Inthisstudy,VSPmeasurementsandinterpretedresultsfromboreholesKFM01AandKFM02Aat Forsmark /Cosma et al. 2005/ were used together with depth migrated sections of 2D reflectionseismicprofilesalonglines1,2,4and5(Figure2-1;see/Juhlinetal.2002,JuhlinandBergman2004/)andthesingle-holeinterpretationsofgeologicalandgeophysicaldatainthesetwoboreholesintheformofWell-Cadplots/Carlstenetal.2004ab/.Fullwavesonicdatafrom the two boreholes were also evaluated, but were not used to aid the refined interpretation produced by this study.

Profile 5 was projected along the line of profile 5b, to produce one profile along a straight line. Furthermore, profiles 2 and 2b were merged into one longer profile. The resulting geometry is shown in Figure 2-2.

63

Figure 2-2. Location of profiles 1, 2, 4 and 5 for which the 2D depth migrated profiles have been used in this interpretation, boreholes KFM01A and KFM02A, and the VSP shot points. View from top.

Figure 2-1. Location of the measured 2D seismic reflection profiles, boreholes KFM01A and KFM02A, and the VSP shot points. View from top.

64

3 Refined interpretation of the VSP data, in relation to 2D seismic profiles 1, 2, 4 and 5 and the single-hole interpretations for KFM01A and KFM02A

ThefiguresbelowshowtheinterpretedreflectorsalongtheVSPprofilesfromKFM01A(Figures3-1to3-4)andKFM02A(Figures3-5to3-8),andalongthe2Ddepthmigratedprofilesalonglines1,2,4and5(Figures3-9to3-12).Averagevaluesfortheparametersthatdetermineeachinterpretedreflector(49)arepresentedinTable3-1andtheresultsarevisualizedinFigures3-13to3-19.AnaveragesetofparameterswerecomputedfortheVSPprofilesmeasured in the same borehole, generating in this way only one set of reflector parameter values for each borehole. The detailed list of parameters is provided in Appendix 1.

Figure 3-1. VSP profile from SP01 close to KFM01A, with interpreted reflector events.

Figure 3-2. VSP profile from SP02 close to KFM01A, with interpreted reflector events.

Figure 3-3. VSP profile from SP03 close to KFM01A, with interpreted reflector events.

65

Figure 3-4. VSP profile from SP05 close to KFM01A, with interpreted reflector events.

Figure 3-6. VSP profile from SP02 close to KFM02A, with interpreted reflector events.

Figure 3-5. VSP profile from SP01 close to KFM02A, with interpreted reflector events.

Figure 3-7. VSP profile from SP07 close to KFM02A, with interpreted reflector events.

66

Figure 3-8. VSP profile from SP08 close to KFM02A, with interpreted reflector events.

Figure 3-9. 2D depth migrated seismic profile along line 1, with interpreted reflector events.

67

Figure 3-10. 2D depth migrated seismic profile along line 2, with interpreted reflector events.

68

Figure 3-11. 2D depth migrated seismic profile along line 4, with interpreted reflector events.

69

Figure 3-12. 2D depth migrated seismic profile along line 5, with interpreted reflector events.

Table 3-1. Average parameters of the VSP reflectors interpreted from boreholes KFM01A and KFM02A. For the VSP profiles, Depth (m) is calculated from the top of the hole along an imaginary line along the hole. Similarly, for the 2D profiles, Distance (m) is calculated from the first receiver in the profile, along an imaginary line along the receiver line. The points at Depth (Distance) along these lines are the intersection points between the reflector (or its extension) and the line. The Depth (Distance) values are significant for reflectors physically intersecting the boreholes. The Dip (°) is calculated from horizontal. The Azimuth (°) is calculated from North. Dip Direction (°) is Azimuth +180° (modulo 360°). The coordinates of the Crux point are calculated with respect to a common origin (99000.0 33000.0 0.0). All coordinates are given in a reduced form. These translate to site coordinates by 6600000 on the Northing and 1600000 on the Easting. The Profile column specifies the 2D profile or borehole where the reflector parameters were estimated.

VSP reflector no.

Depth/ Distance (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Northing Crux (m)

Easting Crux (m)

Elev Crux (m)

Profile

1 1,150.0 40.0 213.0 33.0 98860.2 32909.2 198.7 P1_depth1 1,282.9 40.0 213.0 33.0 98860.2 32909.2 198.7 P4_depth1 385.0 35.5 171.6 351.6 98741.0 33038.5 367.6 P5_depth2 16,443.2 15.0 121.0 301.0 99106.7 32822.4 –773.2 P2_depth2 3,131.4 16.0 142.0 322.0 99192.1 32849.9 –850.3 P4_depth2 5,152.8 14.0 124.0 304.0 99105.2 32844.0 –754.8 P5_depth2 380.2 15.0 121.0 301.0 99106.7 32822.4 –773.2 KFM01A2 850.0 18.0 125.0 305.0 99128.5 32816.4 –689.7 KFM02A

70

VSP reflector no.

Depth/ Distance (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Northing Crux (m)

Easting Crux (m)

Elev Crux (m)

Profile

3 –10,238.0 35.1 150.8 330.8 99806.6 32549.4 –1,312.8 P2_depth3 4,042.7 35.1 150.8 330.8 99806.6 32549.4 –1,312.8 P5_depth3 1,005.8 35.1 150.8 330.8 99806.6 32549.4 –1,312.8 KFM01A3 2,100.0 35.1 150.8 330.8 99806.6 32549.4 –1,312.8 KFM02A4 –122.2 54.0 170.0 350.0 99447.4 32921.1 –330.1 KFM01A4 1,300.0 53.0 170.0 350.0 99457.8 32919.3 –350.3 KFM02A5 6,145.6 27.5 166.5 346.5 99298.4 32928.4 –589.6 P1_depth5 2,064.7 28.0 170.0 350.0 99357.6 32936.9 –682.9 P4_depth5 2,881.7 27.0 172.0 352.0 99334.3 32953.0 –662.6 P5_depth5 434.6 28.0 170.0 350.0 99357.6 32936.9 –682.9 KFM01A5 1,025.0 29.0 170.0 350.0 99363.4 32935.9 –665.7 KFM02A6 16,888.4 50.0 124.8 304.8 99715.3 31968.9 –1,053.0 P2_depth6 3,691.1 50.2 124.5 304.5 99672.6 32021.7 –987.4 P5_depth6 420.0 49.8 125.2 305.2 99679.3 32035.4 –998.3 KFM01A6 2,496.4 49.8 125.2 305.2 99679.3 32035.4 –998.3 KFM02A7 –33,172.7 25.0 160.0 340.0 99371.6 32864.8 –847.9 P1_depth7 –5,240.6 25.0 160.0 340.0 99371.6 32864.8 –847.9 P2_depth7 3,432.1 25.0 160.0 340.0 99371.6 32864.8 –847.9 P5_depth7 524.0 25.0 160.0 340.0 99371.6 32864.8 –847.9 KFM01A7 1,162.6 35.0 155.0 335.0 99414.9 32806.5 –653.9 KFM02A8 1,318.4 36.0 140.0 320.0 99406.0 32659.4 –729.4 P1_depth8 –17,180.4 36.0 140.0 320.0 99406.0 32659.4 –729.4 P2_depth8 1,300.8 36.0 140.0 320.0 99406.0 32659.4 –729.4 P4_depth8 2,867.5 36.0 140.0 320.0 99406.0 32659.4 –729.4 P5_depth8 70.5 36.0 140.0 320.0 99406.0 32659.4 –729.4 KFM01A8 1,290.0 36.0 140.0 320.0 99406.0 32659.4 –729.4 KFM02A9 –9,484.1 30.0 150.0 330.0 99526.0 32696.3 –1,052.0 P2_depth9 3,687.0 30.0 150.0 330.0 99526.0 32696.3 –1,052.0 P5_depth9 636.0 30.0 150.0 330.0 99526.0 32696.3 –1,052.0 KFM01A9 1,541.7 30.0 150.0 330.0 99526.0 32696.3 –1,052.0 KFM02A10 –322,206.0 12.9 134.8 314.8 99200.6 32798.0 –1,240.0 P2_depth10 7,427.0 12.9 134.8 314.8 99200.6 32798.0 –1,240.0 P5_depth10 940.4 23.0 135.0 315.0 99413.5 32586.5 –1,377.6 KFM01A10 1,366.6 23.0 134.8 314.8 99320.7 32677.2 –1,072.0 KFM02A11 2,010.0 52.0 199.0 19.0 99359.3 33123.7 –296.9 P4_depth11 1,800.0 53.0 198.0 18.0 99317.7 33103.2 –251.7 P5_depth11 775.0 53.1 198.9 18.9 99355.7 33121.7 –281.8 KFM01A11 1,060.0 54.0 198.0 18.0 99347.2 33112.8 –265.3 KFM02A12 –12,755.6 28.8 147.9 327.9 99562.6 32646.4 –1,207.6 P2_depth12 4,140.7 28.8 147.9 327.9 99562.6 32646.4 –1,207.6 P5_depth12 808.0 28.8 147.9 327.9 99562.6 32646.4 –1,207.6 KFM01A12 1,698.3 28.8 147.9 327.9 99562.6 32646.4 –1,207.6 KFM02A13 –14,105.1 29.0 147.0 327.0 99586.4 32619.2 –1,261.4 P2_depth13 4,267.8 29.0 147.0 327.0 99586.4 32619.2 –1,261.4 P5_depth13 865.0 29.0 147.0 327.0 99586.4 32619.2 –1,261.4 KFM01A13 1,771.0 29.0 147.0 327.0 99586.4 32619.2 –1,261.4 KFM02A14 –22,300.0 6.0 28.0 208.0 98834.1 32911.8 –1,787.6 P1_depth

71

VSP reflector no.

Depth/ Distance (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Northing Crux (m)

Easting Crux (m)

Elev Crux (m)

Profile

14 18,847.9 6.3 30.1 210.1 98816.3 32893.7 –1,933.9 P2_depth14 –24,340.9 6.3 30.1 210.1 98816.3 32893.7 –1,933.9 P4_depth14 –28,500.0 6.3 30.1 210.1 98816.3 32893.7 –1,933.9 P5_depth15 89,382.4 30.0 163.1 343.1 99758.9 32768.7 –1,374.2 P1_depth15 –6,475.7 30.0 163.0 343.0 99740.6 32773.6 –1,341.4 P2_depth15 3,330.0 30.0 163.0 343.0 99740.6 32773.6 –1,341.4 P4_depth15 4,322.2 30.0 163.0 343.0 99740.6 32773.6 –1,341.4 P5_depth15 1,161.9 30.0 163.0 343.0 99740.6 32773.6 –1,341.4 KFM01A15 1,920.1 31.0 161.0 341.0 99745.1 32743.5 –1,311.4 KFM02A16 –582.4 40.0 113.7 293.7 99519.2 31817.7 –1,537.4 P1_depth16 3,389.5 40.0 113.7 293.7 99519.2 31817.7 –1,537.4 P4_depth16 1,090.0 40.0 113.7 293.7 99519.2 31817.7 –1,537.4 KFM01A16 2,659.5 40.0 113.7 293.7 99519.2 31817.7 –1,537.4 KFM02A17 –2,686.3 42.1 134.3 314.3 100081.0 31892.1 –1,713.7 P1_depth17 3,392.6 42.1 134.3 314.3 100081.0 31892.1 –1,713.7 P4_depth17 1,551.0 42.1 134.3 314.3 100081.0 31892.1 –1,713.7 KFM01A18 152,120.0 32.0 162.7 342.7 99980.5 32694.1 –1,643.8 P1_depth18 3,881.9 31.8 162.7 342.7 99966.9 32698.4 –1,636.7 P4_depth18 4,883.5 30.0 162.7 342.7 99872.9 32727.7 –1,583.8 P5_depth18 1,518.9 31.0 162.7 342.7 99927.3 32710.7 –1,615.4 KFM01A18 2,320.7 31.0 162.7 342.7 99927.3 32710.7 –1,615.4 KFM02A19 110,795.0 40.8 162.9 342.9 100399.0 32570.2 –1,697.4 P1_depth19 3,662.4 40.8 162.9 342.9 100399.0 32570.2 –1,697.4 P4_depth19 1,940.4 40.8 162.9 342.9 100399.0 32570.2 –1,697.4 KFM01A20 850,420.0 37.7 161.9 341.9 100368.0 32552.8 –1,860.2 P1_depth20 4,049.7 39.0 161.9 341.9 100447.0 32526.9 –1,879.9 P4_depth20 2,032.5 39.0 161.9 341.9 100403.0 32541.2 –1,823.1 KFM01A21 1,285.4 63.0 216.3 36.3 98747.0 32814.3 159.9 P1_depth21 1,458.7 66.0 217.0 37.0 98721.4 32790.1 155.3 P4_depth21 233.5 64.2 216.3 36.3 98741.9 32810.5 155.1 P5_depth21 265.5 64.2 216.3 36.3 98741.9 32810.5 155.1 KFM01A21 –571.7 64.2 216.3 36.3 98741.9 32810.5 155.1 KFM02A22 1,344.4 63.1 216.6 36.6 98771.8 32830.3 144.1 P1_depth22 1,541.2 63.1 216.6 36.6 98771.8 32830.3 144.1 P4_depth22 297.0 63.1 216.6 36.6 98771.8 32830.3 144.1 P5_depth22 350.9 63.1 216.6 36.6 98771.8 32830.3 144.1 KFM01A22 –472.3 63.1 216.6 36.6 98771.8 32830.3 144.1 KFM02A23 675.6 70.0 233.8 53.8 98597.8 32450.9 247.1 KFM01A24 2,809.5 82.2 237.7 57.7 98548.2 32285.6 116.1 KFM01A24 –16,389.5 84.0 237.8 57.8 98532.9 32257.1 93.0 KFM02A25 6,515.0 47.3 169.9 349.9 99903.3 32839.8 –845.8 P1_depth25 –2,840.9 47.3 169.9 349.9 99903.3 32839.8 –845.8 P2_depth25 2,113.0 47.3 169.9 349.9 99903.3 32839.8 –845.8 P4_depth25 2,931.3 47.3 169.9 349.9 99903.3 32839.8 –845.8 P5_depth25 882.5 47.3 169.9 349.9 99903.3 32839.8 –845.8 KFM01A25 2,068.8 47.3 169.9 349.9 99903.3 32839.8 –845.8 KFM02A26 1,713.7 65.0 220.0 40.0 98912.0 32926.1 53.6 P1_depth

72

VSP reflector no.

Depth/ Distance (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Northing Crux (m)

Easting Crux (m)

Elev Crux (m)

Profile

26 2,141.3 65.0 220.0 40.0 98912.0 32926.1 53.6 P4_depth26 660.4 65.0 220.0 40.0 98912.0 32926.1 53.6 P5_depth26 1,086.9 65.0 220.0 40.0 98912.0 32926.1 53.6 KFM01A26 –73.0 65.0 220.0 40.0 98912.0 32926.1 53.6 KFM02A27 3,037.3 78.3 226.2 46.2 98826.3 32818.9 52.1 KFM01A27 –12,550.0 86.7 228.1 48.1 98779.6 32754.1 19.2 KFM02A28 2,955.1 69.2 229.3 49.3 98891.7 32874.1 63.0 P4_depth28 2,026.2 69.2 229.3 49.3 98891.7 32874.1 63.0 KFM01A28 –404.2 69.2 229.3 49.3 98891.7 32874.1 63.0 KFM02A29 2,163.2 56.0 223.0 43.0 99090.5 33084.4 –83.4 P1_depth29 1,430.5 56.0 223.0 43.0 99102.9 33096.0 –94.9 P5_depth29 1,520.0 58.9 221.7 41.7 99113.8 33101.3 –92.0 KFM01A29 533.2 58.9 221.7 41.7 99113.8 33101.3 –92.0 KFM02A30 2,305.3 63.0 223.3 43.3 99172.2 33162.4 –120.6 P1_depth30 1,670.0 63.0 223.0 43.0 99176.0 33164.1 –122.6 P5_depth30 1,961.0 61.3 223.3 43.3 99167.0 33157.5 –125.5 KFM01A30 750.0 58.0 223.0 43.0 99186.3 33173.7 –159.1 KFM02A31 2,400.0 62.0 220.0 40.0 99265.4 33222.7 –184.2 P1_depth31 3,255.0 66.0 220.0 40.0 99300.9 33252.5 –174.9 P4_depth31 1,985.0 62.0 220.0 40.0 99277.9 33233.2 –192.9 P5_depth31 2,360.0 64.2 220.1 40.1 99289.7 33243.6 –183.3 KFM01A31 1,251.6 63.0 220.1 40.1 99302.9 33254.8 –201.7 KFM02A32 3,490.9 65.0 216.0 36.0 99559.7 33406.6 –322.6 P4_depth32 2,640.0 66.0 216.0 36.0 99571.8 33415.4 –314.7 P5_depth32 2,970.0 65.0 216.0 36.0 99559.7 33406.6 –322.6 KFM01A32 2,169.2 66.0 216.0 36.0 99538.0 33390.9 –296.1 KFM02A33 1,396.9 35.0 203.6 23.6 99018.3 33008.0 –28.5 P1_depth33 376.3 35.0 203.6 23.6 99018.3 33008.0 –28.5 P2_depth33 1,172.9 35.0 203.6 23.6 99018.3 33008.0 –28.5 P5_depth33 151.9 35.0 203.6 23.6 99018.3 33008.0 –28.5 KFM01A33 185.0 35.0 203.6 23.6 99018.3 33008.0 –28.5 KFM02A34 327.1 35.5 197.8 17.8 99018.7 33006.0 –27.5 P2_depth34 1,281.0 35.5 197.8 17.8 99018.7 33006.0 –27.5 P4_depth34 1,186.6 35.5 197.8 17.8 99018.7 33006.0 –27.5 P5_depth34 205.0 35.5 197.8 17.8 99018.7 33006.0 –27.5 KFM02A35 210.0 42.5 180.0 0.0 98996.5 33000.0 3.9 P2_depth35 582.7 40.0 178.0 358.0 98988.8 33000.4 13.3 P4_depth35 1,142.4 42.5 178.0 358.0 98987.7 33000.4 13.5 P5_depth35 245.0 42.5 178.0 358.0 98987.7 33000.4 13.5 KFM02A36 1,184.7 66.0 108.9 288.9 98966.9 33096.7 45.5 P2_depth36 1,182.9 66.0 108.9 288.9 98966.9 33096.7 45.5 P5_depth36 275.9 66.0 108.9 288.9 98966.9 33096.7 45.5 KFM02A37 137.6 57.0 170.0 350.0 98957.1 33007.6 28.3 P2_depth37 1,127.3 57.0 170.0 350.0 98957.1 33007.6 28.3 P5_depth37 370.4 57.0 170.0 350.0 98957.1 33007.6 28.3 KFM02A38 3,338.6 48.5 120.0 300.0 99071.1 32876.9 –126.0 P2_depth38 1,462.3 48.5 122.7 302.7 99037.7 32941.1 –62.0 P5_depth

73

VSP reflector no.

Depth/ Distance (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Northing Crux (m)

Easting Crux (m)

Elev Crux (m)

Profile

38 452.3 48.5 122.7 302.7 99037.7 32941.1 –62.0 KFM02A39 1,932.9 28.0 140.5 320.5 99109.4 32909.8 –266.8 P5_depth39 482.1 26.7 140.5 320.5 99099.9 32917.6 –258.0 KFM02A40 220,236.0 5.8 132.3 312.3 99033.3 32963.4 –491.6 P2_depth40 6,725.8 5.8 132.0 312.0 99033.0 32963.3 –490.1 P5_depth40 369.1 6.2 132.3 312.3 99038.6 32957.6 –528.9 KFM01A40 575.2 6.2 132.3 312.3 99038.6 32957.6 –528.9 KFM02A41 –41,478.3 26.0 135.6 315.6 99130.1 32872.5 –373.5 P2_depth41 2,293.5 26.9 135.6 315.6 99138.3 32864.5 –382.2 P5_depth41 631.1 26.9 135.6 315.6 99138.3 32864.5 –382.2 KFM02A42 –29,256.1 24.6 136.9 316.9 99155.6 32854.3 –466.4 P2_depth42 2,586.2 24.6 136.9 316.9 99155.6 32854.3 –466.4 P5_depth42 699.2 24.6 136.9 316.9 99155.6 32854.3 –466.4 KFM02A43 118,385.0 23.3 161.9 341.9 99227.5 32925.7 –554.7 P1_depth43 2,741.9 23.3 161.9 341.9 99227.5 32925.7 –554.7 P5_depth43 220.8 23.3 161.9 341.9 99227.5 32925.7 –554.7 KFM01A43 789.1 23.3 161.9 341.9 99227.5 32925.7 –554.7 KFM02A44 1,627.8 61.6 200.2 20.2 99219.1 33080.5 –126.4 P1_depth44 1,511.6 61.6 200.2 20.2 99219.1 33080.5 –126.4 P5_depth44 624.8 61.6 200.2 20.2 99219.1 33080.5 –126.4 KFM01A44 936.0 61.6 200.2 20.2 99219.1 33080.5 –126.4 KFM02A45 1,312.7 40.0 170.2 350.2 99364.9 32936.8 –441.3 P4_depth45 2,110.8 40.0 170.2 350.2 99364.9 32936.8 –441.3 P5_depth45 981.9 40.0 170.2 350.2 99364.9 32936.8 –441.3 KFM02A46 421.4 82.0 170.5 350.5 98780.6 33036.9 31.1 P2_depth46 –4,089.6 81.8 170.0 350.0 98768.6 33040.8 34.1 KFM01A46 463.4 82.0 170.5 350.5 98780.6 33036.9 31.1 KFM02A47 –88,699.9 3.0 157.0 337.0 99021.8 32990.7 –452.0 P1_depth47 –22,256.7 3.0 157.0 337.0 99021.8 32990.7 –452.0 P2_depth47 8,782.9 2.8 157.0 337.0 99018.3 32992.2 –414.5 P4_depth47 9,888.0 3.0 157.0 337.0 99021.8 32990.7 –452.0 P5_depth47 399.6 3.0 157.0 337.0 99021.8 32990.7 –452.0 KFM01A47 478.7 3.0 157.0 337.0 99021.8 32990.7 –452.0 KFM02A48 2,472.0 31.7 204.7 24.7 99191.3 33088.0 –340.4 P1_depth48 2,206.1 31.7 204.7 24.7 99191.3 33088.0 –340.4 P5_depth48 586.8 31.7 204.7 24.7 99191.3 33088.0 –340.4 KFM01A48 595.2 31.7 204.7 24.7 99191.3 33088.0 –340.4 KFM02A49 1,896.3 59.0 205.0 25.0 99196.9 33091.8 –130.5 P4_depth49 1,517.0 59.0 205.0 25.0 99196.9 33091.8 –130.5 P5_depth49 797.4 59.0 205.0 25.0 99196.9 33091.8 –130.5 KFM01A49 808.0 59.0 205.0 25.0 99196.9 33091.8 –130.5 KFM02A

74

Figure 3-13. Interpreted 3D reflector elements from the VSP (KFM01A and KFM02A) and surface reflection seismic data (lines 1, 2, 4 and 5). 3D perspective view from south­east.

Figure 3-14. Same as Figure 3­13. 3D orthographic projection, view from south­east.

75

Figure 3-15. Same as Figure 3­13. 2D view from top.

Figure 3-16. Same as Figure 3­13. 2D more detailed view from top.

76

Figure 3-17. Interpreted 3D reflector elements from the VSP (KFM01A and KFM02A) and surface reflection seismic data (lines 1, 2, 4 and 5), together with migrated profiles from lines 2 and 4. View from north­west.

Figure 3-18. Interpreted 3D reflector elements from the VSP (KFM01A and KFM02A) and surface reflection seismic data (lines 1, 2, 4 and 5), together with migrated profiles from all four lines. View from north­east.

77

Reflectorelementsinferredtorepresentthesamereflectingsurfacearegroupedtoformonereflector surface, which is defined by a fitted interpolation of all reflector elements in a group. Figure 3-20 illustrates this process for reflector elements labelled 1.

Figure 3-19. Interpreted 3D reflector elements from the VSP (KFM01A and KFM02A) and surface reflection seismic data (lines 1, 2, 4 and 5), together with migrated profiles from all four lines. View from west.

Figure 3-20. Example of an interpolated reflector surface for the reflector 1. View from south.

78

3.1 Borehole KFM01A, and 2D profiles 1 and 4ReflectorelementsandinferredreflectorsurfacescomputedfromtheseelementsareshowninFigures3-21to3-24.ThepossiblecorrelationbetweenVSPreflectorsinterpretedfromboreholeKFM01A and the geological data in the borehole is presented in Table 3-2.

Table 3-2. VSP reflectors interpreted from borehole KFM01A, in relation to the single-hole interpretation of KFM01A /Carlsten et al. 2004a/.

Label Depth (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Comment

46 –4,089.6 81.8 170.0 350.04 –122.2 54.0 170.0 350.08 70.5 36.0 140.0 320.0 RU1. Cannot observe DZ1 in the VSP data, since measure-

ments were made from 100–774 m, DZ1 being too shallow.33 151.9 35.0 203.6 23.6 RU1, amphibolite vein.43 220.8 23.3 161.9 341.9 RU1, amphibolite vein.21 265.5 64.2 216.3 36.3 RU1, amphibolite vein, alteration (oxidised) zone.22 350.9 63.1 216.6 36.6 RU1, gabbro vein.40 369.1 6.2 132.3 312.3 RU12 380.2 15.0 121.0 301.0 RU1

47 399.6 3.0 157.0 337.0 RU1, alteration (oxidised) zone.6 420.0 49.8 125.2 305.2 RU1, sealed fractures. May correspond to DZ2.5 434.6 28.0 170.0 350.0 RU1. May represent reflector B4 (see text below associated

with Figure 3-35).7 524.0 25.0 160.0 340.0 RU3, granite to grandiorite transition, fine- to medium-grained.

48 586.8 31.7 204.7 24.7 RU1, pegmatite.44 624.8 61.6 200.2 20.2 RU1. May correspond to DZ3.9 636.0 30.0 150.0 330.0 RU1, pegmatite.

23 675.6 70.0 233.8 53.8 RU1. May correspond to DZ3.11 775.0 53.1 198.9 18.9 RU1, amphibolite / granite / pegmatite.49 797.4 59.0 205.0 25.0 RU112 808.0 28.8 147.9 327.9 lower RU1 / upper RU2, Granite, granodiorite and tonalite,

metamorphic, fine- to medium-grained.13 865.0 29.0 147.0 327.0 lower RU2 / upper RU1.25 882.5 47.3 169.9 349.9 RU1, pegmatite, steeply dipping, from NW.10 940.4 23.0 135.0 315.0 RU1, Granite, granodiorite and tonalite, metamorphic, fine-

to medium-grained.3 1,005.8 35.1 150.8 330.8 RU1

26 1,086.9 65.0 220.0 40.016 1,090.0 40.0 113.7 293.715 1,161.9 30.0 163.0 343.018 1,518.9 31.0 162.7 342.729 1,520.0 58.9 221.7 41.717 1,551.0 42.1 134.3 314.319 1,940.4 40.8 162.9 342.9 May be related to reflector A1 (see Figure 3-33).30 1,961.0 61.3 223.3 43.328 2,026.2 69.2 229.3 49.320 2,032.5 39.0 161.9 341.9 May represent reflector A1 (see Figure 3-33).31 2,360.0 64.2 220.1 40.124 2,809.5 82.2 237.7 57.7 May correspond to DZ2.32 2,970.0 65.0 216.0 36.027 3,037.3 78.3 226.2 46.2

79

Figure 3-21. Reflector elements interpreted from the VSP data acquired in borehole KFM01A and the 2D depth migrated profiles along lines 1 and 4. View from east.

Figure 3-22. Reflector surfaces computed from the reflector elements shown in Figure 3­21. View from east.

80

Figure 3-23. Same as Figure 3­21. View from south­east.

Figure 3-24. Reflector surfaces computed from the reflector elements shown in Figure 3­21. View from south­east.

81

3.2 Borehole KFM02A, and 2D profiles 2 and 5ReflectorelementsandinferredreflectorsurfacescomputedfromtheseelementsareshowninFigures3-27to3-28.ThepossiblecorrelationbetweenVSPreflectorsinterpretedfromboreholeKFM02A and the geological data in the borehole is presented in Table 3-3.

Figure 3-25. Reflector elements interpreted from the VSP data acquired in borehole KFM02A and the 2D depth migrated profiles along lines 2 and 5. View from east.

Figure 3-26. Reflector surfaces computed from the reflector elements shown in Figure 3­25. View from east.

82

Figure 3-28. Reflector surfaces computed from the reflector elements shown in Figure 3­25. View from south­east.

Figure 3-27. Same as Figure 3­25. View from south­east.

83

Table 3-3. VSP reflectors interpreted from borehole KFM02A, in relation to the single-hole interpretation of KFM02A /Carlsten et al. 2004b/.

Label Depth (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Comments

24 –16,389.5 84.0 237.8 57.827 –12,550.0 86.7 228.1 48.121 –571.7 64.2 216.3 36.322 –472.3 63.1 216.6 36.628 –404.2 69.2 229.3 49.326 –73.0 65.0 220.0 40.0 RU1, Cannot observe DZ1 and DZ2 from the VSP data, because

measurements were made from 100–774 m, these zones being too shallow.

33 185.0 35.0 203.6 23.6 RU3, amphibolite vein, DZ3 (lower boundary of the 170–185 m alteration zone).

34 205.0 35.5 197.8 17.8 RU3, amphibolite vein, DZ3 (lower boundary of DZ3 ?).35 245.0 42.5 178.0 358.0 RU2, alteration (oxidised) zone, May correspond to the strongly

altered vuggy metagranite.36 275.9 66.0 108.9 288.9 RU2, alteration (albitisation) zone, DZ4 = crushed zone, May corre-

spond to the strongly altered vuggy metagranite (see Figure 3-36).37 370.4 57.0 170.0 350.0 RU1, granite to granodiorite transition, fine to medium grained,

sealed fractures.38 452.3 48.5 122.7 302.7 RU1, sealed fracture, may correspond to DZ6.46 463.4 82.0 170.5 350.5 RU1, sealed fracture, may correspond to DZ6.47 478.7 3.0 157.0 337.0 RU1, amphibolite vein.39 482.1 26.7 140.5 320.5 RU1 / RU3 boundary, granite to granodiorite transition, fine- to

medium-grained. May represent reflector A2 (see Figure 3-34).29 533.2 58.9 221.7 41.7 RU3, alteration (oxidised) zone.40 575.2 6.2 132.3 312.3 RU1, amphibolite (gabbro?) zone, 5 m thick.48 595.2 31.7 204.7 24.7 RU1 / RU3 boundary, granite to granodiorite transition, fine- to

medium-grained, Reflector B2.41 631.1 26.9 135.6 315.6 RU3 / RU1 boundary, granite to granodiorite transition, fine- to

medium-grained, alteration zone.42 699.2 24.6 136.9 316.9 RU1, sealed fracture.30 750.0 58.0 223.0 43.0 RU1, granite to granodiorite transition, fine- to medium-grained.43 789.1 23.3 161.9 341.9 RU1, granite to granodiorite transition, fine- to medium-grained.49 808.0 59.0 205.0 25.0 RU1, amphibolite vein.2 850.0 18.0 125.0 305.0 RU3, granite to granodiorite transition, fine- to medium-grained;

amphibolite vein.44 936.0 61.6 200.2 20.2 RU4, granite to granodiorite transition, fine- to medium-grained;

may correspond to DZ9.45 981.9 40.0 170.2 350.2 RU1 sealed fractures, alteration zone; may correspond to DZ10.5 1,025.0 29.0 170.0 350.0 May represent reflector B4 (see Figure 3-35).

11 1,060.0 54.0 198.0 18.07 1,162.6 35.0 155.0 335.0

31 1,251.6 63.0 220.1 40.18 1,290.0 36.0 140.0 320.04 1,300.0 53.0 170.0 350.0

10 1,366.6 23.0 134.8 314.89 1,541.7 30.0 150.0 330.0

12 1,698.3 28.8 147.9 327.913 1,771.0 29.0 147.0 327.015 1,920.1 31.0 161.0 341.025 2,068.8 47.3 169.9 349.9

84

Label Depth (m)

Dip (°)

Dip Dir (°)

Azimuth (°)

Comments

3 2,100.0 35.1 150.8 330.832 2,169.2 66.0 216.0 36.018 2,320.7 31.0 162.7 342.76 2,496.4 49.8 125.2 305.2

16 2,659.5 40.0 113.7 293.7

3.3 Combined interpretation of reflectors from boreholes KFM01A and KFM02A together with 2D profiles 1, 2, 4 and 5, and some geological features presented in geological model, stage 2.1

Thesub-setofgentlydipping(dip<37.5°)reflectorsispresentedinFigures3-29and3-30.Thesub-setofsteeplydipping(dip>60°)reflectorsispresentedinFigures3-31and3-32.Figures 3-33 to 3-37 present some of the inferred reflectors from the surface seismic data and informationinthegeologicalmodelstage2.1,inrelationtoreflectorsinterpretedfromtheVSPdatafromboreholesKFM1AandKFM02A.ReflectorsA1,A2andB4aretakenfrom/Juhlinetal.2002/andtheporousgranite(includingzoneZFMNE1189)fromthegeologicalmodelstage 2.1 /SKB 2006/.

ThereisaconfidentcorrelationofreflectorsA1andA2inthesurfacedatawithreflectors19–20andreflector39,respectively,intheVSPdata(Figures3-33and3-34).IfB4iscorrelatedwithreflector5interpretedfromtheVSPdata(Figure3-35)andifthecorrelationofVSPreflector5betweentheboreholesKFM01AandKFM02A,asproposedhere,iscorrect(seeTable3-1),it would mean that B4 will have to be reoriented from an intersect along KFM01A at c. 10 m, withanorientation050/28(strike/dip),toanintersectalongKFM01Aatc.430–470m,withanorientation080/28(strike/dip).AnalternativeinterpretationofreflectorB4,inwhichthereisnointersection in borehole KFM01A, was presented in /Juhlin and Bergman 2004/. Finally, zone ZFMNE1189insidetheporousgraniteintervalinboreholeKFM02AappearstocorrelatewithVSPreflector36(Figures3-36and3-37).Asteepdipforthisstructureisinferred.

Figure 3-29. Gently dipping (dip < 37.5°) interpolated surfaces. View from east.

85

Figure 3-31. Steeply dipping (dip > 60°) interpolated surfaces. View from top.

Figure 3-30. Gently dipping (dip < 37.5°) interpolated surfaces. View from north­east.

86

Figure 3-32. Steeply dipping (dip > 60°) interpolated surfaces. 3D view from top.

Figure 3-33. Reflector A1 interpreted from the 2D seismic data and correlation with reflectors 19 and 20 interpreted from the VSP data.

87

Figure 3-34. Reflector A2 interpreted from the 2D seismic data and correlation with reflector 39 interpreted from the VSP data.

Figure 3-35. Reflector B4 interpreted from the 2D seismic data and correlation with reflector 5 interpreted from the VSP data.

88

Figure 3-37. Detailed view of Figure 3­36.

Figure 3-36. Structure ZFMNE1189 (porous granite) and correlation with reflector 36 interpreted from the VSP data.

89

4 References

Carlsten S, Petersson J, Stephens M, Mattsson H, Gustafsson J, 2004a.Geologicalsingle-holeinterpretationofKFM01A,KFM01BandHFM01–03(DS1).Forsmarksiteinvestigation.SKBP-04-116,SvenskKärnbränslehanteringAB.

Carlsten S, Petersson J, Stephens M, Mattsson H, Gustafsson J, 2004b.Geologicalsingle-holeinterpretationofKFM02AandHFM04–05(DS2).Forsmarksiteinvestigation.SKBP-04-117,SvenskKärnbränslehanteringAB.

Cosma C, Enescu N, Balu L, 2005.VerticalseismicprofilingfromtheboreholesKFM01AandKFM02A.Forsmarksiteinvestigation.SKBP-05-168,SvenskKärnbränslehanteringAB.

Juhlin C, Bergman B, 2004.ReflectionseismicsintheForsmarkarea.UpdatedinterpretationofStage1(previousreportR-02-43).Updatedestimateofbedrocktopography(previousreportP-04-99).SKBP-04-158,SvenskKärnbränslehanteringAB.

Juhlin C, Bergman B, Palm H, 2002.ReflectionseismicstudiesintheForsmarkareaStage1.SKBR-02-43,SvenskKärnbränslehanteringAB.

SKB 2006. Site descriptive modelling. Forsmark stage 2.1. Feedback for completion of the site investigationincludinginputfromsafetyassessmentandrepositoryengineering.SKBR-06-38,SvenskKärnbränslehanteringAB.

Stephens M B, Fox A, La Pointe P, Simeonov A, Isaksson H, Hermanson J, Öhman J, 2007. Geology.Forsmarkmodellingstage2.2.SKBR-07-45,SvenskKärnbränslehanteringAB.

90

App

endi

x 1

Para

met

ers

of re

flect

or e

lem

ents

inte

rpre

ted

from

the

VSP

and

2D s

eism

ic d

ata

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

11,

150.

040

.021

3.0

33.0

2P

-Ref

lect

ion

9886

0.2

3290

9.2

198.

7P

1_de

pth

135

215

11,

282.

940

.021

3.0

33.0

2P

-Ref

lect

ion

9886

0.2

3290

9.2

198.

7P

4_de

pth

120

235

138

5.0

35.5

171.

6–8

.42

P-R

efle

ctio

n98

741.

033

038.

536

7.6

P5_

dept

h20

651

38.5

199.

219

.298

820.

532

952.

325

5.0

216

,443

.215

.012

1.0

301.

02

P-R

efle

ctio

n99

106.

732

822.

4–7

73.2

P2_

dept

h13

030

02

3,13

1.4

16.0

142.

032

2.0

2P

-Ref

lect

ion

9919

2.1

3284

9.9

–850

.3P

4_de

pth

7014

02

5,15

2.8

14.0

124.

030

4.0

2P

-Ref

lect

ion

9910

5.2

3284

4.0

–754

.8P

5_de

pth

230

320

238

0.2

15.0

121.

030

1.0

2P

-Ref

lect

ion

9910

6.7

3282

2.4

–773

.2K

FM01

A_0

11

492

380.

215

.012

1.0

301.

01

P-R

efle

ctio

n99

106.

732

822.

4–7

73.2

KFM

01A

_02

157

238

0.2

15.0

121.

030

1.0

1P

-Ref

lect

ion

9910

6.7

3282

2.4

–773

.2K

FM01

A_0

31

572

380.

215

.012

0.0

300.

01

P-R

efle

ctio

n99

103.

832

820.

2–7

74.7

KFM

01A

_05

157

285

0.0

18.0

125.

030

5.0

2P

-Ref

lect

ion

9912

8.5

3281

6.4

–689

.7K

FM02

A_0

11

136

285

0.0

18.0

125.

030

5.0

1P

-Ref

lect

ion

9912

8.5

3281

6.4

–689

.7K

FM02

A_0

71

136

285

0.0

20.0

120.

030

0.0

1P

-Ref

lect

ion

9912

1.9

3278

8.9

–669

.6K

FM02

A_0

81

136

216

.112

4.0

304.

099

120.

732

822.

5–7

52.2

3–1

0,23

8.0

35.1

150.

833

0.8

2P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

P2_

dept

h1

853

4,04

2.7

35.1

150.

833

0.8

1P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

P5_

dept

h28

038

43

1,00

5.0

35.0

150.

033

0.0

2P

-Ref

lect

ion

9980

1.2

3253

7.4

–1,3

21.3

KFM

01A

_01

113

63

1,00

5.8

35.1

150.

833

0.8

1P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

KFM

01A

_03

113

63

1,00

5.8

35.1

150.

833

0.8

1P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

KFM

01A

_05

113

63

2,10

0.0

35.1

150.

833

0.8

1P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

KFM

02A

_01

113

63

2,10

0.0

35.1

150.

833

0.8

2P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

KFM

02A

_02

113

63

2,10

0.0

35.1

150.

833

0.8

2P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

KFM

02A

_07

113

63

2,10

0.0

35.1

150.

833

0.8

2P

-Ref

lect

ion

9980

6.6

3254

9.4

–1,3

12.8

KFM

02A

_08

113

6

91

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

335

.115

0.7

330.

799

806.

032

548.

1–1

,313

.84

–122

.254

.017

0.0

350.

02

P-R

efle

ctio

n99

447.

432

921.

1–3

30.1

KFM

01A

_01

113

64

–122

.254

.017

0.0

350.

02

P-R

efle

ctio

n99

447.

432

921.

1–3

30.1

KFM

01A

_02

113

64

–122

.254

.017

0.0

350.

02

P-R

efle

ctio

n99

447.

432

921.

1–3

30.1

KFM

01A

_03

113

64

–122

.254

.017

0.0

350.

02

P-R

efle

ctio

n99

447.

432

921.

1–3

30.1

KFM

01A

_05

1E+0

90

41,

300.

053

.017

0.0

350.

02

P-R

efle

ctio

n99

457.

832

919.

3–3

50.3

KFM

02A

_01

113

64

1,30

0.0

54.0

170.

035

0.0

2P

-Ref

lect

ion

9944

7.4

3292

1.1

–330

.1K

FM02

A_0

21

136

41,

300.

054

.017

0.0

350.

01

P-R

efle

ctio

n99

447.

432

921.

1–3

30.1

KFM

02A

_07

113

64

1,30

0.0

52.0

170.

035

0.0

1P

-Ref

lect

ion

9946

7.5

3291

7.6

–370

.9K

FM02

A_0

81

136

453

.617

0.0

350.

099

451.

232

920.

4–3

37.7

56,

145.

627

.516

6.5

346.

52

P-R

efle

ctio

n99

298.

432

928.

4–5

89.6

P1_

dept

h22

538

05

2,06

4.7

28.0

170.

035

0.0

1P

-Ref

lect

ion

9935

7.6

3293

6.9

–682

.9P

4_de

pth

125

220

52,

881.

727

.017

2.0

352.

02

P-R

efle

ctio

n99

334.

332

953.

0–6

62.6

P5_

dept

h12

032

05

434.

628

.017

0.0

350.

01

P-R

efle

ctio

n99

357.

632

936.

9–6

82.9

KFM

01A

_01

158

543

4.6

28.0

170.

035

0.0

2P

-Ref

lect

ion

9935

7.6

3293

6.9

–682

.9K

FM01

A_0

21

595

434.

628

.017

0.0

350.

02

P-R

efle

ctio

n99

357.

632

936.

9–6

82.9

KFM

01A

_03

159

543

4.6

28.0

170.

035

0.0

2P

-Ref

lect

ion

9935

7.6

3293

6.9

–682

.9K

FM01

A_0

51

595

1,02

5.0

28.0

170.

035

0.0

1P

-Ref

lect

ion

9935

7.6

3293

6.9

–682

.9K

FM02

A_0

11

136

51,

025.

029

.017

0.0

350.

02

P-R

efle

ctio

n99

363.

432

935.

9–6

65.7

KFM

02A

_02

113

65

1,02

5.0

30.0

168.

034

8.0

2P

-Ref

lect

ion

9936

5.7

3292

2.3

–647

.5K

FM02

A_0

71

136

51,

025.

028

.017

0.0

350.

02

P-R

efle

ctio

n99

357.

632

936.

9–6

82.9

KFM

02A

_08

113

65

28.1

169.

734

9.7

9935

1.4

3293

6.2

–667

.86

16,8

88.4

50.0

124.

830

4.8

2P

-Ref

lect

ion

9971

5.3

3196

8.9

–1,0

53.0

P2_

dept

h21

532

56

3,69

1.1

50.2

124.

530

4.5

2P

-Ref

lect

ion

9967

2.6

3202

1.7

–987

.4P

5_de

pth

275

384

642

0.0

49.8

125.

230

5.2

1P

-Ref

lect

ion

9967

9.3

3203

5.4

–998

.3K

FM01

A_0

166

136

642

0.0

49.8

125.

230

5.2

2P

-Ref

lect

ion

9967

9.3

3203

5.4

–998

.3K

FM01

A_0

21

736

420.

049

.812

5.2

305.

22

P-R

efle

ctio

n99

679.

332

035.

4–9

98.3

KFM

01A

_03

173

642

0.0

49.8

125.

230

5.2

1P

-Ref

lect

ion

9967

9.3

3203

5.4

–998

.3K

FM01

A_0

51

73

92

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

62,

496.

449

.812

5.2

305.

21

P-R

efle

ctio

n99

679.

332

035.

4–9

98.3

KFM

02A

_01

113

66

2,49

6.4

49.8

125.

230

5.2

1P

-Ref

lect

ion

9967

9.3

3203

5.4

–998

.3K

FM02

A_0

21

136

62,

496.

449

.812

5.2

305.

21

P-R

efle

ctio

n99

679.

332

035.

4–9

98.3

KFM

02A

_08

113

66

49.8

125.

030

5.0

9968

2.6

3202

6.5

–1,0

03.2

7–3

3,17

2.7

25.0

160.

034

0.0

2P

-Ref

lect

ion

9937

1.6

3286

4.8

–847

.9P

1_de

pth

120

200

7–5

,240

.625

.016

0.0

340.

02

P-R

efle

ctio

n99

371.

632

864.

8–8

47.9

P2_

dept

h22

530

07

3,43

2.1

25.0

160.

034

0.0

2P

-Ref

lect

ion

9937

1.6

3286

4.8

–847

.9P

5_de

pth

145

260

752

4.0

25.0

160.

034

0.0

1P

-Ref

lect

ion

9937

1.6

3286

4.8

–847

.9K

FM01

A_0

21

857

524.

025

.016

0.0

340.

01

P-R

efle

ctio

n99

371.

632

864.

8–8

47.9

KFM

01A

_03

185

752

4.0

25.0

160.

034

0.0

2P

-Ref

lect

ion

9937

1.6

3286

4.8

–847

.9K

FM01

A_0

51

857

1,16

2.6

30.0

155.

033

5.0

1P

-Ref

lect

ion

9939

4.5

3281

6.1

–753

.9K

FM02

A_0

11

136

71,

162.

625

.015

5.0

335.

01

P-R

efle

ctio

n99

358.

632

832.

8–8

48.5

KFM

02A

_02

113

67

1,16

2.6

35.0

155.

033

5.0

2P

-Ref

lect

ion

9941

4.9

3280

6.5

–653

.9K

FM02

A_0

71

136

726

.715

8.3

338.

399

377.

532

849.

4–8

16.0

81,

318.

436

.014

0.0

320.

02

P-R

efle

ctio

n99

406.

032

659.

4–7

29.4

P1_

dept

h47

052

08

–17,

180.

436

.014

0.0

320.

02

P-R

efle

ctio

n99

406.

032

659.

4–7

29.4

P2_

dept

h90

280

81,

300.

836

.014

0.0

320.

02

P-R

efle

ctio

n99

406.

032

659.

4–7

29.4

P4_

dept

h15

024

08

2,86

7.5

36.0

140.

032

0.0

2P

-Ref

lect

ion

9940

6.0

3265

9.4

–729

.4P

5_de

pth

175

325

870

.536

.014

0.0

320.

02

P-R

efle

ctio

n99

406.

032

659.

4–7

29.4

KFM

01A

_01

113

68

70.0

40.0

130.

031

0.0

1P

-Ref

lect

ion

9943

9.0

3247

6.8

–814

.0K

FM01

A_0

21

136

81,

290.

036

.014

0.0

320.

01

P-R

efle

ctio

n99

406.

032

659.

4–7

29.4

KFM

02A

_01

113

68

1,29

0.0

36.0

140.

032

0.0

2P

-Ref

lect

ion

9940

6.0

3265

9.4

–729

.4K

FM02

A_0

21

136

81,

290.

036

.014

0.0

320.

01

P-R

efle

ctio

n99

406.

032

659.

4–7

29.4

KFM

02A

_07

113

68

1,29

0.0

36.0

140.

032

0.0

2P

-Ref

lect

ion

9940

6.0

3265

9.4

–729

.4K

FM02

A_0

81

136

836

.413

9.0

319.

099

409.

332

641.

1–7

37.9

9–9

,484

.130

.015

0.0

330.

02

P-R

efle

ctio

n99

526.

032

696.

3–1

,052

.0P

2_de

pth

3013

09

3,68

7.0

30.0

150.

033

0.0

2P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

P5_

dept

h23

534

09

636.

030

.015

0.0

330.

01

P-R

efle

ctio

n99

526.

032

696.

3–1

,052

.0K

FM01

A_0

11

114

93

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

963

6.0

30.0

150.

033

0.0

1P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

KFM

01A

_02

110

69

636.

030

.015

0.0

330.

01

P-R

efle

ctio

n99

526.

032

696.

3–1

,052

.0K

FM01

A_0

31

106

963

6.0

30.0

150.

033

0.0

1P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

KFM

01A

_05

110

69

1,54

1.7

30.0

150.

033

0.0

2P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

KFM

02A

_01

113

69

1,54

1.7

30.0

150.

033

0.0

2P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

KFM

02A

_02

113

69

1,54

1.7

30.0

150.

033

0.0

2P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

KFM

02A

_07

113

69

1,54

1.7

30.0

150.

033

0.0

2P

-Ref

lect

ion

9952

6.0

3269

6.3

–1,0

52.0

KFM

02A

_08

113

69

30.0

150.

033

0.0

9952

6.0

3269

6.3

–1,0

52.0

10–3

22,2

06.0

12.9

134.

831

4.8

2P

-Ref

lect

ion

9920

0.6

3279

8.0

–1,2

40.0

P2_

dept

h80

400

107,

427.

012

.913

4.8

314.

82

P-R

efle

ctio

n99

200.

632

798.

0–1

,240

.0P

5_de

pth

208

350

1094

0.4

23.0

135.

031

5.0

2P

-Ref

lect

ion

9941

3.5

3258

6.5

–1,3

77.6

KFM

01A

_01

113

110

940.

412

.913

4.8

314.

82

P-R

efle

ctio

n99

200.

632

798.

0–1

,240

.0K

FM01

A_0

21

131

1094

0.4

23.0

135.

031

5.0

1P

-Ref

lect

ion

9941

3.5

3258

6.5

–1,3

77.6

KFM

01A

_03

113

110

940.

423

.013

5.0

315.

02

P-R

efle

ctio

n99

413.

532

586.

5–1

,377

.6K

FM01

A_0

51

131

101,

366.

623

.013

5.0

315.

01

P-R

efle

ctio

n99

321.

732

678.

3–1

,071

.9K

FM02

A_0

21

136

101,

366.

623

.013

4.8

314.

82

P-R

efle

ctio

n99

320.

732

677.

2–1

,072

.0K

FM02

A_0

71

136

1019

.213

4.9

314.

999

310.

632

688.

6–1

,249

.611

2,01

0.0

52.0

199.

019

.02

P-R

efle

ctio

n99

359.

333

123.

7–2

96.9

P4_

dept

h33

039

011

1,80

0.0

53.0

198.

018

.02

P-R

efle

ctio

n99

317.

733

103.

2–2

51.7

P5_

dept

h26

035

011

775.

053

.119

8.9

18.9

2P

-Ref

lect

ion

9935

5.7

3312

1.7

–281

.8K

FM01

A_0

11

136

1177

5.0

53.1

198.

918

.91

P-R

efle

ctio

n99

355.

733

121.

7–2

81.8

KFM

01A

_02

113

511

775.

053

.119

8.9

18.9

1P

-Ref

lect

ion

9935

5.7

3312

1.7

–281

.8K

FM01

A_0

31

135

1177

5.0

53.1

198.

918

.92

P-R

efle

ctio

n99

355.

733

121.

7–2

81.8

KFM

01A

_05

113

511

1,06

0.0

54.0

198.

018

.01

P-R

efle

ctio

n99

347.

233

112.

8–2

65.3

KFM

02A

_01

113

611

1,06

3.4

54.0

198.

918

.92

P-R

efle

ctio

n99

348.

633

119.

2–2

67.6

KFM

02A

_02

113

611

1,06

3.4

53.1

198.

918

.92

P-R

efle

ctio

n99

355.

733

121.

7–2

81.8

KFM

02A

_07

113

611

1,06

0.0

54.0

198.

018

.02

P-R

efle

ctio

n99

347.

233

112.

8–2

65.3

KFM

02A

_08

113

611

53.3

198.

618

.699

349.

933

118.

0–2

75.6

94

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

12–1

2,75

5.6

28.8

147.

932

7.9

2P

-Ref

lect

ion

9956

2.6

3264

6.4

–1,2

07.6

P2_

dept

h90

250

124,

140.

728

.814

7.9

327.

92

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6P

5_de

pth

250

384

1280

8.0

28.8

147.

932

7.9

2P

-Ref

lect

ion

9956

2.6

3264

6.4

–1,2

07.6

KFM

01A

_01

113

612

808.

028

.814

7.9

327.

92

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6K

FM01

A_0

21

136

1280

8.0

28.8

147.

932

7.9

2P

-Ref

lect

ion

9956

2.6

3264

6.4

–1,2

07.6

KFM

01A

_03

113

612

808.

028

.814

7.9

327.

92

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6K

FM01

A_0

51

136

121,

698.

328

.814

7.9

327.

92

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6K

FM02

A_0

11

136

121,

698.

328

.814

7.9

327.

92

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6K

FM02

A_0

21

136

121,

698.

328

.814

7.9

327.

92

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6K

FM02

A_0

71

136

121,

698.

328

.814

7.9

327.

91

P-R

efle

ctio

n99

562.

632

646.

4–1

,207

.6K

FM02

A_0

81

136

1228

.814

7.9

327.

999

562.

632

646.

4–1

,207

.613

–14,

105.

129

.014

7.0

327.

02

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4P

2_de

pth

2528

013

4,26

7.8

29.0

147.

032

7.0

2P

-Ref

lect

ion

9958

6.4

3261

9.2

–1,2

61.4

P5_

dept

h25

038

413

865.

029

.014

7.0

327.

02

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4K

FM01

A_0

11

136

1386

5.0

29.0

147.

032

7.0

2P

-Ref

lect

ion

9958

6.4

3261

9.2

–1,2

61.4

KFM

01A

_02

113

613

865.

029

.014

7.0

327.

01

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4K

FM01

A_0

31

136

131,

771.

029

.014

7.0

327.

01

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4K

FM02

A_0

11

136

131,

771.

029

.014

7.0

327.

01

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4K

FM02

A_0

21

136

131,

771.

029

.014

7.0

327.

01

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4K

FM02

A_0

71

136

131,

771.

029

.014

7.0

327.

02

P-R

efle

ctio

n99

586.

432

619.

2–1

,261

.4K

FM02

A_0

81

136

1329

.014

7.0

327.

099

586.

432

619.

2–1

,261

.414

–22,

300.

06.

028

.020

8.0

2P

-Ref

lect

ion

9883

4.1

3291

1.8

–1,7

87.6

P1_

dept

h13

538

514

18,8

47.9

6.3

30.1

210.

12

P-R

efle

ctio

n98

816.

332

893.

7–1

,933

.9P

2_de

pth

140

340

14–2

4,34

0.9

6.3

30.1

210.

12

P-R

efle

ctio

n98

816.

332

893.

7–1

,933

.9P

4_de

pth

2518

514

–28,

500.

06.

330

.121

0.1

2P

-Ref

lect

ion

9881

6.3

3289

3.7

–1,9

33.9

P5_

dept

h50

170

146.

229

.520

9.5

9882

0.8

3289

8.2

–1,8

97.3

1589

,382

.430

.016

3.1

343.

12

P-R

efle

ctio

n99

758.

932

768.

7–1

,374

.2P

1_de

pth

200

370

15–6

,475

.730

.016

3.0

343.

02

P-R

efle

ctio

n99

740.

632

773.

6–1

,341

.4P

2_de

pth

185

95

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

153,

330.

030

.016

3.0

343.

02

P-R

efle

ctio

n99

740.

632

773.

6–1

,341

.4P

4_de

pth

185

400

154,

322.

230

.016

3.0

343.

02

P-R

efle

ctio

n99

740.

632

773.

6–1

,341

.4P

5_de

pth

205

384

151,

161.

930

.016

3.0

343.

01

P-R

efle

ctio

n99

740.

632

773.

6–1

,341

.4K

FM01

A_0

51

136

151,

920.

130

.016

1.0

341.

01

P-R

efle

ctio

n99

732.

732

747.

7–1

,342

.2K

FM02

A_0

11

136

151,

920.

130

.016

3.0

343.

02

P-R

efle

ctio

n99

740.

632

773.

6–1

,341

.4K

FM02

A_0

21

136

151,

920.

131

.016

1.0

341.

01

P-R

efle

ctio

n99

745.

132

743.

5–1

,311

.4K

FM02

A_0

71

136

151,

920.

132

.016

0.0

340.

01

P-R

efle

ctio

n99

752.

032

726.

3–1

,280

.7K

FM02

A_0

81

136

1530

.316

2.2

342.

299

743.

532

761.

6–1

,335

.116

–582

.440

.011

3.7

293.

72

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4P

1_de

pth

180

163,

389.

540

.011

3.7

293.

72

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4P

4_de

pth

390

472

161,

090.

040

.011

3.7

293.

72

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM01

A_0

11

136

161,

090.

040

.011

3.7

293.

72

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM01

A_0

21

136

161,

090.

040

.011

3.7

293.

72

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM01

A_0

31

136

161,

090.

040

.011

3.7

293.

72

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM01

A_0

51

136

162,

659.

540

.011

3.7

293.

71

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM02

A_0

11

136

162,

659.

540

.011

3.7

293.

71

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM02

A_0

21

136

162,

659.

540

.011

3.7

293.

71

P-R

efle

ctio

n99

519.

231

817.

7–1

,537

.4K

FM02

A_0

71

136

1640

.011

3.7

293.

799

519.

231

817.

7–1

,537

.417

–2,6

86.3

42.1

134.

331

4.3

2P

-Ref

lect

ion

1000

81.0

3189

2.1

–1,7

13.7

P1_

dept

h45

135

173,

392.

642

.113

4.3

314.

32

P-R

efle

ctio

n10

0081

.031

892.

1–1

,713

.7P

4_de

pth

270

472

171,

551.

042

.113

4.3

314.

32

P-R

efle

ctio

n10

0081

.031

892.

1–1

,713

.7K

FM01

A_0

11

136

171,

551.

042

.113

4.3

314.

32

P-R

efle

ctio

n10

0081

.031

892.

1–1

,713

.7K

FM01

A_0

21

136

171,

551.

042

.113

4.3

314.

32

P-R

efle

ctio

n10

0081

.031

892.

1–1

,713

.7K

FM01

A_0

31

136

171,

551.

042

.113

4.3

314.

32

P-R

efle

ctio

n10

0081

.031

892.

1–1

,713

.7K

FM01

A_0

51

136

1742

.113

4.3

314.

331

892.

1–1

713.

718

152,

120.

032

.016

2.7

342.

72

P-R

efle

ctio

n99

980.

532

694.

1–1

,643

.8P

1_de

pth

235

370

183,

881.

931

.816

2.7

342.

72

P-R

efle

ctio

n99

966.

932

698.

4–1

,636

.7P

4_de

pth

220

472

184,

883.

530

.016

2.7

342.

72

P-R

efle

ctio

n99

872.

932

727.

7–1

,583

.8P

5_de

pth

290

384

96

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

181,

518.

931

.016

2.7

342.

72

P-R

efle

ctio

n99

927.

332

710.

7–1

,615

.4K

FM01

A_0

11

136

181,

518.

931

.016

2.7

342.

71

P-R

efle

ctio

n99

927.

332

710.

7–1

,615

.4K

FM01

A_0

21

136

181,

518.

930

.016

2.7

342.

71

P-R

efle

ctio

n99

897.

632

720.

0–1

,628

.6K

FM01

A_0

31

136

181,

518.

931

.016

2.7

342.

71

P-R

efle

ctio

n99

927.

332

710.

7–1

,615

.4K

FM01

A_0

51

136

182,

320.

731

.016

2.7

342.

72

P-R

efle

ctio

n99

927.

332

710.

7–1

,615

.4K

FM02

A_0

21

136

182,

320.

731

.016

2.7

342.

71

P-R

efle

ctio

n99

927.

332

710.

7–1

,615

.4K

FM02

A_0

81

136

1831

.016

2.7

342.

799

928.

332

710.

4–1

,618

.819

110,

795.

040

.816

2.9

342.

92

P-R

efle

ctio

n10

0399

.032

570.

2–1

,697

.4P

1_de

pth

140

450

193,

662.

440

.816

2.9

342.

92

P-R

efle

ctio

n10

0399

.032

570.

2–1

,697

.4P

4_de

pth

274

472

191,

940.

440

.816

2.9

342.

92

P-R

efle

ctio

n10

0399

.032

570.

2–1

,697

.4K

FM01

A_0

11

136

191,

940.

440

.816

2.9

342.

92

P-R

efle

ctio

n10

0399

.032

570.

2–1

,697

.4K

FM01

A_0

21

136

191,

940.

440

.816

2.9

342.

91

P-R

efle

ctio

n10

0399

.032

570.

2–1

,697

.4K

FM01

A_0

31

136

191,

940.

440

.816

2.9

342.

91

P-R

efle

ctio

n10

0399

.032

570.

2–1

,697

.4K

FM01

A_0

51

136

1940

.816

2.9

342.

910

0399

.032

570.

2–1

,697

.420

850,

420.

037

.716

1.9

341.

92

P-R

efle

ctio

n10

0368

.032

552.

8–1

,860

.2P

1_de

pth

5540

020

4,04

9.7

39.0

161.

934

1.9

2P

-Ref

lect

ion

1004

47.0

3252

6.9

–1,8

79.9

P4_

dept

h32

047

220

2,03

2.5

37.7

161.

934

1.9

2P

-Ref

lect

ion

1003

68.0

3255

2.8

–1,8

60.2

KFM

01A

_01

113

620

2,03

2.5

39.0

161.

934

1.9

1P

-Ref

lect

ion

1004

03.0

3254

1.2

–1,8

23.1

KFM

01A

_02

113

620

2,03

2.5

37.7

161.

934

1.9

2P

-Ref

lect

ion

1003

68.0

3255

2.8

–1,8

60.2

KFM

01A

_03

113

620

2,03

2.5

39.0

161.

934

1.9

1P

-Ref

lect

ion

1004

03.0

3254

1.2

–1,8

23.1

KFM

01A

_05

113

620

38.4

161.

934

1.9

1003

92.8

3254

4.6

–1,8

51.1

211,

285.

463

.021

6.3

36.3

2P

-Ref

lect

ion

9874

7.0

3281

4.3

159.

9P

1_de

pth

200

250

211,

458.

766

.021

7.0

37.0

2P

-Ref

lect

ion

9872

1.4

3279

0.1

155.

3P

4_de

pth

160

280

2123

3.5

64.2

216.

336

.32

P-R

efle

ctio

n98

741.

932

810.

515

5.1

P5_

dept

h1

4521

265.

564

.221

6.3

36.3

1P

-Ref

lect

ion

9874

1.9

3281

0.5

155.

1K

FM01

A_0

21

3421

265.

564

.221

6.3

36.3

2P

-Ref

lect

ion

9874

1.9

3281

0.5

155.

1K

FM01

A_0

31

3421

–571

.764

.221

6.3

36.3

1P

-Ref

lect

ion

9874

1.9

3281

0.5

155.

1K

FM02

A_0

11

136

21–5

71.7

64.2

216.

336

.31

P-R

efle

ctio

n98

741.

932

810.

515

5.1

KFM

02A

_02

113

6

97

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

21–5

71.7

64.2

216.

336

.31

P-R

efle

ctio

n98

741.

932

810.

515

5.1

KFM

02A

_08

113

621

64.2

216.

436

.498

740.

032

808.

415

5.7

221,

344.

463

.121

6.6

36.6

1P

-Ref

lect

ion

9877

1.8

3283

0.3

144.

1P

1_de

pth

190

270

221,

541.

263

.121

6.6

36.6

1P

-Ref

lect

ion

9877

1.8

3283

0.3

144.

1P

4_de

pth

160

275

2229

7.0

63.1

216.

636

.62

P-R

efle

ctio

n98

771.

832

830.

314

4.1

P5_

dept

h15

5022

350.

963

.121

6.6

36.6

1P

-Ref

lect

ion

9877

1.8

3283

0.3

144.

1K

FM01

A_0

21

5122

350.

963

.121

6.6

36.6

1P

-Ref

lect

ion

9877

1.8

3283

0.3

144.

1K

FM01

A_0

31

5122

–472

.363

.121

6.6

36.6

2P

-Ref

lect

ion

9877

1.8

3283

0.3

144.

1K

FM02

A_0

11

136

2263

.121

6.6

36.6

3283

0.3

144.

123

675.

670

.023

3.8

53.8

2P

-Ref

lect

ion

9859

7.8

3245

0.9

247.

1K

FM01

A_0

11

116

2367

5.6

70.0

233.

853

.82

P-R

efle

ctio

n98

597.

832

450.

924

7.1

KFM

01A

_02

111

623

675.

670

.023

3.8

53.8

2P

-Ref

lect

ion

9859

7.8

3245

0.9

247.

1K

FM01

A_0

31

116

2367

5.6

70.0

233.

853

.81

P-S

, S-P

Con

vers

ion

9859

7.8

3245

0.9

247.

1K

FM01

A_0

51

108

2370

.023

3.8

53.8

9859

7.8

3245

0.9

247.

124

2,80

9.5

82.2

237.

757

.72

P-R

efle

ctio

n98

548.

232

285.

611

6.1

KFM

01A

_01

113

624

2,80

9.5

82.2

237.

757

.72

P-R

efle

ctio

n98

548.

232

285.

611

6.1

KFM

01A

_02

113

624

2,80

9.5

82.2

237.

757

.72

P-R

efle

ctio

n98

548.

232

285.

611

6.1

KFM

01A

_03

113

624

–16,

389.

584

.023

7.8

57.8

1P

-Ref

lect

ion

9853

2.9

3225

7.1

93.0

KFM

02A

_01

113

624

–15,

532.

283

.823

7.9

57.9

2P

-Ref

lect

ion

9853

6.7

3226

2.2

94.6

KFM

02A

_02

113

624

–11,

477.

082

.823

7.2

57.2

2P

-Ref

lect

ion

9853

1.1

3227

3.5

109.

9K

FM02

A_0

71

136

24–4

7,47

4.4

86.0

237.

957

.91

P-R

efle

ctio

n98

545.

932

275.

559

.7K

FM02

A_0

81

136

2483

.323

7.7

57.7

9854

1.6

3227

5.0

100.

825

6,51

5.0

47.3

169.

934

9.9

2P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8P

1_de

pth

450

570

25–2

,840

.947

.316

9.9

349.

92

P-R

efle

ctio

n99

903.

332

839.

8–8

45.8

P2_

dept

h15

180

252,

113.

047

.316

9.9

349.

92

P-R

efle

ctio

n99

903.

332

839.

8–8

45.8

P4_

dept

h32

541

725

2,93

1.3

47.3

169.

934

9.9

1P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8P

5_de

pth

323

384

2588

2.5

47.3

169.

934

9.9

2P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8K

FM01

A_0

11

136

2588

2.5

47.3

169.

934

9.9

2P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8K

FM01

A_0

21

136

98

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

2588

2.5

47.3

169.

934

9.9

2P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8K

FM01

A_0

31

136

2588

2.5

47.3

169.

934

9.9

2P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8K

FM01

A_0

51

136

252,

068.

847

.316

9.9

349.

92

P-R

efle

ctio

n99

903.

332

839.

8–8

45.8

KFM

02A

_01

113

625

2,06

8.8

47.3

169.

934

9.9

2P

-Ref

lect

ion

9990

3.3

3283

9.8

–845

.8K

FM02

A_0

21

136

252,

068.

847

.316

9.9

349.

91

P-R

efle

ctio

n99

903.

332

839.

8–8

45.8

KFM

02A

_08

113

625

47.3

169.

934

9.9

9990

3.3

3283

9.8

–845

.826

1,71

3.7

65.0

220.

040

.01

P-R

efle

ctio

n98

912.

032

926.

153

.6P

1_de

pth

275

337

262,

141.

365

.022

0.0

40.0

1P

-Ref

lect

ion

9891

2.0

3292

6.1

53.6

P4_

dept

h25

037

126

660.

465

.022

0.0

40.0

2P

-Ref

lect

ion

9891

2.0

3292

6.1

53.6

P5_

dept

h20

115

261,

086.

965

.022

0.0

40.0

2P

-Ref

lect

ion

9891

2.0

3292

6.1

53.6

KFM

01A

_01

113

626

1,08

6.9

65.0

220.

040

.01

P-R

efle

ctio

n98

912.

032

926.

153

.6K

FM01

A_0

21

136

261,

086.

965

.022

0.0

40.0

1P

-Ref

lect

ion

9891

2.0

3292

6.1

53.6

KFM

01A

_03

113

626

1,08

6.9

65.0

220.

040

.02

P-R

efle

ctio

n98

912.

032

926.

153

.6K

FM01

A_0

51

136

26–7

3.0

65.0

220.

040

.01

P-R

efle

ctio

n98

912.

032

926.

153

.6K

FM02

A_0

21

136

26–7

3.0

65.0

220.

040

.01

P-S

, S-P

Con

vers

ion

9891

2.0

3292

6.1

53.6

KFM

02A

_07

169

2665

.022

0.0

40.0

9891

2.0

3292

6.1

53.6

273,

037.

378

.322

6.2

46.2

2P

-Ref

lect

ion

9882

6.3

3281

8.9

52.1

KFM

01A

_01

113

627

3,03

7.3

78.3

226.

246

.22

P-R

efle

ctio

n98

826.

332

818.

952

.1K

FM01

A_0

21

136

273,

037.

378

.322

6.2

46.2

2P

-Ref

lect

ion

9882

6.3

3281

8.9

52.1

KFM

01A

_03

113

627

3,03

7.3

78.3

226.

246

.22

P-R

efle

ctio

n98

826.

332

818.

952

.1K

FM01

A_0

51

136

27–1

2,55

0.0

86.7

228.

148

.11

P-R

efle

ctio

n98

779.

632

754.

119

.2K

FM02

A_0

11

136

2711

,152

.389

.422

8.4

48.4

1P

-Ref

lect

ion

9876

9.9

3274

0.8

3.6

KFM

02A

_02

113

627

–12,

550.

086

.722

8.1

48.1

1P

-S, S

-P C

onve

rsio

n98

779.

632

754.

119

.2K

FM02

A_0

71

136

274,

935.

189

.149

.122

9.1

1P

-Ref

lect

ion

9879

3.6

3276

1.4

–5.1

KFM

02A

_08

113

627

83.1

249.

869

.898

803.

532

785.

830

.728

2,95

5.1

69.2

229.

349

.32

P-R

efle

ctio

n98

891.

732

874.

163

.0P

4_de

pth

411

472

282,

026.

269

.222

9.3

49.3

2P

-Ref

lect

ion

9889

1.7

3287

4.1

63.0

KFM

01A

_01

113

628

2,02

6.2

69.2

229.

349

.32

P-R

efle

ctio

n98

891.

732

874.

163

.0K

FM01

A_0

21

136

99

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

282,

026.

269

.222

9.3

49.3

2P

-Ref

lect

ion

9889

1.7

3287

4.1

63.0

KFM

01A

_03

113

628

2,02

6.2

69.2

229.

349

.32

P-R

efle

ctio

n98

891.

732

874.

163

.0K

FM01

A_0

51

136

28–4

04.2

69.2

229.

349

.31

P-R

efle

ctio

n98

891.

732

874.

163

.0K

FM02

A_0

11

136

28–4

04.2

69.2

229.

349

.31

P-R

efle

ctio

n98

891.

732

874.

163

.0K

FM02

A_0

21

136

28–4

04.2

69.2

229.

349

.32

P-R

efle

ctio

n98

891.

732

874.

163

.0K

FM02

A_0

81

136

2869

.222

9.3

49.3

9889

1.7

3287

4.1

63.0

292,

163.

256

.022

3.0

43.0

2P

-Ref

lect

ion

9909

0.5

3308

4.4

–83.

4P

1_de

pth

340

414

291,

430.

556

.022

3.0

43.0

2P

-Ref

lect

ion

9910

2.9

3309

6.0

–94.

9P

5_de

pth

6015

029

1,52

0.0

58.9

221.

741

.72

P-R

efle

ctio

n99

113.

833

101.

3–9

2.0

KFM

01A

_01

113

629

1,52

0.0

58.9

221.

741

.72

P-R

efle

ctio

n99

113.

833

101.

3–9

2.0

KFM

01A

_02

113

629

1,52

0.0

58.9

221.

741

.72

P-R

efle

ctio

n99

113.

833

101.

3–9

2.0

KFM

01A

_05

113

629

533.

258

.922

1.7

41.7

2P

-S, S

-P C

onve

rsio

n99

113.

833

101.

3–9

2.0

KFM

02A

_01

187

2953

3.2

58.9

221.

741

.71

P-R

efle

ctio

n99

113.

833

101.

3–9

2.0

KFM

02A

_07

187

2953

3.2

58.9

221.

741

.72

P-R

efle

ctio

n99

113.

833

101.

3–9

2.0

KFM

02A

_08

187

2958

.122

2.0

42.0

9910

9.5

3309

8.5

–91.

330

2,30

5.3

63.0

223.

343

.32

P-R

efle

ctio

n99

172.

233

162.

4–1

20.6

P1_

dept

h38

545

530

1,67

0.0

63.0

223.

043

.02

P-R

efle

ctio

n99

176.

033

164.

1–1

22.6

P5_

dept

h55

160

301,

961.

061

.322

3.3

43.3

2P

-Ref

lect

ion

9916

7.0

3315

7.5

–125

.5K

FM01

A_0

11

136

301,

961.

061

.322

3.3

43.3

2P

-Ref

lect

ion

9916

7.0

3315

7.5

–125

.5K

FM01

A_0

21

136

301,

961.

061

.322

3.3

43.3

2P

-Ref

lect

ion

9916

7.0

3315

7.5

–125

.5K

FM01

A_0

31

136

301,

961.

061

.322

3.3

43.3

2P

-Ref

lect

ion

9916

7.0

3315

7.5

–125

.5K

FM01

A_0

51

136

3075

0.0

58.0

223.

043

.02

P-R

efle

ctio

n99

186.

333

173.

7–1

59.1

KFM

02A

_01

112

630

750.

058

.022

3.0

43.0

2P

-Ref

lect

ion

9918

6.3

3317

3.7

–159

.1K

FM02

A_0

21

126

3075

0.0

60.0

223.

043

.01

P-R

efle

ctio

n99

175.

033

163.

2–1

38.1

KFM

02A

_07

112

630

750.

058

.022

3.0

43.0

2P

-Ref

lect

ion

9918

6.3

3317

3.7

–159

.1K

FM02

A_0

81

126

3060

.522

3.2

43.2

9917

5.0

3316

4.1

–136

.131

2,40

0.0

62.0

220.

040

.02

P-R

efle

ctio

n99

265.

433

222.

7–1

84.2

P1_

dept

h40

047

531

3,25

5.0

66.0

220.

040

.02

P-R

efle

ctio

n99

300.

933

252.

5–1

74.9

P4_

dept

h39

047

2

100

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

311,

985.

062

.022

0.0

40.0

2P

-Ref

lect

ion

9927

7.9

3323

3.2

–192

.9P

5_de

pth

200

275

312,

360.

064

.222

0.1

40.1

2P

-Ref

lect

ion

9928

9.7

3324

3.6

–183

.3K

FM01

A_0

11

136

312,

360.

064

.222

0.1

40.1

2P

-Ref

lect

ion

9928

9.7

3324

3.6

–183

.3K

FM01

A_0

21

136

312,

360.

065

.522

0.1

40.1

2P

-Ref

lect

ion

9925

4.0

3321

3.6

–151

.2K

FM01

A_0

31

136

312,

360.

064

.222

0.1

40.1

2P

-Ref

lect

ion

9928

9.7

3324

3.6

–183

.3K

FM01

A_0

51

136

311,

251.

663

.022

0.1

40.1

2P

-Ref

lect

ion

9930

2.9

3325

4.8

–201

.7K

FM02

A_0

11

136

311,

251.

663

.022

0.1

40.1

2P

-Ref

lect

ion

9930

2.9

3325

4.8

–201

.7K

FM02

A_0

21

136

311,

251.

664

.222

0.1

40.1

1P

-Ref

lect

ion

9928

9.7

3324

3.6

–183

.3K

FM02

A_0

71

136

311,

251.

664

.222

0.1

40.1

1P

-Ref

lect

ion

9928

9.7

3324

3.6

–183

.3K

FM02

A_0

81

136

3163

.822

0.0

40.0

9928

6.6

3324

0.9

–183

.932

3,49

0.9

65.0

216.

036

.02

P-R

efle

ctio

n99

559.

733

406.

6–3

22.6

P4_

dept

h24

538

532

2,64

0.0

66.0

216.

036

.02

P-R

efle

ctio

n99

571.

833

415.

4–3

14.7

P5_

dept

h12

529

532

2,97

0.0

63.0

214.

034

.02

P-R

efle

ctio

n99

685.

433

462.

3–4

21.3

KFM

01A

_01

113

632

2,97

0.0

65.0

216.

036

.01

P-R

efle

ctio

n99

559.

733

406.

6–3

22.6

KFM

01A

_02

113

632

2,97

0.0

65.5

216.

036

.01

P-R

efle

ctio

n99

543.

433

394.

8–3

06.1

KFM

01A

_03

113

632

2,97

0.0

65.0

216.

036

.02

P-R

efle

ctio

n99

559.

733

406.

6–3

22.6

KFM

01A

_05

113

632

2,16

9.2

66.0

216.

036

.02

P-R

efle

ctio

n99

538.

033

390.

9–2

96.1

KFM

02A

_01

113

632

2,16

9.2

64.5

216.

036

.02

P-R

efle

ctio

n99

570.

233

414.

3–3

36.2

KFM

02A

_02

113

632

2,16

9.2

66.0

216.

036

.02

P-R

efle

ctio

n99

538.

033

390.

9–2

96.1

KFM

02A

_07

113

632

2,16

9.2

66.0

216.

036

.02

P-R

efle

ctio

n99

538.

033

390.

9–2

96.1

KFM

02A

_08

113

632

65.2

215.

835

.899

566.

433

407.

9–3

23.4

331,

396.

935

.020

3.6

23.6

2P

-Ref

lect

ion

9901

8.3

3300

8.0

–28.

5P

1_de

pth

110

200

3337

6.3

35.0

203.

623

.62

P-R

efle

ctio

n99

018.

333

008.

0–2

8.5

P2_

dept

h11

524

033

1,17

2.9

35.0

203.

623

.62

P-R

efle

ctio

n99

018.

333

008.

0–2

8.5

P5_

dept

h10

016

533

151.

935

.020

3.6

23.6

1P

-Ref

lect

ion

9901

8.3

3300

8.0

–28.

5K

FM01

A_0

31

1133

185.

035

.020

3.6

23.6

1P

-Ref

lect

ion

9901

8.3

3300

8.0

–28.

5K

FM02

A_0

11

1833

185.

035

.020

3.6

23.6

2P

-Ref

lect

ion

9901

8.3

3300

8.0

–28.

5K

FM02

A_0

71

1833

185.

035

.020

3.6

23.6

1P

-Ref

lect

ion

9901

8.3

3300

8.0

–28.

5K

FM02

A_0

81

18

101

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

3335

.020

3.6

23.6

9901

8.3

3300

8.0

–28.

534

327.

135

.519

7.8

17.8

1P

-Ref

lect

ion

9901

8.7

3300

6.0

–27.

5P

2_de

pth

100

185

341,

281.

035

.519

7.8

17.8

1P

-Ref

lect

ion

9901

8.7

3300

6.0

–27.

5P

4_de

pth

100

150

341,

186.

635

.519

7.8

17.8

1P

-Ref

lect

ion

9901

8.7

3300

6.0

–27.

5P

5_de

pth

140

222

3420

5.0

35.5

197.

817

.81

P-R

efle

ctio

n99

018.

733

006.

0–2

7.5

KFM

02A

_01

122

3420

5.1

35.5

197.

817

.81

P-R

efle

ctio

n99

018.

733

006.

0–2

7.5

KFM

02A

_07

121

3420

5.1

35.5

197.

817

.82

P-R

efle

ctio

n99

018.

733

006.

0–2

7.5

KFM

02A

_08

122

3435

.519

7.8

17.8

9901

8.7

3300

6.0

–27.

535

210.

042

.518

0.0

0.0

1P

-Ref

lect

ion

9899

6.5

3300

0.0

3.9

P2_

dept

h11

518

035

582.

740

.017

8.0

358.

01

P-R

efle

ctio

n98

988.

833

000.

413

.3P

4_de

pth

5011

035

1,14

2.4

42.5

178.

035

8.0

1P

-Ref

lect

ion

9898

7.7

3300

0.4

13.5

P5_

dept

h16

022

035

245.

042

.517

8.0

358.

01

P-R

efle

ctio

n98

987.

733

000.

413

.5K

FM02

A_0

11

2935

245.

042

.517

8.0

358.

01

P-S

, S-P

Con

vers

ion

9898

7.7

3300

0.4

13.5

KFM

02A

_02

130

3524

5.0

42.5

178.

035

8.0

1P

-Ref

lect

ion

9898

7.7

3300

0.4

13.5

KFM

02A

_07

129

3524

5.0

42.5

178.

035

8.0

1P

-Ref

lect

ion

9898

7.7

3300

0.4

13.5

KFM

02A

_08

129

3542

.112

6.9

306.

998

989.

133

000.

312

.136

1,18

4.7

66.0

108.

928

8.9

2P

-Ref

lect

ion

9896

6.9

3309

6.7

45.5

P2_

dept

h17

320

736

1,18

2.9

66.0

108.

928

8.9

2P

-Ref

lect

ion

9896

6.9

3309

6.7

45.5

P5_

dept

h18

022

536

275.

966

.010

8.9

288.

92

P-R

efle

ctio

n98

966.

933

096.

745

.5K

FM02

A_0

11

3636

275.

966

.010

8.9

288.

92

P-R

efle

ctio

n98

966.

933

096.

745

.5K

FM02

A_0

21

3636

275.

966

.010

8.9

288.

92

P-S

, S-P

Con

vers

ion

9896

6.9

3309

6.7

45.5

KFM

02A

_07

136

3627

5.9

66.0

108.

928

8.9

2P

-S, S

-P C

onve

rsio

n98

966.

933

096.

745

.5K

FM02

A_0

81

3636

66.0

108.

928

8.9

9896

6.9

3309

6.7

45.5

3713

7.6

57.0

170.

035

0.0

2P

-Ref

lect

ion

9895

7.1

3300

7.6

28.3

P2_

dept

h10

817

137

1,12

7.3

57.0

170.

035

0.0

2P

-Ref

lect

ion

9895

7.1

3300

7.6

28.3

P5_

dept

h50

150

3737

0.4

57.0

170.

035

0.0

1P

-Ref

lect

ion

9895

7.1

3300

7.6

28.3

KFM

02A

_01

149

3737

0.4

57.0

170.

035

0.0

2P

-S, S

-P C

onve

rsio

n98

957.

133

007.

628

.3K

FM02

A_0

21

4937

370.

457

.017

0.0

350.

02

P-R

efle

ctio

n98

957.

133

007.

628

.3K

FM02

A_0

71

49

102

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

3737

0.4

57.0

170.

035

0.0

2P

-Ref

lect

ion

9895

7.1

3300

7.6

28.3

KFM

02A

_08

149

3757

.017

0.0

350.

098

957.

133

007.

628

.338

3,33

8.6

48.5

120.

030

0.0

2P

-Ref

lect

ion

9907

1.1

3287

6.9

–126

.0P

2_de

pth

118

538

1,46

2.3

48.5

122.

730

2.7

2P

-Ref

lect

ion

9903

7.7

3294

1.1

–62.

0P

5_de

pth

107

282

3845

2.3

48.5

122.

730

2.7

2P

-Ref

lect

ion

9903

7.7

3294

1.1

–62.

0K

FM02

A_0

11

7738

452.

348

.512

2.7

302.

71

P-R

efle

ctio

n99

037.

732

941.

1–6

2.0

KFM

02A

_02

171

3845

2.3

48.5

122.

730

2.7

1P

-Ref

lect

ion

9903

7.7

3294

1.1

–62.

0K

FM02

A_0

71

7138

452.

348

.512

2.7

302.

72

P-R

efle

ctio

n99

037.

732

941.

1–6

2.0

KFM

02A

_08

171

3848

.512

2.2

302.

299

043.

332

930.

4–7

2.6

391,

932.

928

.014

0.5

320.

52

P-R

efle

ctio

n99

109.

432

909.

8–2

66.8

P5_

dept

h14

030

039

482.

126

.714

0.5

320.

52

P-R

efle

ctio

n99

099.

932

917.

6–2

58.0

KFM

02A

_01

186

3948

2.1

26.7

140.

532

0.5

2P

-Ref

lect

ion

9909

9.9

3291

7.6

–258

.0K

FM02

A_0

21

8639

482.

126

.714

0.5

320.

51

P-R

efle

ctio

n99

099.

932

917.

6–2

58.0

KFM

02A

_07

186

3948

2.1

26.7

140.

532

0.5

1P

-Ref

lect

ion

9909

9.9

3291

7.6

–258

.0K

FM02

A_0

81

8639

26.9

140.

532

0.5

9910

1.8

3291

6.0

–259

.740

220,

236.

05.

813

2.3

312.

32

P-R

efle

ctio

n99

033.

332

963.

4–4

91.6

P2_

dept

h10

082

540

6,72

5.8

5.8

132.

031

2.0

2P

-Ref

lect

ion

9903

3.0

3296

3.3

–490

.1P

5_de

pth

138

440

369.

16.

213

2.3

312.

31

P-R

efle

ctio

n99

038.

632

957.

6–5

28.9

KFM

01A

_01

154

4036

9.1

6.2

132.

331

2.3

1P

-Ref

lect

ion

9903

8.6

3295

7.6

–528

.9K

FM01

A_0

31

5440

369.

16.

213

2.3

312.

31

P-R

efle

ctio

n99

038.

632

957.

6–5

28.9

KFM

01A

_05

152

4057

5.2

6.2

132.

331

2.3

1P

-Ref

lect

ion

9903

8.6

3295

7.6

–528

.9K

FM02

A_0

11

9640

575.

26.

213

2.3

312.

31

P-R

efle

ctio

n99

038.

632

957.

6–5

28.9

KFM

02A

_02

196

4057

5.2

6.2

132.

331

2.3

2P

-Ref

lect

ion

9903

8.6

3295

7.6

–528

.9K

FM02

A_0

71

9640

575.

26.

213

2.3

312.

32

P-R

efle

ctio

n99

038.

632

957.

6–5

28.9

KFM

02A

_08

196

406.

113

2.3

312.

399

037.

432

958.

9–5

20.4

41–4

1,47

8.3

26.0

135.

631

5.6

2P

-Ref

lect

ion

9913

0.1

3287

2.5

–373

.5P

2_de

pth

192

541

2,29

3.5

26.9

135.

631

5.6

2P

-Ref

lect

ion

9913

8.3

3286

4.5

–382

.2P

5_de

pth

234

384

4163

1.1

26.9

135.

631

5.6

2P

-Ref

lect

ion

9913

8.3

3286

4.5

–382

.2K

FM02

A_0

11

107

103

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

4163

1.1

26.9

135.

631

5.6

2P

-Ref

lect

ion

9913

8.3

3286

4.5

–382

.2K

FM02

A_0

21

107

4163

1.1

26.9

135.

631

5.6

2P

-Ref

lect

ion

9913

8.3

3286

4.5

–382

.2K

FM02

A_0

71

107

4163

1.1

26.9

135.

631

5.6

2P

-Ref

lect

ion

9913

8.3

3286

4.5

–382

.2K

FM02

A_0

81

107

4126

.713

5.6

315.

699

136.

932

865.

8–3

80.7

42–2

9,25

6.1

24.6

136.

931

6.9

2P

-Ref

lect

ion

9915

5.6

3285

4.3

–466

.4P

2_de

pth

192

542

2,58

6.2

24.6

136.

931

6.9

1P

-Ref

lect

ion

9915

5.6

3285

4.3

–466

.4P

5_de

pth

217

384

4269

9.2

24.6

136.

931

6.9

1P

-Ref

lect

ion

9915

5.6

3285

4.3

–466

.4K

FM02

A_0

11

120

4269

9.2

24.6

136.

931

6.9

2P

-Ref

lect

ion

9915

5.6

3285

4.3

–466

.4K

FM02

A_0

21

120

4269

9.2

24.6

136.

931

6.9

1P

-Ref

lect

ion

9915

5.6

3285

4.3

–466

.4K

FM02

A_0

71

120

4269

9.2

24.6

136.

931

6.9

1P

-Ref

lect

ion

9915

5.6

3285

4.3

–466

.4K

FM02

A_0

81

120

4224

.613

6.9

316.

999

155.

632

854.

3–4

66.4

4311

8,38

5.0

23.3

161.

934

1.9

2P

-Ref

lect

ion

9922

7.5

3292

5.7

–554

.7P

1_de

pth

110

043

2,74

1.9

23.3

161.

934

1.9

2P

-Ref

lect

ion

9922

7.5

3292

5.7

–554

.7P

5_de

pth

260

384

4322

0.8

23.3

161.

934

1.9

2P

-S, S

-P C

onve

rsio

n99

227.

532

925.

7–5

54.7

KFM

01A

_01

124

4322

0.8

23.3

161.

934

1.9

2P

-Ref

lect

ion

9922

7.5

3292

5.7

–554

.7K

FM01

A_0

21

136

4322

0.8

23.3

161.

934

1.9

1P

-Ref

lect

ion

9922

7.5

3292

5.7

–554

.7K

FM01

A_0

31

136

4322

0.8

23.3

161.

934

1.9

1P

-Ref

lect

ion

9922

7.5

3292

5.7

–554

.7K

FM01

A_0

51

8043

789.

123

.316

1.9

341.

92

P-R

efle

ctio

n99

227.

532

925.

7–5

54.7

KFM

02A

_01

113

643

789.

123

.316

1.9

341.

92

P-R

efle

ctio

n99

227.

532

925.

7–5

54.7

KFM

02A

_02

113

643

789.

123

.316

1.9

341.

92

P-R

efle

ctio

n99

227.

532

925.

7–5

54.7

KFM

02A

_07

113

643

789.

123

.316

1.9

341.

91

P-R

efle

ctio

n99

227.

532

925.

7–5

54.7

KFM

02A

_08

113

643

23.3

161.

934

1.9

9922

7.5

3292

5.7

–554

.744

1,62

7.8

61.6

200.

220

.22

P-R

efle

ctio

n99

219.

133

080.

5–1

26.4

P1_

dept

h21

431

644

1,51

1.6

61.6

200.

220

.22

P-R

efle

ctio

n99

219.

133

080.

5–1

26.4

P5_

dept

h13

729

544

624.

861

.620

0.2

20.2

2P

-Ref

lect

ion

9921

9.1

3308

0.5

–126

.4K

FM01

A_0

11

105

4462

4.8

61.6

200.

220

.21

P-R

efle

ctio

n99

219.

133

080.

5–1

26.4

KFM

01A

_02

110

544

624.

861

.620

0.2

20.2

2P

-Ref

lect

ion

9921

9.1

3308

0.5

–126

.4K

FM01

A_0

31

100

4462

4.8

61.6

200.

220

.21

P-R

efle

ctio

n99

219.

133

080.

5–1

26.4

KFM

01A

_05

110

0

104

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

4493

6.0

61.6

200.

220

.22

P-S

, S-P

Con

vers

ion

9921

9.1

3308

0.5

–126

.4K

FM02

A_0

11

136

4493

6.0

61.6

200.

220

.22

P-R

efle

ctio

n99

219.

133

080.

5–1

26.4

KFM

02A

_02

113

644

936.

061

.620

0.2

20.2

2P

-Ref

lect

ion

9921

9.1

3308

0.5

–126

.4K

FM02

A_0

71

136

4493

6.0

61.6

200.

220

.22

P-S

, S-P

Con

vers

ion

9921

9.1

3308

0.5

–126

.4K

FM02

A_0

81

136

4461

.620

0.2

20.2

9921

9.1

3308

0.5

–126

.445

1,31

2.7

40.0

170.

235

0.2

2P

-Ref

lect

ion

9936

4.9

3293

6.8

–441

.3P

4_de

pth

181

247

452,

110.

840

.017

0.2

350.

22

P-R

efle

ctio

n99

364.

932

936.

8–4

41.3

P5_

dept

h29

138

445

981.

940

.017

0.2

350.

22

P-R

efle

ctio

n99

364.

932

936.

8–4

41.3

KFM

02A

_01

113

645

981.

940

.017

0.2

350.

22

P-R

efle

ctio

n99

364.

932

936.

8–4

41.3

KFM

02A

_02

113

645

981.

940

.017

0.2

350.

22

P-R

efle

ctio

n99

364.

932

936.

8–4

41.3

KFM

02A

_07

113

645

981.

940

.017

0.2

350.

22

P-R

efle

ctio

n99

364.

932

936.

8–4

41.3

KFM

02A

_08

113

645

40.0

170.

235

0.2

9936

4.9

3293

6.8

–441

.346

421.

482

.017

0.5

350.

52

P-R

efle

ctio

n98

780.

633

036.

931

.1P

2_de

pth

112

186

46–4

,089

.681

.817

0.0

350.

01

P-R

efle

ctio

n98

768.

633

040.

834

.1K

FM01

A_0

11

136

46–4

,089

.682

.017

0.5

350.

52

P-R

efle

ctio

n98

780.

633

036.

931

.1K

FM01

A_0

21

136

46–4

,089

.682

.017

0.5

350.

52

P-R

efle

ctio

n98

780.

633

036.

931

.1K

FM01

A_0

31

136

46–4

,089

.682

.017

0.5

350.

52

P-R

efle

ctio

n98

780.

633

036.

931

.1K

FM01

A_0

51

136

4646

3.4

82.0

170.

535

0.5

2P

-Ref

lect

ion

9878

0.6

3303

6.9

31.1

KFM

02A

_01

173

4646

3.4

82.0

170.

535

0.5

2P

-Ref

lect

ion

9878

0.6

3303

6.9

31.1

KFM

02A

_07

173

4646

3.4

82.0

170.

535

0.5

2P

-Ref

lect

ion

9878

0.6

3303

6.9

31.1

KFM

02A

_08

173

4682

.017

0.4

350.

498

779.

133

037.

431

.547

–88,

699.

93.

015

7.0

337.

02

P-R

efle

ctio

n99

021.

832

990.

7–4

52.0

P1_

dept

h26

039

047

–22,

256.

73.

015

7.0

337.

02

P-R

efle

ctio

n99

021.

832

990.

7–4

52.0

P2_

dept

h10

020

047

8,78

2.9

2.8

157.

033

7.0

2P

-Ref

lect

ion

9901

8.3

3299

2.2

–414

.5P

4_de

pth

229

294

479,

888.

03.

015

7.0

337.

02

P-R

efle

ctio

n99

021.

832

990.

7–4

52.0

P5_

dept

h30

330

4739

9.6

3.0

157.

033

7.0

1P

-Ref

lect

ion

9902

1.8

3299

0.7

–452

.0K

FM01

A_0

11

5747

399.

63.

015

7.0

337.

01

P-R

efle

ctio

n99

021.

832

990.

7–4

52.0

KFM

01A

_02

157

4739

9.6

3.0

157.

033

7.0

1P

-Ref

lect

ion

9902

1.8

3299

0.7

–452

.0K

FM01

A_0

31

57

105

No.

Dep

thD

ip

(°)

Dip

Dir

)A

zim

uth

(°)

Visi

bilit

yTy

peN

orth

ing

Cru

xEa

stin

g C

rux

Elev

C

rux

Prof

ile1st

re

ceiv

erla

st

rece

iver

4739

9.6

3.0

157.

033

7.0

1P

-Ref

lect

ion

9902

1.8

3299

0.7

–452

.0K

FM01

A_0

51

5747

478.

73.

015

7.0

337.

01

P-R

efle

ctio

n99

021.

832

990.

7–4

52.0

KFM

02A

_01

176

4747

8.7

3.0

157.

033

7.0

2P

-Ref

lect

ion

9902

1.8

3299

0.7

–452

.0K

FM02

A_0

21

7647

478.

73.

015

7.0

337.

02

P-R

efle

ctio

n99

021.

832

990.

7–4

52.0

KFM

02A

_07

176

4747

8.7

3.0

157.

033

7.0

2P

-Ref

lect

ion

9902

1.8

3299

0.7

–452

.0K

FM02

A_0

81

7647

3.0

157.

033

7.0

9902

1.5

3299

0.8

–448

.948

2,47

2.0

31.7

204.

724

.72

P-R

efle

ctio

n99

191.

333

088.

0–3

40.4

P1_

dept

h24

936

348

2,20

6.1

31.7

204.

724

.72

P-R

efle

ctio

n99

191.

333

088.

0–3

40.4

P5_

dept

h13

727

348

586.

831

.720

4.7

24.7

1P

-Ref

lect

ion

9919

1.3

3308

8.0

–340

.4K

FM01

A_0

11

9848

586.

831

.720

4.7

24.7

1P

-Ref

lect

ion

9919

1.3

3308

8.0

–340

.4K

FM01

A_0

21

9848

586.

831

.720

4.7

24.7

2P

-Ref

lect

ion

9919

1.3

3308

8.0

–340

.4K

FM01

A_0

31

9848

586.

831

.720

4.7

24.7

1P

-Ref

lect

ion

9919

1.3

3308

8.0

–340

.4K

FM01

A_0

51

136

4859

5.2

31.7

204.

724

.72

P-R

efle

ctio

n99

191.

333

088.

0–3

40.4

KFM

02A

_01

110

048

595.

231

.720

4.7

24.7

2P

-Ref

lect

ion

9919

1.3

3308

8.0

–340

.4K

FM02

A_0

21

100

4859

5.2

31.7

204.

724

.72

P-R

efle

ctio

n99

191.

333

088.

0–3

40.4

KFM

02A

_07

110

048

595.

231

.720

4.7

24.7

1P

-Ref

lect

ion

9919

1.3

3308

8.0

–340

.4K

FM02

A_0

81

100

4831

.720

4.7

24.7

9919

1.3

3308

8.0

–340

.449

1,89

6.3

59.0

205.

025

.02

P-R

efle

ctio

n99

196.

933

091.

8–1

30.5

P4_

dept

h24

032

049

1,51

7.0

59.0

205.

025

.02

P-R

efle

ctio

n99

196.

933

091.

8–1

30.5

P5_

dept

h25

030

049

797.

459

.020

5.0

25.0

2P

-Ref

lect

ion

9919

6.9

3309

1.8

–130

.5K

FM01

A_0

11

136

4979

7.4

59.0

205.

025

.01

P-R

efle

ctio

n99

196.

933

091.

8–1

30.5

KFM

01A

_02

113

649

797.

459

.020

5.0

25.0

1P

-Ref

lect

ion

9919

6.9

3309

1.8

–130

.5K

FM01

A_0

31

136

4979

7.4

59.0

205.

025

.02

P-R

efle

ctio

n99

196.

933

091.

8–1

30.5

KFM

01A

_05

113

649

808.

059

.020

5.0

25.0

2P

-Ref

lect

ion

9919

6.9

3309

1.8

–130

.5K

FM02

A_0

11

136

4980

8.0

59.0

205.

025

.02

P-R

efle

ctio

n99

196.

933

091.

8–1

30.5

KFM

02A

_02

113

649

808.

059

.020

5.0

25.0

2P

-Ref

lect

ion

9919

6.9

3309

1.8

–130

.5K

FM02

A_0

71

136

4980

8.0

59.0

205.

025

.02

P-R

efle

ctio

n99

196.

933

091.

8–1

30.5

KFM

02A

_08

113

649

59.0

205.

025

.099

196.

933

091.

8–1

30.5

107

Refraction seismic data and bedrock velocity distribution at Forsmark

Johan Nissen, Malå Geoscience AB

Contents 1 Introduction 108

2 Results 110

2.1 Bedrock velocity distribution 110

3 References 111

108

1 Introduction

RefractionseismicprofilinghasbeenperformedintheForsmarkinvestigationareaduringseveralcampaigns(Table1-1).Inthepresentnote,wediscussonlydatacollectedduringthetimeperiod2004–2006,inconnectionwiththeSKBsiteinvestigationwork(Figure1-1).These data are described in /Toresson 2005, 2006/. The data from the construction of the nuclear powerplantandSFR(1970–1982)arepresentedin/IsakssonandKeisu2005/andthegeo-logicalimplicationsarediscussedin/SKB2005,p.184–185/.Thepurposeofthepresentnoteis to discuss the bedrock velocity distribution based on the results of the refraction seismics.

Thedatafrom2004–2006areallcollectedwithadigitalseismograph(ABEMTerralocMk6).The geophone separation was 5 metres except for some minor parts where the separation was 2–3metres.Table1-2liststhe43profiles.Thevalues“AssumedLength”and“ActualLength”in this table differ slightly, due to the fact that the geophone cable is not completely straight between the geophone positions.

Table 1-1. Summary of refraction seismic campaigns at Forsmark.

Time period Total length of profiles

1970–82 107.2 km2004–06 30.3 km

Figure 1-1. Overview of the Forsmark investigation area, showing the location of the 43 refraction seismic profiles listed in Table 1­2. The campaign was focussed on the target area around Bolundsfjärden, in the north­western part of the candidate area.

109

Table 1-2. 43 refraction seismic profiles completed during the 2004–2006 campaign. The column “Assumed length” is based upon the length of the geophone cable, and the column “Actual length” is based upon the coordinates of the geophone positions.

Idcode Start Date Assumed length (m)

Actual length (m)

LFM000825 2004-09-16 00:00 1,692.4 1,677.0LFM000826 2004-09-24 00:00 175.1 174.8LFM000827 2004-09-24 00:00 220.4 220.3LFM000828 2004-09-16 00:00 316.4 316.1LFM000829 2004-09-16 00:00 106.4 106.4LFM000830 2004-09-19 00:00 1,208.0 1,206.8LFM000831 2004-09-09 00:00 1,964.1 1,962.1LFM000832 2004-09-15 00:00 126.0 126.0LFM000833 2004-09-15 00:00 188.0 188.0LFM000834 2004-09-15 00:00 162.0 161.9LFM000835 2004-09-14 00:00 446.1 445.9LFM000836 2004-09-23 00:00 730.9 728.6LFM000889 2005-05-17 08:00 1,432.7 1,432.8LFM000890 2005-05-15 08:00 452.3 452.2LFM000891 2005-06-18 08:00 109.5 109.6LFM000892 2005-06-18 08:00 310.5 310.4LFM000893 2005-05-15 08:00 501.0 501.0LFM000894 2005-05-12 08:00 115.0 115.0LFM000895 2005-05-14 08:00 572.9 573.0LFM000896 2005-05-14 08:00 324.0 324.0LFM000897 2005-05-13 08:00 447.5 447.3LFM000898 2005-05-13 08:00 110.0 110.0LFM000899 2005-05-13 08:00 361.0 361.0LFM000900 2005-05-16 08:00 672.5 672.4LFM000901 2005-05-13 08:00 443.0 443.1LFM000902 2005-09-30 08:00 583.0 582.9LFM000903 2005-07-13 08:00 1,186.0 1,184.1LFM000904 2005-10-07 08:00 1,804.5 1,797.3LFM000905 2005-11-02 08:00 250.0 250.0LFM000906 2005-11-24 08:00 100.0 100.0LFM000907 2005-11-24 08:00 100.0 100.0LFM000908 2005-11-01 08:00 178.0 178.0LFM000915 2005-09-12 08:00 2,012.5 2,012.1LFM000916 2006-03-15 08:00 1,185.0 1,184.6LFM000917 2006-03-16 08:00 460.0 460.0LFM000918 2005-09-28 08:00 755.0 755.0LFM000919 2005-06-18 08:00 1,092.0 1,092.0LFM001013 2005-07-05 08:00 1,293.0 1,293.0LFM001014 2005-07-05 08:00 584.0 584.0LFM001015 2005-10-30 08:00 1,007.5 1,007.0LFM001016 2005-07-12 08:00 1,137.1 1,137.1LFM001017 2005-06-21 17:00 2,332.5 2,327.0LFM001018 2005-10-29 08:00 1,105.0 1,104.9

Total 30,352.7 30,314.3

110

2 Results

2.1 Bedrock velocity distributionInordertostudythedistributionofthebedrockvelocity,allvelocityestimationsfromthecampaigns2004–2006arecompiledinthehistograminFigure2-1.Table2-1presentsaclas-sification of velocity ranges observed in the present study and a comparison with the older data from1970–1982/IsakssonandKeisu2005/.Themostprobablebedrockvelocityintheareais5,400m/s(i.e.5,350–5,450m/s).Furthermore,alongmorethan88%ofthetotalmeasuredprofile length, the bedrock velocity exceeds 5,000 m/s.

TheolddatafromtheForsmarknuclearpowerplantandSFRshowasimilarvelocitydistribu-tion.Themost“typical”velocityis5,500m/s/IsakssonandKeisu2005/,althoughthenumberof profiles with high velocity is lower than in the present data set.

Figure 2-1. The distribution of measured velocities, based upon the 30.3 km profile data from 2004–2006, together with the accumulated distribution (right scale). Each velocity bin covers a range of 100 m/s.

Table 2-1. Classification of velocity ranges based upon the present data set (2004–2006) and from old data (1970–1982) taken from /Isaksson and Keisu 2005/.

Velocity range Amount of total profile length

1970–1982 2004–2006

High velocity ≥ 5,000 m/s 75% 88%Medium velocity 4,000–5,000 m/s 23% 9.5%Low velocity ≤ 4,000 m/s 2% 2.5%

0

5

10

15

20

25

2600 3000 3400 3800 4200 4600 5000 5400 5800

Rock velocity [m/s]

Perc

enta

ge

0

20

40

60

80

100

Acc

umul

ated

per

cent

age

111

3 References

Isaksson H, Keisu M, 2005.InterpretationofairbornegeophysicsandintegrationwithtopographyStage2(2002–2004).Anintegrationofbathymetry.topography.refrac-tionseismicsandairbornegeophysics.Forsmarksiteinvestigation.SKBP-04-282,SvenskKärnbränslehanteringAB.

SKB 2005.Preliminarysitedescription.Forsmarkarea−version1.2.SKBR-05-18,SvenskKärnbränslehanteringAB.

Toresson B, 2005. Seismic refraction survey 2004. Forsmark site investigation. SKB P-05-12, SvenskKärnbränslehanteringAB.

Toresson B, 2006.Seismicrefractionsurvey2005–2006.Forsmarksiteinvestigation.SKBP-06-138,SvenskKärnbränslehanteringAB.

113

Correlation between refraction seismic data, low magnetic lineaments and deformation zones (model stage 2.2)

Hans Isaksson, GeoVista AB

Contents1 Introduction 114

2 Methodology 114

3 Correlation of low velocity anomalies and low magnetic lineaments 116

4 Correlation of low velocity anomalies and modelled deformation zones (stage 2.2) 119

5 Discussion and conclusions 121

6 References 124

Appendix 1 Low rock velocity anomalies (LV), ≤ 4,000 m/s, from refraction seismics 2004–2006 and their relation to deformation zones and low magnetic lineaments 125

Appendix 2 Low rock velocity anomalies (LV), ≤ 4,000 m/s, from refraction seismics 1970–1982 and their relation to deformation zones and low magnetic lineaments 127

114

1 Introduction

This report addresses the correlation between refraction seismic data, low magnetic lineaments anddeformationzones(modelstage2.2).Thefollowingdatahavebeenusedinthestudy:

• RefractionseismicdataandbedrockvelocityfromtheconstructionofthenuclearpowerplantatForsmarkandSFRduring1970–1982/KeisuandIsaksson2004,IsakssonandKeisu2005/(Figure1-1).Thesedataarereferredheretoasolddata.

• Refractionseismicdataandbedrockvelocityfromthesiteinvestigationsduring2004–2006(Figure1-1).DatafromSicada_06_148,2006-06-30havebeenused.Thesedataarereferredto here as new data.

• Large-scaleairbornelowmagneticlineamentsthatarepresentinsidetheregionalmodelareaand airborne low magnetic lineaments that intersect the local model area. These lineaments were established in connection with the modelling work stage 2.1 /SKB 2006/.

• Lowmagneticlineamentsfromthedetailedgroundandmarinemagneticsurvey2006/Isakssonetal.2006/.

• Aninterim,stage2.22Dgroundmodelfordeformationzones,deliveredbyA.SimeonovandM.B.Stephenson2007-04-18.

• AsummaryoftherefractionseismicprofilingcompletedintheForsmarkinvestigationarea(seepaperbyNissenonp.107inthisreport).

2 Methodology

Previousworkhasshown/e.g.Sjögren1984/thatP-wavevelocitycorrelateswelltofractureintensityandhencecanbeusedasanindicatorofstrongbrittledeformation(Figure2-1).Basedon these considerations, a velocity magnitude of 4,000 m/s has been chosen as a threshold to identify low velocity anomalies in both the old and new data. For both sets of data, a buffer zone has been constructed that takes account of the uncertainty in the survey locations. The buffer zone is 5 and 10 m for the new and old data, respectively. Bearing in mind also the uncertainty inthepositionofthelowmagneticlineaments(Figure3-1)/IsakssonandKeisu2005,Isakssonet al. 2006/, these structures have been treated in a similar manner. Lineaments identified from fixed-wing airborne survey data, helicopter survey data and detailed ground magnetic survey datahavebeengivenabufferzoneof40,20and10m,respectively(Figure3-2).

Whenlowvelocityandlowmagneticlineamentbufferzonesintersect,thisisconsideredasamatch(Figure3-2),andthelineamentidentityhasbeennotedasanewattributeinthelowvelocitydataset(Appendices1and2attheendofthisreport).Theindividualidentityorthetype of low magnetic lineament that matches has not been documented in this work.

Acorrelationbetweenlowvelocityanomaliesanddeformationzones(siteinvestigationmodel,stage2.2)isregisteredwhenthelowvelocityanomalyoccursatorwithinthesurfaceinter-sectionoftheinferreddeformationzones(Figure4-1).Thewidthofthezoneatthegroundsurface is accounted for in the analysis. This match is also noted in the low velocity data set as anewattribute(Appendices1and2).

115

Figure 1-1. Overview of refraction seismic profiles in the Forsmark area. Old surveys from 1970–1982 are shown with blue lines and the site investigation surveys from 2004–2006 in red. Green sections of the latter profiles show parts where no bedrock velocity data were determined. The local model area is shown with a dashed magenta line and the Forsmark candidate area with a yellow dot­dashed line. One short profile from the older surveys is located at Forsmarks bruk, immediately south of the viewed area. © Lantmäteriet, Gävle 2007, Consent 1 2007/1092.

116

3 Correlation of low velocity anomalies and low magnetic lineaments

A comparison of the low velocity anomalies and the current interpretation of low magnetic lineaments(Figure3-1)yieldsatotalof97matchesoutof266possiblelowvelocitysections,(Figure3-2).Statisticaldatathataddressthecorrelationbetweenlowvelocityanomaliesandlow magnetic lineaments indicate that the results are very similar for both the old and new data (Table3-1).36%ofalllowvelocityanomalies(40%ofthelength)showacorrelationwithalowmagneticlineament,while64%(60%)shownocorrelation.Thenumberofcorrelationsinthe detailed, ground magnetic survey area is higher. This can be expected, bearing in mind the higher frequency of low magnetic lineaments. The low magnetic lineaments that correlate to low rock velocity anomalies are documented in Appendices 1 and 2 for the new and old data sets, respectively. Sections of low velocity within the detailed, magnetic ground survey area are marked with an asterisk in Appendices 1 and 2.

Figure 2-1. P­wave velocity for bedrock in relation to cracks (fractures) per m (blue line) and RQD value (black line) according to /Sjögren 1984/.

2000 3000 4000 5000 6000

P-wave velocity [m/s]

0

4

8

12

16

20

Cra

cks/

m

100

80

60

40

20

0R

QD

117

Figure 3-1. Low velocity determinations in the bedrock (≤ 4,000 m/s) from both old and new data and their relationship to low magnetic lineaments according to /Isaksson et al. 2006/. Thick, medium and thin black solid lines represent discordant magnetic minima with a length of > 3 km, 1–3 km and < 1 km, respectively. Thin dashed lines show magnetic minima connections of concordant nature. The local model area is shown with a dashed yellow line. © Lantmäteriet, Gävle 2007, Consent 1 2007/1092.

118

Figure 3-2. Intersections between low velocity anomalies and low magnetic lineaments (blue circles). These intersections take into account the buffer zones that address the uncertainty in the location of the anomalies and the lineaments. The grey corridors indicate buffer zones around the lineaments and the corresponding low magnetic lineaments, > 1 km in length, are outlined with a black solid line. The local model area is shown with a dashed black line. The detailed ground magnetic survey area is shown with a green solid line. As in Figure 3­1, the parts of the refraction seismic profiles that indicate a rock velocity > 4,000 m/s are shown as blue solid lines. © Lantmäteriet, Gävle 2007, Consent 1 2007/1092.

119

4 Correlation of low velocity anomalies and modelled deformation zones (stage 2.2)

A comparison of the low velocity anomalies and the current interpretation of deformation zones inmodelstage2.2(Figure4-1)yieldsatotalof87matchesoutof266possiblelowvelocitysections, Statistical data that address the correlation between low velocity anomalies and deformation zones are presented in Table 4-1. As for low magnetic lineaments, the percentage of no correlation is higher and 2 out of 3 low velocity anomalies do not match deformation zones. The low rock velocity anomalies that correlate to deformation zones are documented in Appendices 1 and 2.

The number of deformation zones inside the detailed ground magnetic survey area is somewhat higher than outside. For this reason, it can be expected that there should be a higher matching frequency inside the ground magnetic survey area and this is indeed valid for the new data. However,thestatisticalbasisisinsufficientandtheresultisonlyindicative.Sectionsoflow velocity within the detailed ground magnetic survey area are marked with an asterisk in Appendices 1 and 2.

Table 3-1. Statistical summary of correlation between low velocity anomalies (LV) and low magnetic lineaments in and around the local model area (MFM), and within the detailed, ground magnetic survey area (DGM).

Old data New data Total

Number of sections 1,322 494 * 1,816Profile length (m) 108,485 29,656 * 138,141Average velocity (m/s) 5,202 5,236 5,209Mode velocity, ca (m/s) 5,400–5,500 5,400–5,500 5,400–5,500LV, sections(% of total number)

195(15%)

71(14%)

266(15%)

LV, length (m)(% of total length)

3,189(2.9%)

746(2.5%)

3,935(2.8%)

LV, average velocity (m/s) 3,675 3,637 3,668LV-MFM match, no. of sections(% of LV, no. of sections)

72(37%)

25(35%)

97(36%)

LV-MFM match, length (m)(% of LV length)

1,287(40%)

294(39%)

1,581(40%)

LV-MFM within DGM, match, no. of sections(% of LV, no. of sections)

5 of 9(56%)

12 of 22(55%)

17 of 31(55%)

LV-MFM within DGM, match length (m)(% of LV length)

65 of 90(72%)

129 of 192(67%)

194 of 282(69%)

* Sections with no rock velocity determined are omitted.

120

Table 4-1. Statistical summary of correlation between low velocity indications (LV) and deformation zones (DZ) in and around the local model area, and within the detailed ground magnetic survey area (DGM).

Old data New data Total

LV-DZ match, no. of sections(% of LVi, no. of sections)

62(32%)

25(35%)

87(33%)

LVi-DZ match, length (m)(% of LVi length)

1,004(31%)

335(45%)

1,339(34%)

LV-DZ within DGM, match, no. of sections(% of LVi, no. of sections)

0 of 9(0%)

9 of 22(41%)

9 of 31(29%)

LV-DZ within DGM, match length (m)(% of LVi of length)

0 of 90(0%)

112 of 192(58%)

112 of 282(40%)

Figure 4-1. Low velocity anomalies in the bedrock (≤ 4,000 m/s) from both old and new data and their relationship to the ground intersection of inferred deformation zones in the site investigation model, stage 2.2 (thin black lines). The width of the deformation zones at the surface is taken into account in the analysis work. The local model area is shown with a dashed yellow line. The rock velocity in refraction seismic profiles is illustrated in the same manner as in Figure 3­1. © Lantmäteriet, Gävle 2007, Consent 1 2007/1092.

121

5 Discussion and conclusions

The analysis carried out here shows that there is moderate correlation between low velocity anomalies and low magnetic lineaments or modelled deformation zones. Typically, there are only one or a few low velocity anomalies along some of the intersecting profiles and several profiles lack anomalies. Both survey methodology and geological conditions need to be considered in the assessment of the relatively poor correlation. These two features are explored in more detail below.

Astudyoftherefractionseismicdataalongthewell-establishedSingödeformationzone(ZFMWNW0001)yieldssomeinterestingresults.Thec.200mwidesurfaceextensionoftheSingödeformationzoneisintersectedbyrefractionseismicsoveratotallengthofc.5,000m(Figure5-1).Thezonecanbeconsideredaswell-definedbythreetunnelsandbyconsiderabledrilling close to the seismic surveys. A comparison between the refraction seismic data and the intersection of the zone at the surface shows that only 11% of the total profile length within the zonehasavelocity≤4,000m/s(Table5-1).Anotherimportantdifferencetothesurroundingdata is that 46% of the total length is within the medium velocity interval compared to 17% overall.

Figure 5-1. Refraction seismic profiles and bedrock velocity magnitudes in the Singö deformation zone (ZFMWNW0001). Profiles outside the zone are shown as cyan lines. Blue dashed line shows the local model area. Background, GSD­ortofoto © Lantmäteriet, Gävle 2001, Permission M2001/5268.

122

TheinformationalongtheSingödeformationzoneindicatessomedifficultytoresolveindi-vidual narrow sections with low velocity in the refraction seismic data, since the given velocity is determined by an average velocity over longer sections composed of both normal and low velocity sections. Bearing in mind the high velocity for the intact bedrock in the Forsmark area, this also indicates that the average velocity for such a mixed section will show a bias towards ahighervalue.Interpretationtemplatesforrefractionseismicsurveys,completedduringtheconstructionofthenuclearpowerplantandSFR/IsakssonandKeisu2005,Figure5-7/,showthatvelocities≤4,000m/sarecharacterizedascrushedorfracturedbedrock,whilevelocities≥4,500m/sindicatemediumtogoodbedrockquality.Thus,theinterval4,000–4,500m/swouldpossibly indicate poor to medium bedrock quality. /Fagerlund 1977/ also noted that sections withinthisvelocityintervalpossiblycancontainnarrowfracturezones.Itisconcludedthattheadoptionofasinglevelocitythreshold,suchas≤4,000m/s,mayleadtoanunderestimationof matches between low velocity anomalies and inferred deformation zones or low magnetic lineaments.

Together with the bedrock velocity contrasts, the geophone spacing has a strong influence on the spatial resolution of the velocity determinations. For most of the refraction seismic surveys intheForsmarkarea,5mgeophonestationspacinghasbeenused.Intheseaarea,10mgeo-phonespacingisnotedinafewcasesfromtheolddataandinthe2004–2006survey,2mspacingwasonlyusedalongafewlines.Fromall1,816velocitysectionsavailable(Table3-1),onlythreesections(fromtheoldsurvey)weredeterminedasshorterthan5m.

Figure5-2showsanexampleinwhichtwocloseprofiles(between0and20mapart)havebeen carried out with 5 m and 2 m geophone spacing, respectively. The profiles both traverse theinferreddeformationzoneZFMENE0060AthatcorrespondstothelowmagneticlineamentMFM0060A0.The5mprofileLFM000825showsnoindicationoflowervelocities,whilethe 2 m profile LFM000906 yields one 6 m wide section at 3,000 m/s and one 29 m section at 4,060 m/s intersecting the deformation zone. Along the adjacent 5 m profile LFM000919, a 10mwidelowvelocityanomalycorrelateswellwiththedeformationzone.Itisconcludedthat,with a geophone spacing of 5 m, there is a strong possibility that low velocity zones narrower than 5 m will not be detected.

Low velocity anomalies in the bedrock may represent brittle deformation zones that contain an anomalousconcentrationofopenfracturesoroneormoreopencrushzones.However,thereisan inherent heterogeneity along such zones, where it concerns the frequency of open fractures, and the methodology is considerably less efficient where it concerns the detection of brittle deformation zones with sealed fractures and sealed fracture networks. This type of steeply dip-ping deformation zone is common at Forsmark /SKB 2006/, not least inside the north-western part of the candidate volume where the new refraction seismic data have been acquired. Many of the low magnetic lineaments may be related to a bedrock alteration around sealed fractures orevenotherrockcontrasts(e.g.GroupDdykes,pegmatiteandamphibolite)thatdonotresultin a sufficiently decreased P-wave velocity. Thus, the geological character of the Forsmark area is a key factor that helps to explain the absence of a strong correlation between low velocity anomalies, deformation zones and low magnetic lineaments.

Table 5-1. Classification of velocity ranges based on Table 3 in paper by Nissen on p. 107 in this report. A column has been added for data intersecting ZFMWNW0001 (Singö deforma-tion zone).

Velocity range Amount of total profile length1970–1982 2004–2006 Total ZFMWNW0001

High velocity ≥ 5,000 m/s 75% 88% 80% 43%Medium velocity 4,000–5,000 m/s 23% 9.5% 17% 46%Low velocity ≤ 4,000 m/s 2% 2.5% 2.8% 11%

123

HighlyfracturedbedrockclosetothesurfaceisoneofthedistinctivefeaturesoftheForsmarksite. A continuously increasing velocity downwards, which is related to a decrease of fracturing in this direction, may obscure the occurrences of sub-vertical low velocity zones in the deeper parts of the bedrock. Furthermore, care needs to be taken in the interpretation work concerning the influence of older, well-packed boulder clay that shows a higher P-wave velocity relative to the normal Quaternary cover.

The low velocity anomalies that do not match low magnetic lineaments and/or deformation zonesandthatareasyetnotexplainedmayrepresentunidentifiedfracturezones.However,they may also be related to local narrow depressions in the bedrock surface that correlate with fractured near-surface bedrock or are simply filled with Quaternary cover material. Most of the low velocity anomalies that are so far not explained occur outside the Forsmark candidate area and in areas where the coverage of magnetic data is poor. Thus, mismatches may be explained by lack of magnetic data. The correlation rate between low velocity anomalies and low magnetic lineaments would probably increase significantly if detailed ground magnetic data was available over larger areas.

Figure 5-2. Refraction seismic profiles LFM000825 (5 m geophone spacing) and LFM000906 (2 m geophone spacing) traversing the inferred deformation zone ZFMENE0060A (black dashed lines) and low magnetic lineament MFM0060A0 (black solid line) close to drill sites 1 and 5. Magnitude of bedrock velocity as in Figure 5­1. Roads and drill sites are shown with a red dashed line. The profile LFM000906 is 100 m long. Background, GSD­ortofoto © Lantmäteriet, Gävle 2001, Permission M2001/5268.

124

6 References

Fagerlund H, 1977. Rapport58/21överseismiskagrundundersökningarförSFR,Forsmark.StatensVattenfallsverk,arkivnummer:764445/0917.

Keisu M, Isaksson H, 2004. Acquisition of geological information from Forsmarks verket. InformationfromtheVattenfallarchive,Råcksta.SKBP-04-81,SvenskKärnbränslehanteringAB.

Isaksson H, Keisu M, 2005.Interpretationofairbornegeophysicsandintegrationwithtopo-graphy.Stage2(2002–2004).Anintegrationofbathymetry,topography,refractionseismicsandairbornegeophysics.SKBP-04-282,SvenskKärnbränslehanteringAB.

Isaksson H, Thunehed H, Pitkänen T, Keisu M, 2006. Detailed ground and marine magneticsurveyandlineamentinterpretationintheForsmarkarea–2006.SKBP-06-261,SvenskKärnbränslehanteringAB.

Sjögren B, 1984.Shallowrefractionseismics.ChapmanandHall.ISBN0412242109.

SKB, 2006. Site descriptive modelling Forsmark stage 2.1. Feedback for completion of the site investigationincludinginputfromsafetyassessmentandrepositoryengineering.SKBR-06-38,SvenskKärnbränslehanteringAB.

125

Appendix 1

Low rock velocity anomalies (LV), ≤ 4,000 m/s, from refraction seismics 2004–2006 and their relation to deformation zones and low magnetic lineaments.

Id code Rock velocity [m/s] Length [m] DZ_Correlation MFM_lineament correlation

LFM000825 3,000 10.00 NNW0404 MFM1196LFM000827 * 3,000 15.00 ENE2254 MFM2233G, MFM2254GLFM000830 3,200 5.00 none MFM0060LFM000831 * 3,800 10.00 NNE2008 MFM2008GLFM000831 4,000 10.00 ENE0062A MFM0126LFM000831 3,700 17.50 ZFM866 NoneLFM000831 3,700 10.00 none NoneLFM000836 * 3,000 7.50 ENE2320 NoneLFM000889 * 3,800 10.00 ENE2320 NoneLFM000889 3,950 15.00 none MFM1197LFM000890 3,000 5.00 none NoneLFM000892 3,600 5.00 none NoneLFM000892 3,000 5.00 none MFM1200,(MFM0159)LFM000892 3,850 15.00 none NoneLFM000892 3,600 5.00 none NoneLFM000893 3,300 5.00 ENE0061,ZFMA2 MFM0061LFM000895 3,900 15.00 none NoneLFM000895 3,300 15.00 none NoneLFM000895 2,900 5.00 none NoneLFM000895 3,900 45.00 NNW0100,ENE1208A MFM0100LFM000897 3,300 5.00 none NoneLFM000897 2,600 5.00 none NoneLFM000897 3,300 10.00 none NoneLFM000897 3,500 5.00 ENE2320 NoneLFM000897 3,800 10.00 none NoneLFM000898 3,800 40.00 ENE2325A NoneLFM000900 3,900 20.00 NW1200 MFM1200, MFM2254G, MFM0100LFM000900 3,800 10.00 NNW0100 MFM0100LFM000900 3,500 15.00 none NoneLFM000900 3,300 10.00 none NoneLFM000900 3,500 5.00 ENE0159A MFM0159LFM000901 3,000 5.00 ENE2325A NoneLFM000901 3,000 5.00 none NoneLFM000901 3,600 10.00 none MFM0159LFM000903 * 3,200 5.00 none MFM2261GLFM000904 4,000 10.00 ZFMA7 NoneLFM000904 2,900 5.00 ZFMA7 NoneLFM000904 3,700 10.00 ZFMA7 NoneLFM000904 4,000 5.00 none NoneLFM000904 3,300 5.00 none NoneLFM000904 3,000 10.00 none NoneLFM000904 3,900 5.00 none NoneLFM000906 2 3,000 6.00 none NoneLFM000908 2 3,600 8.00 none None

126

Id code Rock velocity [m/s] Length [m] DZ_Correlation MFM_lineament correlation

LFM000915 3,200 5.00 ZFM866 MFM0683LFM000915 3,500 10.00 none NoneLFM000915 * 3,300 5.00 none NoneLFM000915 * 2,800 9.00 none MFM2424GLFM000915 * 4,000 5.00 none NoneLFM000915 * 3,500 5.00 none NoneLFM000915 3,600 10.00 none NoneLFM000916 * 3,700 5.00 none NoneLFM000916 * 4,000 10.00 ZFM1203 NoneLFM000916 * 4,000 5.00 none NoneLFM000917 * 3,900 5.00 none MFM0168LFM000918 * 3,300 10.00 ENE2332 MFM2332G0LFM000918 * 3,500 5.00 none MFM2351G, MFM2354GLFM000919 * 3,900 10.00 ENE0060A MFM0060, MFM0060G0 and G1LFM000919 * 4,000 5.00 none NoneLFM001013 * 4,000 10.00 none MFM1198GLFM001013 * 3,800 5.00 none NoneLFM001014 3,800 15.00 none NoneLFM001015 3,700 37.90 none NoneLFM001015 4,000 10.00 none NoneLFM001016 * 3,900 20.00 ENE0060B MFM0060G1, (MFM2085G)LFM001016 * 4,000 20.00 ENE0060A MFM0060G0LFM001017 3,100 5.00 none NoneLFM001017 * 4,000 10.00 none MFM2445G, MFM2382GLFM001018 3,600 20.00 NW0017 MFM0017LFM001018 3,900 25.00 none NoneLFM001018 3,600 10.00 none None

* Shows LV within the detailed, magnetic ground survey area. The digit 2 after the profile identity stands for 2 m geophone spacing.

127

Appendix 2

Low rock velocity anomalies (LV), ≤ 4,000 m/s, from refraction seismics 1970–1982 and their relation to deformation zones and low magnetic lineaments.

Id code Rock velocity [m/s] Length [m] DZ_Correlation MFM_lineament correlation

LFK000150 3,500 15.83 none NoneLFK000147 4,000 23.21 none NoneLFK000058 3,500 5.13 none NoneLFK000059 3,000 5.36 none NoneLFK000060 3,000 5.35 none NoneLFK000061 4,000 7.29 none MFM1088LFK000062 3,900 11.76 none NoneLFK000065 4,000 9.20 none MFM1088LFK000066 4,000 13.69 none MFM1092, MFM1088LFK000068 4,000 10.12 none NoneLFK000070 4,000 10.00 none NoneLFK000071 3,900 14.64 none NoneLFK000072 3,800 12.25 none NoneLFK000001 3,000 5.00 none NoneLFK000002 3,800 11.00 none NoneLFK000002 3,000 5.00 none NoneLFK000003 3,000 3.00 NNW1204 NoneLFK000005 3,000 5.00 none NoneLFK000006 4,000 25.00 WNW1068 MFM1068LFK000006 3,500 10.00 none NoneLFK000007 4,000 19.99 none NoneLFK000008 4,000 9.00 none NoneLFK000009 3,000 5.00 none NoneLFK000010 3,000 6.00 NW0017 MFM0017LFK000010 3,500 11.00 none MFM1072LFK000011 3,000 5.00 NNW0100 NoneLFK000011 * 3,000 5.01 none NoneLFK000021 3,000 5.01 WNW1068,NNW0100 MFM0100, MFM1068LFK000022 3,600 18.00 NNW0100,ENE1208B MFM0100LFK000023 4,000 29.00 NNW0100,ENE0159A MFM0100, MFM0159LFK000030 4,000 14.00 none NoneLFK000030 4,000 10.00 none MFM0137LFK000030 3,000 5.01 none NoneLFK000030 4,000 6.00 none NoneLFK000030 3,600 30.00 WNW0001 MFM803LFK000030 4,000 20.00 none NoneLFK000030 3,500 10.01 none NoneLFK000030 3,500 39.00 none NoneLFK000046 3,000 2.99 none NoneLFK000047 3,400 8.00 none NoneLFK000044 4,000 23.99 none NoneLFK000044 4,000 13.00 none NoneLFK000044 3,300 13.00 WNW0001 NoneLFK000044 3,500 5.00 none NoneLFK000044 3,900 13.00 NW0002 MFM0804LFK000044 3,800 7.00 none None

128

Id code Rock velocity [m/s] Length [m] DZ_Correlation MFM_lineament correlation

LFK000045 3,700 10.00 none NoneLFK000045 4,000 19.00 none NoneLFK000045 3,000 16.00 WNW0001 NoneLFK000045 3,900 18.00 WNW0001 MFM0803LFK000045 4,000 30.01 WNW0001 NoneLFK000045 3,500 9.99 NW0002 MFM0804LFK000045 3,600 22.00 NW0002 NoneLFK000045 3,700 11.00 none NoneLFK000045 3,850 10.00 none NoneLFK000039 3,000 5.01 none NoneLFK000039 3,700 5.00 none NoneLFK000039 3,000 5.00 none NoneLFK000039 4,000 20.00 NW0017 MFM0017LFK000040 4,000 5.01 none NoneLFK000041 3,000 5.00 NW0017 MFM0017LFK000041 3,000 5.01 none NoneLFK000043 3,000 5.01 none MFM0015LFK000031 * 3,500 10.00 none NoneLFK000031 * 4,000 15.00 none MFM2126GLFK000031 * 4,000 20.00 none MFM2505GLFK000032 * 4,000 10.00 none NoneLFK000033 * 4,000 15.00 none MFM2165GLFK000034 * 4,000 5.00 none MFM2165GLFK000034 * 3,500 10.00 none MFM2310GLFK000037 3,800 20.00 none MFM0137LFK000037 3,800 20.00 WNW0001 NoneLFK000054 3,500 10.00 WNW0001 MFM803LFK000054 3,800 15.00 WNW0001 MFM803LFK000054 3,950 15.00 WNW0001 NoneLFK000055 3,700 10.00 WNW0001 MFM803LFK000055 3,000 6.00 WNW0001 MFM803LFK000055 3,700 4.00 WNW0001 MFM803LFK000055 3,000 5.00 WNW0001 NoneLFK000056 3,500 15.00 EW0137 MFM0137LFK000057 3,500 14.00 EW0137 MFM0137LFK000081 3,700 15.00 none NoneLFK000082 4,000 22.00 none NoneLFK000082 4,000 8.00 none NoneLFK000083 3,500 12.00 WNW0001 NoneLFK000083 3,600 15.00 none NoneLFK000083 3,200 12.00 none NoneLFK000083 3,400 15.01 NW0002,NW1127 MFM1127, MFM0804LFK000076 3,000 7.00 none MFM1093LFK000077 3,500 5.99 none NoneLFK000077 3,900 29.99 none MFM0137LFK000078 3,900 35.01 WNW0001 NoneLFK000078 3,600 10.01 NW0002 MFM0804LFK000078 4,000 19.00 none NoneLFK000078 3,000 5.00 none NoneLFK000079 3,700 16.00 WNW0001 None

129

Id code Rock velocity [m/s] Length [m] DZ_Correlation MFM_lineament correlation

LFK000079 3,000 16.00 WNW0001 NoneLFK000079 3,000 4.99 none NoneLFK000079 4,000 10.00 NW0002 MFM0804LFK000079 3,900 15.00 none NoneLFK000080 3,600 17.00 WNW0001 NoneLFK000080 3,600 5.00 none NoneLFK000080 3,300 19.00 none NoneLFK000080 3,400 10.00 none NoneLFK000103 3,800 8.00 WNW1068 MFM1068LFK000104 3,800 5.00 WNW1068 MFM1068, MFM0810LFK000105 4,000 10.00 WNW1068,ENE0810 MFM1068, MFM0810LFK000142 3,500 13.00 none MFM1093LFR000013 3,300 10.00 NW0001 MFM0803LFR000013 4,000 25.00 NW0001 NoneLFK000130 4,000 25.00 none MFM1093LFK000132 4,000 15.01 none NoneLFK000133 3,000 12.00 none MFM1093LFK000133 3,800 65.00 none MFM1092LFK000134 3,500 16.01 none NoneLFK000134 3,200 40.01 none MFM1092LFK000134 3,200 30.00 none MFM1092LFK000134 3,500 10.00 none NoneLFK000135 4,000 18.00 none MFM1093LFK000136 3,500 10.00 none NoneLFK000136 3,300 10.01 EW0137 MFM0137LFK000138 3,000 7.00 EW0137 MFM0137LFK000138 3,800 35.00 none NoneLFK000125 3,700 14.99 none NoneLFK000137 3,900 25.00 none MFM1092LFK000137 3,700 70.01 none MFM1092LFK000137 4,000 20.01 none MFM1092LFK000137 3,700 48.01 none NoneLFK000126 3,500 55.00 none MFM1092LFK000139 4,000 16.00 EW0137 MFM0137LFK000139 4,000 19.01 NW0001 NoneLFK000139 4,000 17.01 NW0001 MFM0803LFK000139 4,000 23.00 NW0001 NoneLFK000141 3,000 5.00 none MFM1088LFK000141 4,000 10.00 none NoneLFK000141 4,000 27.01 EW0137 MFM0137LFK000141 3,000 5.01 none NoneLFK000038 3,800 17.99 NW0001 NoneLFK000038 4,000 11.99 NW0001 MFM0803LFK000038 3,700 15.00 none NoneLFK000038 3,000 10.00 NW0002,NW1127 MFM1127, MFM0804LFK000038 4,000 12.00 none NoneLFK000038 3,000 10.00 none NoneLFK000053 3,500 5.00 NW0001 MFM803LFK000053 3,200 18.99 NW0001 NoneLFK000151 4,000 35.00 none None

130

Id code Rock velocity [m/s] Length [m] DZ_Correlation MFM_lineament correlation

LFR000013 3,800 15.00 none MFM1035LFR000014 3,800 15.00 none MFM1035LFR000014 3,500 10.01 NNE0869 NoneLFR000015 3,700 10.00 none MFM1035LFK000152 3,500 17.00 none NoneLFK000152 3,500 18.00 none NoneLFK000153 3,500 10.00 none NoneLFK000153 3,500 13.00 none NoneLFK000154 3,500 10.01 none NoneLFK000155 3,200 14.99 NW0003 NoneLFK000156 3,900 26.00 NW0004 MFM0014LFK000156 3,500 10.00 NW0003 NoneLFK000042 3,000 5.00 NW0017 MFM0017LFK000042 3,000 5.00 none NoneLFK000042 3,500 10.99 none MFM0015LFR000018 3,800 16.61 none NoneLFR000018 3,800 26.27 none NoneLFR000019 4,000 21.52 none NoneLFR000019 3,700 22.79 none NoneLFR000019 3,500 14.26 none NoneLFR000024 4,000 34.51 none NoneLFR000021 3,700 13.62 none MFM0805LFR000021 3,600 12.96 none NoneLFR000022 4,000 27.75 none NoneLFR000020 3,300 15.65 none NoneLFR000020 4,000 31.05 none NoneLFR000020 4,000 15.78 none MFM0805LFR000020 4,000 32.86 none NoneLFR000025 4,000 18.18 NW0001 NoneLFR000025 2,000 78.32 NW0001 MFM0803LFR000025 3,200 24.63 NW0001 NoneLFR000025 4,000 26.30 none NoneLFR000025 3,600 16.54 none MFM0137B0LFR000026 3,900 23.01 none MFM1035LFR000026 3,800 25.71 NNE0869 NoneLFR000026 4,000 22.07 none NoneLFR000029 3,700 12.95 none NoneLFR000016 3,800 35.38 none NoneLFR000016 4,000 39.56 none MFM0137B0LFR000017 3,500 8.95 none NoneLFR000017 3,500 19.02 none NoneLFR000017 3,600 14.76 none NoneLFR000017 4,000 36.90 NW0805 MFM0805LFR000031 3,700 18.49 none NoneLFR000031 3,950 48.10 none NoneLFR000031 3,700 17.83 none NoneLFR000032 3,800 22.03 none NoneLFR000032 3,900 41.52 none NoneLFR000032 3,400 23.55 none None

* Shows LV within the detailed, magnetic ground survey area.

131

Interpretation of tomography inversion models for seismic refraction data along profile LFM001017 in Forsmark

Håkan Mattsson, GeoVista AB

Contents1 Introduction 132

2 Methodology and limitations − general considerations 133

3 Data input 134

4 Data processing 134

5 Results and interpretation 134

6 Discussion 143

7 References 144

132

1 Introduction

A test to use tomography inversion to model refraction seismic data along profile LFM001017 inForsmark(Figure1-1)wasperformedinordertoevaluatethepossibilityofextractingmoreinformation from the raw data. LFM001017 was chosen since several magnetic lineaments cross-cut the profile, without any indications of decreased P-wave velocity along these sub-sections in the traditional velocity model /Toresson 2006/. Thus, the tomography inversion could possibly help explain uncertainties in the geological model for some deformation zones in the area.

Figure 1-1. Location of the refraction seismic profile LFM001017. Labels denote section length coordinates in metres along the profile.

133

2 Methodology and limitations − general considerations

ThedataprocessingwasperformedwiththesoftwareRayfractTM, which uses inversion of first arrivaltraveltimedatatoestimatea2DvelocitymodelbasedonWavepathEikonalTraveltime(WET)tomography.TheEikonalequationsareobtainedfromtheelasticwaveequationsandprovide the travel time of the fastest arriving waves, which makes the Eikonal solvers especially suitable for refraction seismic data /Lecomte et al. 2000/. The technique assures valid travel time calculations, even in models with strong velocity contrasts, and the exact topography of the surface is also a part of the model.

Wavepropagationismodelledinaphysicallymeaningfulwaywithraypaths.RayfractTM han-dles several real life geological situations, such as sharp vertical or horizontal velocity gradients caused by e.g. brittle deformation zones. Quality control of velocity models is performed by direct graphical comparison of the measured travel-time data to those calculated from the model solution.Quantitativestatistics(e.g.meanresidualandmaximumerror)ofthefitofthemod-elled travel times to the measured travel times is also presented. 2D plots of the ray coverage as a function of depth along the profile is displayed for all models, which provides information on areas with low data coverage.

As for traditional data processing, the tomography inversion of refraction seismic data will fail if it encounters site conditions that conflict with the underlying assumptions of the method. One example is laterally continuous constant velocity layers for which the method inserts a velocity gradient when none is present. This may occur if the rock underlying the soft soil is perfectly solid, fresh crystalline rock. Other possible pitfalls are artefacts caused by low data coverage in combination with low smoothing, or artefacts caused by low ray coverage.

TofullybenefitfromthepossibilitiesoftomographyinversionbyRayfractTM, the data coverage shouldbehigh,preferablyatleast7–8shots/arrayof24geophones.Furthermore,thedifferentgeophone arrays should overlap with several geophone stations so as to avoid low data cover-age at the boundaries. The data in this investigation were collected for traditional processing techniquewith5–7shots/arrayandonlyoneornooverlappinggeophones.Themodelresolutionis therefore limited. Furthermore, the geophone distance is 5 m, which makes it very difficult to detectlowvelocityzonesnarrowerthan5–10mwithanykindofprocessingtechnique,assum-ing that the velocity contrast is 2,000 m/s. Thus, all low velocity zones narrower than c. 10 m, and those located close to the array boundaries, should be handled with extreme care.

SomedisadvantageswiththeWET-techniquearetheriskofvelocityartefactswhenusingalow degree of smoothing in combination with low data coverage. This is the case especially if there are strong topography variations. The reason for using minimum smoothing in this test was to try to extract as much information as possible from the data. Another drawback is that the gradient approach used by the software may indicate increasing velocity with depth, even though the bedrock is almost homogenous rock with presumably more or less constant P-wave velocity.

AdvantageswiththeWET-techniquearethatitisfast,automatedandallarrivaltimedataareused in the creation of the velocity model. The quality control is based on independent statistics suchasuncertaintynumbers,raycoverageplotsandmodelfitparameters.Inthetraditionalprocessing technique, the velocity model is the result of a combination of manual interpolation and personal judgements made by the interpreter. The interpreter may also have to decide if one shot is more “reliable” than another shot, even if the raw data quality is equally good for both shots. This makes the traditional velocity model less general compared with the tomography inversion model.

134

3 Data input

Firstarrivaltimes,layoutgeometriesandtopographydataweresuppliedbyBjörnToressonatImpaktGeofysik.

4 Data processing

DataprocessingwasperformedbyuseofthesoftwareRayfract™version2.64.Eachgeophonearraywasprocessedseparately.However,thearrays8–11(sectionlength768.5–1,194.5m)and14–15(sectionlength1,419.5–1,639.5m)werealsoprocessedascontinuouslines.Rawdatawere rearranged to fit the software specifications. A 2D velocity gradient model was constructed andafirstsmoothinversionwasperformed(10iterations),whichresultsina“stable”lowresolution model. Following this procedure, the data were re-processed starting with the 2D velocitygradientasstartingmodel,with40–100iterationsandminimalsmoothing.Minimalsmoothing gives high resolution but also increases the risk of artefacts in the resulting velocity model, especially in this test when the data coverage is close to the lower limits according to the software demands. The high and low smoothing models were subsequently interpreted with respect to velocity variations that indicate soil cover thickness, bedrock topography and areas or zones with decreased P-wave velocity possibly related to rock deformation.

Quality control of the resulting velocity models was performed by:

• Quantitativestatisticsofmodelfittorawdata(maxerror,meanerror,relativemisfit).

• Qualitativecomparisonbetweencalculatedandmeasuredtraveltimecurves.

• Inspectionofraycoverageplots.

5 Results and interpretation

ThevelocitymodelforprofileLFM001017basedonWETtomographyinversionispresentedinFigure5-1togetherwiththemodelbasedonthetraditionalprocessingtechnique.InFigure5-1theintersectionpointsbetweentheseismicprofileanddiscordantmagneticlineaments(possibledeformationzones)from/Isakssonetal.2006/areshownbytriangles.Lineamentslongerandshorter than 1,000 m are shown by larger and smaller triangles, respectively. Two geophone arrays(117–232mand2,217.5–2,232.5m)containtoofewshotsforafullyreliablemodelcalculation. Notwithstanding this limitation, these sections have also been processed. Possible anomalies along these two sections should be viewed with considerable care.

Meanerrors(meanresidualbetweenmeasuredandmodelledtraveltime)aregenerallybelow0.3ms,whichindicatesagoodmodelfittothemeasureddata.Geophonearrayswithanomalouslyhighmeanerrors(error>0.5ms)andpoormodelfitsoccurat430.5–530.5m,530.5–634.5m,883.5–998.5mand1,861.5–1,976.5m.However,modelfitstothedataalongthesefoursectionsarefair,andnomeanerrorsexceed0.8ms.Thecombinedinversionmodelforlines8,9,10and11(768.5–1,194.5)showsameanerrorof0.7ms(shot1ofline9wasdisregarded).Thecombinedinversionmodelforlines14–15(1,419.5–1,639.5m)showsameanerrorof0.41ms.Ingeneral,thereisagoodagreementbetweenthetomographyinversionmodels and the velocity model presented in /Toresson 2006/, but significant deviations between the two models do occur. The velocity intervals roughly correspond to the geological features indicated in the table below.

135

Velocity interval Geological feature

0–1,500 m/s soft soil or heavily crushed rock1,500–3,000 m/s moraine or fractured rock3,000–4,000 m/s fractured/weathered/altered rock (soil rock boundary at c. 3,000 m/s)> 4,000 m/s sound rock

The bedrock surface roughly corresponds to the magenta colour in the velocity model.

Inthefollowingtext,commentstothevelocitymodelforeachline(geophonearray)arepresented. The term “soil” refers to the Quaternary cover.

Array 1 (0–115 m)

Majordepressionofthebedrocksurfaceat30–40m,possiblyincombinationwithalowveloc-ityzone.Diffuseboundarybetweensoilcoverandbedrocksurfaceat0–30m,possiblyindicat-ing weathering and/or increased fracturing in the uppermost part of the bedrock, or another type of moraine.

Array 2 (117–232 m) (few shots, extra care)

Thin soil cover, high P-wave velocities in the bedrock.

Array 3 (233–348 m)

Majordepressionofthebedrocksurfaceatc.250–285m,whichpossiblyindicatesalowvelocityzone.Diffuseboundarybetweensoilcoverandbedrocksurfaceat340–350m,pos-sibly indicating weathering and/or increased fracturing in the uppermost part of the bedrock or anothertypeofmoraine(alsosupportedbythemodelforArray4).

Array 4 (348–430 m)

Diffuseboundarybetweensoilcoverandbedrocksurfaceat380–400m,possiblyindicatingweathering and/or increased fracturing in the uppermost part of the bedrock or another type of moraine.

Array 5 (430.5–530.5 m) (poor model fit)

Diffuseboundarybetweensoilcoverandbedrocksurfaceat420–450m,possiblyindicatingweathering and/or increased fracturing in the uppermost part of the bedrock. Low velocity zone inthebedrockindicatedatc.488–494m(highuncertainty).

Array 6 (530.5–634.5 m) (poor model fit)

Startingat510m(array5)andendingat540m(array6).Diffuseboundarybetweensoilcoverand bedrock surface, possibly indicating weathering and/or increased fracturing in the upper-mostpartofthebedrockoranothertypeofmoraine.Highuncertaintyduetopoormodelfitbutbedrock surface shows good correlation with traditional model.

136

Array 7 (646.5–761.5 m)

Along the entire section the model indicates thin or “normal” soil cover with unusually high velocities. The reason could be fractured rock close to the ground surface or soil cover thickness of1–2mwithanomalouslyhighP-wavevelocity(1,500–3,000m/s),“solidmoraine”,oreffectsrelated to the fact that the profile cross-cuts a wetland or lake.

Array 8 (768.5–883.5 m)

Along the entire section, the model indicates thin or “normal” soil cover with unusually high velocities. The reason could be fractured rock close to the ground surface, a soil cover thickness of1–2mwithanomalouslyhighP-wavevelocity(1,500–3,000m/s),i.e.“solidmoraine”,oreffects related to the fact that the profile cross-cuts a wetland or lake. Sharp bedrock depression inthebedrockindicatedatc.838–848m(highuncertainty).

Array 9 (883.5–998.5 m) (poor model fit)

AreaofindicateddecreasedP-velocityinthesectionc.870–910mmayberelatedtoincreasedsoilcoverthickness.Increasedmeanerrorofmodelfitlowersthecertaintyofthepresentedmodel.

Array 10 (998.5–1,113.5 m)

Increasedsoilcoverthicknessalongmajorpartofthesection.Sharpbedrockdepressionindi-catedinthesectionc.1,000–1,010m.

Array 11 (1,113.5–1,194.5 m)

Bedrock depression in combination with either high soil or low rock velocities in the section 1,125–1,155m.Thedepressionisindicatedalongthesectionc.1,060–1,155m.

Arrays 8–11 combined processing (768.5–1,194.5 m)

The combined processing of these four arrays shows a similar result as the single-array process-ingapartfromonemajordeviation.Inthecombinedvelocitymodel,asignificantlowvelocityzoneisindicatedatc.1,020–1,035m.Inthesingle-arraymodel,thereisnosuchanomalyinthispartofthesection,butthereisabedrockdepressionindicatedatc.1,000–1,010m.Sincenolowvelocityzoneatc.1,020–1,035misindicatedinthemodelpresentedby/Toresson2006/,thesuggested low velocity zone is interpreted as an artefact caused by boundary condition problems in the combined model between the two geophone arrays at c. 1,000 m.

Array 12 (1,194.5–1,309 m)

Thesection1,160–1,290mischaracterizedbyaninferredsoilcoverthicknessof0.5–2mwithpartlyanomalouslyhighP-wavevelocity(1,500–3,000m/s).Thereasoncouldbefracturedrockclosetothegroundsurface,asoilcoverthicknessof1–2mwithanomalouslyhighP-wavevelocity, i.e. “solid moraine”, or effects related to the fact that the profile cross-cuts a wetland or lake.Bedrockdepressionandpossiblelowvelocityzoneatc.1,270–1,280m.

Array 13 (1,309–1,424 m)

Topographichighthatcoincideswithincreasedsoilcoverthicknessofc.2–4m(normalsoilP-wavevelocities,c.500–1,500m/s).Indicationoflowvelocityzoneat1,310m.However,thisanomalyisclosetothearrayboundary,whichmakesitveryuncertain(mostlikelyartefact).

137

Array 14 (1,419.5–1,534.5 m)

Inferredsoilcoverthicknessof1–2mandgenerallyhighP-wavevelocitiesintheunderlyingbedrock.Lowvelocityzoneindicatedinthesectionc.1,507–1,515m.Decreasedvelocitiesinthebedrockalongtheintervalc.1,510–1,560m.

Array 15 (1,534.5–1,639.5 m)

Inferredsoilcoverthicknessof1–2m.Apartfromthesectionc.1,534–1,550m,therearefairlyhigh P-wave velocities in the underlying bedrock with a diffuse boundary between soil cover and bedrock surface. Possibly indicates weathering and/or increased fracturing in the uppermost part of the bedrock or another type of moraine.

Arrays 14–15 combined processing (1,419.5–1,639.5 m)

The combined velocity model fully supports the single-array models and their interpretations.

Array 16 (1,641.5–1,756.5 m)

Large variations in the bedrock surface topography. Decreased P-wave velocity present in the uppermost part of the bedrock along the entire profile, as well as a diffuse boundary between soil cover and bedrock surface. Possibly indicates weathering and/or increased fracturing in the uppermost part of the bedrock or another type of moraine.

Array 17 (1,861.5–1,976.5 m) (poor model fit)

The model indicates large variations in the bedrock topography along the major part of the pro-file.Possiblelowvelocityzonesinthebedrockareindicatedinthesectionsc.1,860–1,870mand1,942–1,953m(highuncertainty).Themodelfittothedataispoorbuttheaboveresultisalsosupportedbyamorelowresolutionmodelwithmaximumsmoothing(100iterations).

Array 18 (1,986.5–2,101.5 m)

Increasedsoilcoverthickness(c.3m)alongtheentireprofile.Fairlydistinctdepressionofthebedrocksurfaceinthesection2,058–2,073m.Lowvelocityzoneinthebedrockindicatedatc.2,093–2,100m,whichisattheboundaryofthearray.Thisrendersthemodelinterpretationas more uncertain.

Array 19 (2,101.5–2,216.5 m)

Increasedsoilcoverthickness(c.3–4m)alongtheentireprofileandlargevariationsofthebedrocktopography.Distinctdepressionofthebedrocksurfaceinthesection2,145–2,161m.Thiscoincideswithanear-surfacehighvelocityanomalythatismostlikelyartificial.However,asimilardepressionisindicatedinthehighsmoothingmodel(withoutanyartefact)andalsointhe model by /Toresson 2006/. The depression coincides with indicated decrease in the P-wave velocity in the underlying bedrock.

Array 20 (2,217.5–2,332.5 m) (few shots, extra care)

Increasedsoilcoverthickness(c.2–4m)alongtheentireprofileandlargevariationsofthebedrocktopography.Distinctdepressionofthebedrocksurfaceinthesection2,265–2,290m.Diffuse boundary between soil cover and bedrock surface, possibly indicating weathering and/or increased fracturing in the uppermost part of the bedrock.

138

139

140

141

142

Fig

ure

5-1.

Vel

ocity

mod

el b

ased

on

WET

inve

rsio

n to

mog

raph

y (to

p) a

nd tr

aditi

onal

pro

cess

ing

(bot

tom

) alo

ng th

e LF

M00

1017

refr

actio

n se

ism

ic p

rofil

e. S

ectio

ns a

long

ea

ch o

f the

pro

files

with

an

infe

rred

dec

reas

ed P

­wav

e ve

loci

ty a

re in

dica

ted

by th

e el

lipse

s. Th

e tr

iang

les

indi

cate

pos

ition

s w

here

dis

cord

ant m

agne

tic li

neam

ents

inte

rsec

t th

e pr

ofile

/Isa

ksso

n et

al.

2006

/. Li

neam

ents

long

er th

an 1

,000

m a

re s

how

n by

larg

er tr

iang

les.

The

sect

ion

c. 0

–270

m w

as n

ot in

clud

ed in

the

inte

rpre

tatio

n of

mag

netic

da

ta.

143

6 Discussion

ThecomparisonbetweenthetraditionalmodelandtheWET-modelshowsageneralagreementregarding major features such as long wave length variations in bedrock surface topography, thegeneralvelocitydistributionandthefairlyshallowsoilcoverthickness.Ingeneral,thetraditionalmodelissmoothercomparedtotheWET-model.Thereareonlytwolowvelocityzonesindicatedinthetraditionalmodelalongtheentire2,350mlongprofile;theseoccuratc.35–40mandc.945–955m.ThefirstisindicatedalsointheWET-model,butthesecondoneisabsent.However,thisisoneofthefourlinesthatshowarelativelypoorWET-modelfit,which may explain the deviating result between the two models.

Therearemorethan30magneticlineamentsthatcross-cuttheprofile(thetrianglesinFigure5-1).Amajorityoftheselineamentscannotbecorrelatedtolowvelocityzonesinanyof the two seismic models. One reason could be that the 5 m geophone distance is too large to detectthenarrow,highlyfracturedcorepartofthepossibledeformationzones.Itisalsopossi-blethattheselineamentsrepresentsealedfracturezonesoralithologicalcontrast(e.g.GroupDgranitedykes,pegmatite,amphibolite)thatdonotresultindecreasedP-wavevelocity.TheseaspectsarediscussedinmoredetailinthepaperbyIsakssononp.113inthisreport.

Whenlookingatlineamentslongerthan1,000m(denotedbylargetrianglesinFigure5-1),theWET-modelindicateslowvelocityzonesin3oftotally8possiblecases.Thetraditionalmodeldoesnotindicateany.TherearealsoseverallowvelocityzonesindicatedintheWET-modelthatdonotcorrespondtoanylineaments.However,someoftheseanomaliesmayberelatedtoartefacts caused by the low number of shot points and the absence of overlapping geophones, whichisactuallydemandedbytheWETsoftware(seetheparagraphMethodabove).

Itisconcludedthatthistestofusingthetomographyinversionmodeltechniqueonrefrac-tion seismic data from the profile LFM001017 leads to ambiguous results, both regarding a comparison with the traditional interpretation techniques and also with reference to the magnetic lineament model. As stated earlier, the main reason for this is the lack of data, i.e. too few shotpoints,incombinationwithaninsufficientnumberofoverlappinggeophones.However,it is also clear that the comparison between the traditional model and the magnetic lineament interpretationalsoleadstounsatisfactoryresults(seealsopaperbyIsakssononp.113inthisreport).

InthistestoftheprofileLFM001017,thedatacollectiontechniqueincombinationwiththelow amount of shots makes the benefit of the tomography inversion model limited compared tothetraditionalmodel.AnindependentinvestigationofRayfractTM and two other inversion modelling-softwares, which is performed by use of synthetic data with several different geo logical anomaly situations, shows that the resulting velocity models generally fit well to thetruevelocitydistribution/Sheehanetal.2005/.InconnectionwiththesiteinvestigationatLaxemar,atestthatcomparedWET-modelstothemodelsachievedfromthetraditionalprocessing technique showed very good results when the data coverage was sufficiently high /Mattssonetal.2005/.Withasufficientnumberofshotsincombinationwithoverlappinggeophone spreads, the inversion technique is most likely the future technique for the processing of refraction seismic data.

144

7 References

Isaksson H, Thunehed H, Pitkänen T, Keisu M, 2006. Detailed ground and marine magneticsurveyandlineamentinterpretationintheForsmarkarea–2006.SKBP-06-261,SvenskKärnbränslehanteringAB.

Isaksson H, 2007. Correlation between refraction seismic data, low magnetic lineaments anddeformationzones(modelstage2.2);inGeology−backgroundcomplementarystudies.Forsmarkmodellingstage2.2.SKBR-07-56,SvenskKärnbränslehanteringAB.

Lecomte I, Gjøstdal H, Dahle A, Pedersen O C, 2000.Improvingmodellingandinversioninrefractionseismicswithfirst-orderEikonalsolver.GeophysicalProspecting,v48,pp437–454.

Mattsson H, Triumf C-A, Lindqvist G, 2005.Re-interpretationoftherefractionseismicprofiles277,280and506byuseofWavepathEkonalTraveltimeTomography–acomparisonwiththetraditionalinterpretationtechnique.SKBP-05-179,SvenskKärnbränslehanteringAB.

Sheehan J R, Doll W E, Mandell W A, 2005. An evaluation of methods and available software forSeismicRefractionTomographyAnalysis.JEEG,v10,pp21–34.

Toresson B, 2006.Seismicrefractionsurvey2005–2006.SKBP-06-138,SvenskKärnbränslehanteringAB.

145

Correlation of oriented radar reflectors with geological features in boreholes at Forsmark

Seje Carlsten, GeoSigma AB

Contents 1 Aim of study 146

2 Description of borehole radar 146

2.1 Radar measurements with RAMAC 146

2.2 Radar interpretation 147

3 Data used for the radar correlation 149

4 Execution of the radar correlation 150

4.1 General 150

4.2 Correlation procedure 153

5 Results 155

5.1 Correlation of oriented radar reflectors with geological features in possible deformation zones 155

5.2 Correlation between radar reflectors and vuggy rock 156

6 Summary and conclusions 157

7 References 158

Appendix 1 Correlation between oriented radar reflectors and geological features in possible deformation zones 160

Appendix 2 Correlation between radar reflectors and occurrences of vuggy rock 187

146

1 Aim of study

This report aims to correlate oriented borehole radar reflectors with geological features from geological Boremap-mapping in the Forsmark investigation area. Only radar reflectors located within possible deformation zones from the single-hole interpretation work and their extension according to model stage 2.1 have been assessed in the correlation process. The correlation aims toaddressthekeyquestion−whatisthegeologicalsignificanceoftheorientedradarreflectorsinsidethezones?

A separate study was made on the correlation of borehole radar reflectors with vuggy rock sections. This study aims to establish whether these rocks correlate with radar reflectors and whether the reflectors provide any information on the orientation of the vuggy rock sections.

2 Description of borehole radar

The description of the borehole radar system in this chapter is mainly from the radar reports /AaltonenandGustafsson2004,GustafssonandGustafsson2004a–f,2005a–f,2006a–e/.

2.1 Radar measurements with RAMACTheRAMACGPRsystem,whichisownedbySKB,isafullydigitalGPRsystem,whereemphasis has been laid on rapid survey execution and easy field operation. The system operates dipoleanddirectionalantennae(seeFigure2-1).

Figure 2-1. Example of a borehole radar antenna.

Receiver (Rx)

Transmitter (Tx)

Glass fiber rod separating the two antennas

The directional antenna

147

The borehole radar system consists of a transmitter and a receiver antenna. During operation, anelectromagneticpulse,withinthefrequencyrangeof20MHzupto250MHz,isgeneratedinside the bedrock. Once a feature, e.g. a water-filled fracture or a lithological contact, with suf-ficiently different electrical properties is encountered, the pulse is reflected back to the receiver and recorded.

2.2 Radar interpretationThe results from radar measurements are presented in the form of a radargram, where the positionoftheprobeintheboreholeisshownalongoneaxis(denotedDistance(metre)inFigure2-2)andtheradarwavepropagationandreflectionisshownalongtheotheraxis(denotedDepth(metre)inFigure2-2).AnexampleofaradargramfromaboreholeinForsmarkis shown in Figure 2-2. The amplitude of the received signal is visualized in the radargram using a grey scale where black colour corresponds to large positive signals and white colour to large negativesignals.Greycolourcorrespondstonoreflectedsignals.Reflectorsfromthesurround-ing rock constitute lines in the radargram. The data are adjusted for the measurement point of the antennae. The measurement point is defined to be the central point between the transmitter and the receiver antenna.

The two basic patterns to interpret in borehole measurements are point and planar reflectors. Inthereflectionmode,boreholeradaressentiallygivesahigh-resolutionimageoftherockmass.Itshowsthegeometryofplanesorstructures,whichmayormaynotintersecttheborehole(contactbetweenlayers,thinmarkerbeds,fractures),orthepresenceoflocalfeaturesaroundtheborehole(cavities,lensesetc).

The distance to a reflecting feature or plane is determined by measuring the difference in arrival time between the direct and the reflected pulse. The basic assumption is that the speed of propagation is the same everywhere.

Onlythelarger,clearlyvisiblestructuresareinterpretedinRadinterSKB.Anumberofminorstructures also exist but are not interpreted. Commonly, several structures can be identified, but they are most probably situated so close to each other that it is impossible to distinguish onefromtheother.Ifpresent,largerstructuresparalleltotheboreholearealsodocumented.Itshouldalsobepointedoutthatinterpretedreflectionsincludeanintersectionpointwiththeborehole,eveniftheyarelocatedfarawayfromtheborehole.Insomecases,theymaynotintersect the borehole.

The resolution and penetration of radar waves depend on the antenna frequency used. Low antennafrequency(20MHz)yieldslowerresolutionbuthigherpenetrationdepthcomparedtoahigherfrequency.Ifstructurescanbeidentifiedwithallthreeantennafrequencies,itisprob-able that the structure is a significant geological feature.

Figure 2-2. Radargram showing an overview (20 MHz data) of the borehole radar measurements in KFM08C.

148

Theorientationofthefeature(reflector)canalsobeprovided.ThedatafromdirectionalantennaconsistsofseveralradargramsdisplayedindividuallyinRadinterSKB.Thereisoneradargramfor each 3 degrees step around the borehole. The interpretor changes the radargrams during the interpretation process, in order to find the correct direction to the feature. The interpretation forsomeradarreflectorsisuncertain.Inthesecases,thedirectionfromtheprobetothefeature(reflector)canbe±180degrees,forexamplethedirectiontoanfeaturecanbeeither70°or250°. The direction to the feature is defined in Figure 2-3. As the borehole inclination is less than85°,thedirectiontothefeatureiscalculatedusinggravityroll.Thedirectiontothefeatureandtheintersectionangle(alpha)arerecalculatedtostrikeanddip.Thestrikeofaplaneisthe angle between the line of the plane’s cross-section with the surface and the magnetic north direction.Itiscountedclockwiseandcanbebetween0and359°.Astrikeof0°impliesadiptotheeastwhileastrikeof180°impliesadiptothewest.Theplanedipistheanglebetweentheplaneandthesurface.Itcanvarybetween0and90°,where0°ishorizontaland90°isvertical.

Itshouldbenotedthattheinterpretationoforientationfromthedirectionalradarantennaisbased on the internal deviation measurements in the directional antenna. For this reason, the radarinterpretationsareunaffectedbyanyrevisionsinboreholedeviations.Itshouldalsobenotedthatastructuremayhaveseveraldifferentangles,ifthestructure(reflector)isundulatingintheradargram.Thesedifferentintersectiondepthsaregivenforsomestructures(reflectors).Normally, the part that is interpreted closest to the borehole is the one that can be connected to a mapped geological structure in the borehole.

Figure 2-3. Definition of intersection angle, direction to feature using gravity roll, and inferred strike and dip using the right­hand­rule method.

149

3 Data used for the radar correlation

The following data and interpretations have been used for the radar correlation of the boreholes:

• Possibledeformationzonesfromthesingle-holeinterpretationworkandtheirextensionsasdefined in model stage 2.1 /SKB 2006/.

• RevisedBoremapdatafromSicada(includingBIPSandgeologicalmappingdata)forthesezonesthattakesaccountoftheorientationcorrectionscompletedduringearly2007.InTable 3-1 the date for extraction and delivery of data is presented. Data were extracted from SicadabyAllanStråhle.

• Radardataandtheirinterpretation,withtablesandradargrams/AaltonenandGustafsson2004,GustafssonandGustafsson2004a–f,2005a–f,2006a–e/.AccuracyforinterpretedradardataispresentedinTable3-2.Ifthereflectorisnotplanar,theaccuracyofintersectiondecreases. Furthermore, the angle close to the borehole may differ from the angle further away from the borehole.

Table 3-1. Date for extraction of Boremap data from Sicada.

Borehole Date for extraction and delivery of Boremap data in Sicada

KFM01A 2007-03-09KFM01B 2007-03-05KFM01D 2007-03-05KFM02A 2007-03-05KFM03A 2007-05-23KFM03B 2007-03-05KFM04A 2007-03-05KFM05A 2007-03-05KFM06A 2007-03-05KFM06B 2007-03-05KFM06C 2007-03-05KFM07A 2007-03-05KFM07B 2007-03-05KFM07C 2007-03-08KFM08A 2007-03-05KFM08B 2007-03-05KFM08C 2007-03-08KFM09A 2007-03-05KFM09B 2007-03-05KFM10A 2007-03-05

150

4 Execution of the radar correlation

4.1 General20boreholeswereincludedintheradarcorrelationstudy(Table4-1andAppendix1).78possi-ble deformation zones from the single-hole interpretation work and their extensions, as defined in model stage 2.1 /SKB 2006/, were used. A total number of 271 oriented radar reflectors were defined within the possible deformation zones and their extended parts. Some possible deforma-tion zones were excluded due to the absence of oriented radar reflectors within the zones. A few orientedradarreflectorswereexcludedduetotheabsenceofBIPS-images.

A separate study was made on the correlation between vuggy rock sections in the boreholes and radarreflectors(Table4-2andAppendix2).Inthisstudy,bothorientedradarreflectorsandnon-oriented radar reflectors were included. All the occurrences of vuggy rock in 9 boreholes were studied. Most occurrences contain more than one borehole interval that are separated by one or several,shortintervalsoffresh,unalteredrock(Table4-2).

Thegeneralworkingprocedurereliesonacarefulvisualinspection.ItissummarizedinFigure 4-1 and in the text below.

Table 3-2. Accuracy of intersection length, angle to borehole axis and direction (azimuth) for a reflector. From SKB MD 252.020 vers. 3.0.

Antenna type (MHz)

Angle to borehole axis (interval) Parameter0–29° 30–59° 60–90°

20 > ± 5 m ± 4–5 m < ± 5 m Intersection length100 > ± 3 m ± 2–3 m < ± 2 m Intersection length250 > ± 2 m ± 1–2 m < ± 1 m Intersection length100 ± 2° ± 5° ± 10° Angle to borehole axis250 ± 2° ± 5° ± 10° Angle to borehole axis60 (Directional) ± 2° ± 5° ± 5° Direction (azimuth)

Figure 4-1. Schematic chart that shows the procedure for the development of the radar correlation.

Radar correlation

Boremap dataSingle-hole

interpretation data

Radar data

151

Table 4-1. Boreholes, possible deformation zones, oriented radar reflectors and confidence of correlation included in the correlation study.

Borehole Number of possible deformation zones

Number of radar reflectors

Number of confidence levels between radar reflector and geological featureNone Low Medium High

KFM01A 2 6 1 3 1 1KFM01B 3 7 3 – 2 2KFM01D 5 7 – – 3 4KFM02A 4 24 2 9 6 7KFM03A 5 13 – 1 7 5KFM03B 2 4 – – 1 3KFM04A 5 19 2 4 7 6KFM05A 5 38 2 20 7 9KFM06A 10 27 1 3 9 14KFM06B 1 4 – – 3 1KFM06C 5 32 1 – 10 21KFM07A 4 11 – 2 3 6KFM07B 3 5 – – 1 4KFM07C 2 4 – 1 2 1KFM08A 5 23 – 5 12 6KFM08B 0 0 – – – –KFM08C 4 13 2 4 4 3KFM09A 5 10 – 3 3 4KFM09B 5 17 – 1 5 11KFM10A 3 7 – 4 2 1

Table 4-2. Occurrence of altered vuggy rock in the boreholes /Olofsson et al. 2007/.

Occurrence Borehole Adjusted SECUP (m)

Adjusted SECLOW (m)

Intensity

1 KFM02A 171.4017 172.0464 Medium1 KFM02A 174.3257 174.6049 Medium1 KFM02A 174.6069 175.1762 Weak1 KFM02A 175.1792 175.2756 Medium1 KFM02A 176.9033 177.0077 Faint1 KFM02A 179.4226 180.0532 Medium2 KFM02A 247.8602 248.2394 Faint2 KFM02A 248.8501 264.6114 Weak2 KFM02A 264.6143 266.0617 Medium2 KFM02A 266.0638 272.9400 Weak2 KFM02A 272.9420 274.9207 Medium2 KFM02A 274.9238 276.6634 Strong2 KFM02A 276.6664 279.6094 Medium2 KFM02A 279.6124 283.1108 Strong2 KFM02A 283.1138 283.4965 Medium2 KFM02A 283.4985 284.3242 Strong2 KFM02A 284.3262 284.8857 Weak2 KFM02A 284.8867 296.5319 Strong2 KFM02A 298.8883 299.0470 Strong

152

Occurrence Borehole Adjusted SECUP (m)

Adjusted SECLOW (m)

Intensity

2 KFM02A 299.2398 299.5151 Strong2 KFM02A 301.6063 301.7067 Weak3 KFM06A 332.4962 332.7465 Medium4 KFM06A 610.6420 611.0861 Weak5 KFM06A 770.8406 770.8858 Weak6 KFM06B 66.5638 66.9108 Weak6 KFM06B 68.6588 69.0540 Medium6 KFM06B 69.0570 70.1661 Weak7 KFM06C 451.4576 452.2256 Strong8 KFM08A 409.8545 412.0399 Strong9 KFM08C 454.9640 458.2870 Medium9 KFM08C 462.0960 462.2760 Faint9 KFM08C 462.2790 462.4950 Medium10 KFM08C 497.8410 497.9030 Weak10 KFM08C 497.9040 498.9950 Strong11 KFM08C 511.6210 511.6410 Faint11 KFM08C 512.8850 512.9310 Faint11 KFM08C 517.2170 517.2880 Faint11 KFM08C 519.1460 519.9780 Medium11 KFM08C 520.4340 520.7890 Weak11 KFM08C 523.1160 523.4460 Weak11 KFM08C 523.4510 525.7750 Medium11 KFM08C 526.2380 526.4410 Weak11 KFM08C 531.5300 531.7940 Medium12 KFM09A 511.7505 513.9343 Faint12 KFM09A 513.9343 515.4333 Weak12 KFM09A 515.4344 515.7068 Medium12 KFM09A 515.7068 520.0322 Weak13 KFM09B 382.3123 382.3254 Weak14 KFM09B 568.9249 569.3978 Weak14 KFM09B 569.3998 572.6340 Medium14 KFM09B 572.6360 573.4531 Weak15 KFM10A 86.9287 88.7894 Weak15 KFM10A 89.3205 89.9060 Weak15 KFM10A 92.6009 93.0834 Faint15 KFM10A 93.0864 94.2436 Weak15 KFM10A 96.6878 97.4517 Weak15 KFM10A 98.7714 98.9686 Faint15 KFM10A 98.9706 99.8841 Weak15 KFM10A 99.8851 100.3489 Medium15 KFM10A 100.3509 101.0936 Weak15 KFM10A 104.0204 104.7111 Faint15 KFM10A 104.9550 105.4848 Faint15 KFM10A 111.4764 111.5854 Faint15 KFM10A 111.5874 114.6291 Weak15 KFM10A 114.6341 118.5576 Faint16 KFM10A 483.5521 487.7752 Faint

153

4.2 Correlation procedureThe first step in the working procedure is to define the oriented radar reflectors occurring within the possible deformation zones from the single-hole interpretation work and their extension. The IDoftheorientedradarreflector,theboreholelength,thealphaangle,theorientationandtheradargrams are collected from the radar P-reports.

Thesecondstepistointerprettheradiusandthestrengthoftheradarreflectors(Figure4-2)andthe presence of low radar amplitude. The strength is a subjective judgement of a combination of the intensity and the extension of a radar structure in the radargram. The strength is judged on the following basis: 3 = strong, 2 = medium and 1 = weak. The strength and the radius have been judged in one or several of the different radargrams with different frequency. The frequency radargram, where the reflector is most distinct, is used for judgement of radius and strength.However,theorientationofthereflectorisalwaystakenfromthe60MHzdirectionalradargram.

The radar amplitude is the first arrival of the radar wave travelling along the borehole wall. The amplitude variation indicates changes of the electrical conductivity in the borehole wall and the closest surroundings. Low radar amplitude may indicate the presence of a fracture zone, clay, a different lithology or a higher porosity of the rock. This step is made on the basis of the radargrams in the radar P-reports.

The third step is to correlate the oriented radar reflector with a geological feature from Boremap. ThisismadeonthebasisofBIPS-imagesandtheBoremapmapping.Thefirstcriterionforthecorrelationistheboreholelengthoftheradarreflector.Theboreholelength±2–3missearchedforsuitablegeologicalfeatureswithasimilaralphaangleastheorientedradarreflector.Ifmorethan one candidate is present, the orientation of the geological feature is compared with the orientationoftheradarreflectorandtheonewithbestagreementisselected.Insomecases,whenthealphaangleissmall,anintervalupto±3–5mintheboreholeissearchedforsuitablegeological features. This is based on the fact that the interpreted intersection of radar reflectors

Figure 4-2. Principle for calculation of the radius of a radar reflector outside a borehole.

Borehole

Radar reflector

Radius

154

with borehole length is more uncertain for radar reflectors with small alpha angle compared to thosewithlargealphaangle.Inmanycases,asinglefracturecanbecorrelatedwiththeradarreflector. The single fracture may be one of several parallel single fractures occurring close to each other.

The fourth step is to place a confidence level on each correlation between oriented radar reflec-tor and geological feature. The confidence level is a subjective judgement of the agreement between the oriented radar reflector and the geological feature, based on a combination of the borehole length, the alpha angle and the orientation of the radar reflector and the geological feature. The confidence level is made on the following basis: 3 = high, 2 = medium, 1 = low and0=none.Insomecases,therearenoBoremapdataavailableandtheconfidencelevelisset to N/A, and is not included in the statistics.

The fifth step is a statistical analysis of the correlated data. The results of this analysis are pre-sented in Tables 5-1 to 5-4. The correlation between radar reflectors and vuggy rock is presented in Table 5-5. An explanation of the columns in the correlation tables in Appendices 1 and 2 are provided below.

Borehole radar

DZ Possibledeformationzonefromthesingle-holeinterpretationworkandtheirextension(indicatedbyExtinthetable)asdefinedinmodelstage 2.1 /SKB 2006/.

ID Identificationnumberoforientedradarreflectorfromtheradarinterpretation report.

Borehole length Adjusted length of the oriented radar reflector from the radar interpretation report.

Alpha Theanglebetweenaplaneandtheboreholeaxis.Ifthealphaangleis0°,theplaneisparalleltotheboreholeaxis.Ifthealphaangleis90°,the plane is perpendicular to the borehole axis.

Ori1 The orientation of the radar reflector from the radar interpretation report. The strike and dip of the oriented radar reflectors make use of the right-hand-rulemethod,e.g.040°/80°correspondstoastrikeofN40°Eandadipof80°totheSE.

Ori2 An alternative orientation of the radar reflector from the radar interpreta-tion report. This alternative is presented only in the cases where the inter-pretationofthedirectiontothefeature(reflector)isuncertain.Selectedalternative for the correlation is indicated by extra bold type.

Radius Thedistancebetweentheboreholeandthepointfurthestawayfromtheborehole where the reflector can still be observed. The radius is always perpendiculartotheboreholeaxis(Figure4-2).Theradiusisinterpretedfrom the radargram in the radar interpretation report.

Strength A subjective judgement of a combination of the intensity and the exten-sion of a radar structure in the radargram. The strength is interpreted from the radargram in the radar interpretation report. The strength is assessed on the following basis: 3 = strong, 2 = medium and 1 = weak.

Low radar amplitude The amplitude of the first arrival of the radar wave travelling along the borehole wall. The amplitude variation indicates changes of the electrical conductivity in the borehole wall and the closest surroundings. Low radar amplitude might indicate the presence of a fracture zone, clay, a different lithology or a higher porosity in the rock. The amplitude is from the radargram in the radar report.

155

Inferred geological feature from Boremap

Borehole length Adjusted length of the geological feature from the Boremap data in Sicada.

Alpha Theanglebetweenthegeologicalfeature(plane)andtheboreholeaxis.Ifthealphaangleis0°theplaneisparalleltoboreholeaxis.Ifthealphaangle is 90° the plane is perpendicular to the borehole axis.

Ori The orientation of the geological feature from Boremap data. The strike and dip of the orientation of geological structures make use of the right-hand-rulemethod,e.g.040°/80°correspondstoastrikeofN40°Eandadipof80°totheSE.

Feature Description of the geological feature from Boremap data.

Comment Description of the geological feature.

Confidence level Subjective judgement of the agreement between the oriented radar reflector and the geological feature, based on a combination of the bore-hole length, the alpha angle and the orientation. The confidence is made on the following basis: 3 = high, 2 = medium, 1 = low and 0 = none. N/A indicates intersection above or below available Boremap data.

5 Results

5.1 Correlation of oriented radar reflectors with geological features in possible deformation zones

The results of the correlation of oriented radar reflectors with geological features in possible deformation zones are presented in Appendix 1. The correlation of oriented radar reflectors shows that 45% of all oriented radar reflectors can be correlated with contacts between differ-entrocktypes(Table5-1).37%oftheorientedradarreflectorscanbecorrelatedwithbrokenfractures, crush zones or breccias, and only 10% can be correlated with unbroken fractures or sealed networks. Alteration is shown by 1% and foliation by 2% of the oriented radar reflectors. Finally, 5% of the oriented radar reflectors within possible deformation zones show no correla-tion with geological features. Since the correlation is made with reflectors that are observed somedistance(uptoatleast3–4m)fromtheborehole,itisprobablethattheradarreflectorsthat fail to correlate with a geological feature simply do not intersect the borehole along the possible deformation zone.

The confidence level is high for 41% of the correlations between oriented radar reflectors and geological features, medium for 32% and low for 22%. For 5% of the oriented radar reflectors nocorrelationcouldbecarriedout(Table5-2).

Oriented radar reflectors that have been correlated with contact between rock types show a high confidence level for 50%, medium confidence level for 30% and low confidence level for 20% (Table5-3).

The corresponding confidence level for oriented radar reflectors that have been correlated with a broken fracture, a crush zone or a breccia is high for 36%, medium for 40% and low for 24% (Table5-4).

Itisapparentthatthedirectionalantennadetectsrockcontactstoahigherdegreethanbrokenfractures, crush zones or breccias. The correlation with unbroken fractures, sealed networks, alteration and foliation is very limited.

156

Table 5-1. Oriented radar reflectors and correlation with geological features from Boremap.

Oriented radar reflectors in DZ

Contact between rock types

Broken fracture, crush zone or breccia

Unbroken fracture or sealed fracture network

Alteration Foliation No correlation

271 121 101 28 3 5 1345% 37% 10% 1% 2% 5%

Table 5-2. Oriented radar reflectors and confidence of correlation with geological features from Boremap.

Oriented radar reflectors in DZ

Confidence 3 = high

Confidence 2 = medium

Confidence 1 = low

Confidence 0 = none

271 110 88 60 1341% 32% 22% 5%

Table 5-3. Oriented radar reflectors and confidence of correlation with contact between rock types.

Oriented radar reflectors in DZ

Confidence 3 = high

Confidence 2 = medium

Confidence 1 = low

121 60 36 2550% 30% 20%

Table 5-4. Oriented radar reflectors and confidence of correlation with a broken fracture, crush zone or a breccia.

Oriented radar reflectors in DZ

Confidence 3 = high

Confidence 2 = medium

Confidence 1 = low

101 36 41 2436% 40% 24%

5.2 Correlation between radar reflectors and vuggy rockThe results of the correlation between radar reflectors and vuggy rock are presented in Appendix 2. For 57% of the vuggy rock occurrences, there is no correlation with the radar data (Table5-5).Itissuggestedthateitherthereisnoradarreflectoratthelocationorthereisaverypoor agreement between the orientation of the radar reflector and the orientation of the vuggy rock.Lowconfidenceisshownby26%oftheoccurrences,8.5%showmediumconfidenceandonly8.5%showahighconfidenceofcorrelationbetweenradarreflectorandvuggyrock.

Table 5-5. Sections with vuggy rock and confidence of correlation with with radar reflectors.

Sections with vuggy rock

Confidence 3 = high

Confidence 2 = medium

Confidence 1 = low

Confidence 0 = none

47 4 4 12 278.5% 8.5% 26% 57%

157

One explanation for the results presented above can be that the contrast in electrical properties between vuggy rock and its surroundings is not distinct enough to favour detection by borehole radar. The radar waves need a rather sharp electrical contrast to be reflected i.e. a distinct rock contact or a fracture zone. A second explanation can be that the boundary between the vuggy rock and its surroundings is not a planar structure, cf. a fracture zone or a rock contact. For this reason, it is not detected by borehole radar. Thirdly, the vuggy rock may form diffuse, scattered areas in the rock mass and the data from Boremap may simply not be representative of the orientation ofthevuggyrockanomaly.Inthiscase,vuggyrockisrepresentedintheboreholeradarandtheorientation of the reflector may provide a better interpretation of the orientation of this rock.

Insummary,thisstudyshowsthatthereisnosimplecorrelationbetweenboreholeradarandthe occurrences of vuggy rock. For this reason, it can be concluded that borehole radar is not an efficientmethodtodetectorevaluatetheorientationofvuggyrockinboreholes.However,thesecond statement is only valid if it is assumed that the vuggy rock sections are planar structures in the rock mass and if the Boremap data represent the orientation of these structures.

6 Summary and conclusions

• Theattempttocorrelateorientedradarreflectorswithgeologicalfeaturesalongpossibledeformation zones in boreholes shows that 45% of all oriented radar reflectors can be corre-lated with contacts between different rock types, 37% can be correlated with a broken fracture, a crush zone or a breccia and only 10% can be correlated with an unbroken fracture or a sealed network. Alteration is shown by 1% and foliation by 2% of the correlated oriented radar reflectors. Finally, 5% of the correlated oriented radar reflectors within possible deformation zones show no correlation with geological features.

• Theconfidencelevelishighfor41%oforientedradarreflectorsthathavebeencorrelatedwith geological features, a medium confidence level exists for 32%, a low confidence level for 22% and 5% lack a correlation.

• Theconfidencelevelforthecorrelationoforientedradarreflectorswiththecontactbetweenrock types is high for 50% of the reflectors, medium for 30% and low for 20%. The cor-responding confidence level for oriented radar reflectors, which have been correlated with a broken fracture, a crush zone or a breccia, is high for 36%, medium for 40% and low for 24%.

• Itisconcludedthatthedirectionalantennaisabletodetectrockcontactsmoreefficientlythan broken fractures, crush zones or breccias. The method is not effective for the detection of unbroken fractures, sealed networks, alteration and foliation.

• Theseparatestudyofvuggyrockshowsthatifthevuggyrocksectionsareplanarstructuresin the rock mass and if the Boremap data is representative of the orientation of these structures, then the borehole radar is not an effective method to detect this type of geological feature. For 57% of the vuggy rock occurrences, there is no correlation at all between these occurrencesandradardata,26%showalowconfidence,8.5%showamediumconfidenceandonly8.5%showahighconfidenceofcorrelationbetweenradarreflectorandvuggyrock.

• Oneexplanationforthepoorcorrelationbetweenboreholeradarandvuggyrockmaybethatthe electrical properties between vuggy rock and its surrounding are not distinct enough to favour detection by borehole radar. The radar waves need a rather sharp electrical contrast to be reflected, i.e. a rock contact or a fracture zone. A second explanation can be that the bound-ary between the vuggy rock and its surroundings is not a planar structure, cf. a fracture zone or a rock contact. For this reason, it is not detected by borehole radar. Thirdly, the vuggy rock may form diffuse, scattered areas in the rock mass and the data from Boremap may simply notberepresentativeoftheorientationofthevuggyrockanomaly.Inthiscase,vuggyrock

158

is represented in the borehole radar and the orientation of the reflector may provide a better interpretation of the orientation of this rock.

7 References

Aaltonen J, Gustafsson C, 2004.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM01A.SKBP-03-45,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2004a.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM01BandRAMACdirectionalre-logginginboreholeKFM01A.SKBP-04-79,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2004b.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM02A.SKBP-04-40,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2004c.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM03AandKFM03B.SKBP-04-41,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2004d.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM04A,KFM04B,HFM09andHFM10.SKBP-04-67,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2004e.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM05A.SKBP-04-152,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2004f.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM06A,HFM16,HFM17,HFM18andHFM19.SKBP-04-69,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2005a.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM06B.SKBP-05-53,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2005b.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM06C.SKBP-05-242,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2005c.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM07A(0–100m),HFM20andHFM21.SKBP-05-64,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2005d.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM07A.SKBP-reportP-05-52,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2005e.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM08A.RevisedApril2006.SKBP-05-158,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2005f.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholeKFM08B.RevisedApril2006.SKBP-05-58,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2006a.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM07B,KFM09A,HFM25andHFM28.SKBP-06-44,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2006b.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM07C,HFM36,HFM37andBIPSre-logginginHFM26.SKBP-06-120,SvenskKärnbränslehanteringAB.

159

Gustafsson J, Gustafsson C, 2006c.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM08C,HFM30,HFM31,HFM33andHFM34.SKBP-06-178,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2006d.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM09B,HFM24,HFM26,HFM27,HFM29andHFM32.SKBP-06-64,SvenskKärnbränslehanteringAB.

Gustafsson J, Gustafsson C, 2006e.Forsmarksiteinvestigation.RAMACandBIPSlogginginboreholesKFM10A,HFM35andHFM38.SKBP-06-177,SvenskKärnbränslehanteringAB.

Olofsson O, Simeonov A, Stephens M B, Follin S, Nilsson A-C, Röshoff K, Lindberg U, Lanaro F, Frederiksson A, Persson L, 2007. Site descriptive modelling, Forsmark stage 2.2. Presentation of a fracture domain concept as a basis for the statistical modeling of fracturesandminordeformationzones,andinterdisciplinarycoordination.SKBR-07-15,SvenskKärnbränslehanteringAB.

SKB, 2006. Site descriptive modelling, Forsmark stage 2.1. Feedback for completion of the site investigationincludinginputfromsafetyassessmentandrepositoryengineering.SKBR-06-38,SvenskKärnbränslehanteringAB.

160

App

endi

x 1

Cor

rela

tion

betw

een

orie

nted

rada

r ref

lect

ors

and

geol

ogic

al fe

atur

es in

pos

sibl

e de

form

atio

n zo

nes

KFM

01A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

2M

xx38

7.0

5304

4/45

232/

25 5

–10

239

0–40

0–

––

Non

eR

efle

ctor

out

side

bor

ehol

e0

2M

x39

8.6

1623

6/66

054/

82 5

139

0–40

039

8.6

906

1/89

Unb

roke

n fra

ctur

es4

para

llel t

o O

ri23

3V

xx64

1.3

4719

1/32

– 5

165

0–65

364

0.8

5333

9/41

Roc

k oc

curr

ence

1010

57/1

0106

11

3X

651.

950

055/

5524

8/29

41

650–

653

651.

751

359/

49R

ock

occu

rren

ce10

1057

/111

058

23

QQ

659.

3 8

223/

86–

18–2

43

650–

653

659.

023

259/

58R

ock

occu

rren

ce10

1057

/111

058

R

efle

ctor

out

side

bor

ehol

e1

31

663.

545

348/

53–

4–6

165

0–65

366

3.6

3327

0/50

Bro

ken

fract

ure

Qua

rtz, 1

6 m

m

Ref

lect

or o

utsi

de b

oreh

ole

1

161

KFM

01B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nID

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

1E

40.8

8503

3/09

341/

152

120

–25

27–3

138

–42

45–5

0

40.8

8208

6/13

Cru

sh z

one

3

1F

49.2

6902

5/33

240/

155

120

–25

27–3

138

–42

45–5

0

49.7

6913

2/11

Cru

sh z

one

2

21

111.

18

153/

71–

73

129–

132

112.

27

156/

85U

nbro

ken

fract

ure

Epi

dote

2 m

m3

2Q

122.

470

339/

33–

31

129–

132

123.

771

150/

07B

roke

n fra

ctur

eC

lay

6 m

m2

2R

131.

459

018/

4321

6/22

21

129–

132

––

–0

330

417.

542

018/

6620

5/33

62

416–

420

417.

743

354/

65R

ock

type

1010

57/1

0105

73

335

445.

755

028/

4923

8/19

31

416–

420

––

–0

KFM

01D

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

122

182.

356

137/

71–

101

179–

184

182.

448

161/

68B

roke

n fra

ctur

e2

272

414.

421

351/

89–

122

–41

4.7

1734

7/77

Bro

ken

fract

ure

33

169

488.

445

144/

8003

2/27

182

488–

491

488.

339

149/

88R

ock

occu

rren

ce10

1058

/101

057

33

8748

9.8

5906

7/13

–60

348

8–49

149

0.2

4301

3/13

Roc

k oc

curr

ence

1010

57/1

0201

72

413

167

6.8

5816

2/40

–15

268

8–69

767

6.8

5016

0/69

Alb

itiza

tion

Alte

ratio

n2

413

069

2.2

6007

6/52

158/

5217

268

8–69

769

2.2

5215

8/67

Roc

k ty

pe10

1057

/102

017,

Ori2

35

141

772.

019

219/

5124

7/82

213

–77

2.0

1925

0/81

Roc

k oc

curr

ence

1010

57/8

022,

Ori2

3

162

KFM

02A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

2 2

112.

549

090/

41–

102

109–

112

116–

121

112.

444

350/

50R

ock

occu

rren

ce10

1057

/102

017

1

2 4

113.

785

090/

05–

102

109–

112

116–

121

––

0

2 3

121.

638

090/

5209

0/46

102

109–

112

116–

121

121.

735

026/

59U

nbro

ken

fract

ure

1

3 8

b16

4.4

7210

5/17

314/

204

116

0–18

416

4.4

7514

4/12

Bro

ken

fract

ure

33

10a

173.

976

043/

1825

1/11

41

160–

184

173.

971

337/

21B

roke

n fra

ctur

eH

emat

ite2

310

b17

6.3

5103

8/44

–4

116

0–18

417

6.4

6300

4/32

Roc

k oc

curr

ence

1010

57/1

0106

13

624

419.

675

275/

1206

1/17

18–3

02

514–

518

419.

978

248/

07R

ock

occu

rren

ce10

1057

/111

058

36

2341

9.9

1809

9/73

283/

7120

351

4–51

842

0.5

2028

2/69

Roc

k oc

curr

ence

1010

57/1

0106

1 O

ri23

625

425.

916

232/

71–

112

514–

518

423.

919

302/

72B

roke

n fra

ctur

e2

625

a42

6.7

6321

7/22

–11

251

4–51

842

6.8

6836

0/27

Bro

ken

fract

ure

16

2643

7.2

9002

1/05

–12

251

4–51

843

7.6

7904

1/15

Bro

ken

fract

ure

26

25b

443.

977

013/

18–

82

514–

518

444.

274

042/

21B

roke

n fra

ctur

e3

626

a45

6.0

4903

3/46

–7

251

4–51

845

6.4

6805

4/27

Bro

ken

fract

ure

26

2847

4.9

5326

1/34

–7

251

4–51

847

4.3

6325

7/23

Roc

k oc

curr

ence

1010

57/1

0106

12

629

484.

690

028/

0500

5/04

41

514–

518

484.

676

136/

13B

roke

n fra

ctur

e3

630

492.

090

337/

06–

102

514–

518

492.

464

042/

32B

roke

n fra

ctur

e1

631

512.

190

044/

32–

603

514–

518

512.

575

335/

17B

roke

n fra

ctur

e1

732

532.

957

075/

36–

61

564

565–

567

574

576–

577

533.

445

011/

51R

ock

occu

rren

ce10

1057

/102

017

2

163

KFM

02A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

733

549.

863

193/

22–

202

564

565–

567

574

576–

577

549.

441

105/

51R

ock

occu

rren

ce10

1051

/101

061

1

734

a56

0.8

6635

5/29

158/

204

156

456

5–56

757

457

6–57

7

––

0

7B

B56

6.2

2801

3/68

191/

5620

–30

356

456

5–56

757

457

6–57

7

566.

224

220/

60R

ock

occu

rren

ce10

1061

/102

017

Ori2

3

736

a59

6.9

3604

5/60

228/

483

156

456

5–56

757

457

6–57

7

570.

627

182/

57B

roke

n fra

ctur

eO

ri21

Ext

Q91

4.7

5730

9/33

–12

291

2–92

091

4.7

5309

7/41

Unb

roke

n fra

ctur

eP

rehn

ite1

Ext

QQ

Q91

7.3

7309

8/19

–10

291

2–92

091

7.5

5204

8/46

Roc

k oc

curr

ence

1080

19/1

0105

11

164

KFM

03A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nID

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

1Y

359

6135

3/36

171/

263

136

4–36

636

9–37

438

6–39

0

359.

156

180/

29B

roke

n fra

ctur

eO

ri23

1X

365

7311

6/14

321/

216

136

4–36

636

9–37

438

6–39

0

364.

570

302/

22B

roke

n fra

ctur

eO

r23

1U

367

1604

0/78

222/

7010

136

4–36

636

9–37

438

6–39

0

369.

115

015/

79U

nbro

ken

fract

ure

Pyr

ite3

1Zx

375

6219

4/23

010/

3310

236

4–36

636

9–37

438

6–39

0

375.

145

156/

41B

roke

n fra

ctur

e2

1 2

389

7127

7/22

073/

2318

336

4–36

636

9–37

438

6–39

0

388.

671

095/

19C

rush

Ori2

3

1 3

399

6608

2/24

–12

336

4–36

636

9–37

438

6–39

0

399.

374

044/

20R

ock

occu

rren

ce10

1057

/102

017

2

210

452

5804

3/36

235/

276

245

0–45

545

2.6

6107

0/31

Roc

k ty

pe10

1057

/102

017

23

3264

063

183/

2000

8/34

123

645–

650

640.

861

126/

27R

ock

occu

rren

ce10

1061

/102

017

23

3364

469

045/

30–

153

645–

650

644.

462

084/

30R

ock

occu

rren

ce10

1057

/102

017

24

4780

458

268/

27–

163

803–

805

813–

817

803.

851

110/

39R

ock

occu

rren

ce10

1057

/101

061

1

447

x81

168

092/

23–

41

803–

805

813–

817

811.

064

130/

24R

ock

occu

rren

ce10

1061

/101

051

2

448

815

8132

8/21

109/

176

280

3–80

581

3–81

781

5.4

7135

1/24

Bro

ken

fract

ure

3

556

944

7603

1/26

223/

106

294

2–94

694

4.6

7102

5/50

Bro

ken

fract

ure

Mus

covi

te, c

lay

2

165

KFM

03B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

1C

2762

276/

2509

6/25

31

26–2

827

.258

054/

35R

ock

type

1010

61/1

0201

7 O

ri22

1C

x29

4609

6/44

–10

126

–28

28.6

5510

5/33

Bro

ken

fract

ure

31

D37

5918

0/33

000/

33 8

226

–28

36.5

6100

9/34

Roc

k oc

curr

ence

V

ein

1010

57/1

0106

1 O

ri23

2H

6659

359/

36–

122

64–6

765

.161

025/

34C

rush

3

KFM

04A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

Ext

D13

2.4

4632

0/19

129/

7112

3–

132.

036

137/

82R

ock

occu

rren

ce10

2017

/101

056

Ori2

3E

xtI

153.

846

343/

17–

182

–15

3.6

5921

5/10

Bro

ken

fract

ure

1E

xtJ

156.

338

129/

8031

3/24

51

–15

6.0

4113

4/77

Bro

ken

fract

ure

Ap

= 3

31

L17

0.9

3132

6/32

–9

217

0–17

617

0.9

2932

6/90

Roc

k oc

curr

ence

1010

56/1

0201

71

2T

205.

946

128/

73–

122

202–

206

206–

214

205.

542

148/

76R

ock

occu

rren

ceD

yke

1010

57/1

0105

83

2V

210.

949

316/

11–

51

202–

206

206–

214

–0

3Y

234.

761

136/

5704

4/09

152

232–

242

235.

552

022/

17B

roke

n fra

ctur

eA

p =

10 m

m O

ri23

Ext

932

1.6

5234

6/12

–6

231

7–32

432

1.8

5704

3/14

Bro

ken

fract

ure

2E

xt12

353.

954

134/

7601

6/09

51

–35

3.5

4412

2/78

Bro

ken

fract

ure

3E

xt13

361.

762

131/

57–

132

358–

362

361.

961

109/

58R

ock

occu

rren

ce10

1051

/101

057

3E

xt14

370.

353

121/

0306

3/42

61

–37

0.2

5412

5/69

Bro

ken

fract

ure

Hem

atite

Ori2

2

166

KFM

04A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

Ext

1639

2.4

5014

6/76

–7

1–

392.

346

078/

60R

ock

occu

rren

ce10

1061

/101

051

1E

xt17

406.

643

165/

6304

3/41

82

–40

6.5

5612

9/70

Roc

k oc

curr

ence

She

ar z

one

24

2442

5.0

924

3/61

–25

341

4–42

644

5–45

045

8–46

1

412.

79

234/

69B

recc

iaR

ock

occu

rren

ceB

recc

iate

d10

1051

/601

52

419

434.

554

338/

07–

81

414–

426

445–

450

458–

461

–0

420

447.

655

253/

0612

0/70

51

414–

426

445–

450

458–

461

447.

635

114/

88R

ock

occu

rren

ce10

1061

/102

017

Ori2

2

421

455.

251

350/

08–

102

414–

426

445–

450

458–

461

455.

443

137/

82R

ock

occu

rren

ceV

ein

1010

57/1

0106

11

430

459.

37

206/

87–

–1

414–

426

445–

450

458–

461

458.

09

259/

75B

roke

n fra

ctur

e2

545

658.

048

143/

78–

163

656–

661

657.

949

136/

80S

truct

ure

Folia

tion

stro

ng2

Ext

7998

6.2

5414

1/81

–3

198

4–98

8N

o bo

rem

ap d

ata

N/A

167

KFM

05A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

1A

111.

362

192/

5310

0/20

193

–11

1.5

5132

2/11

Bro

ken

fract

ure

Cla

y, A

pertu

re =

31

Ext

2840

2.4

4116

4/81

–15

240

4–40

940

2.5

4214

9/77

Roc

k oc

curr

ence

1010

61/1

0105

73

Ext

2940

5.6

4122

4/76

–27

340

4–40

940

5.7

3922

0/81

Bre

ccia

6005

/101

057

32

31a

417.

322

011/

80–

41

426–

433

417.

522

347/

79R

ock

occu

rren

ce10

1057

/102

017

32

3242

4.2

3415

1/88

–18

242

6–43

342

3.5

3316

4/90

Roc

k oc

curr

ence

1010

61/1

0201

73

233

424.

750

166/

7229

9/02

41

426–

433

424.

460

176/

64A

ltera

tion

12

3442

7.6

5309

2/24

200/

658

242

6–43

342

7.8

5814

0/55

Roc

k oc

curr

ence

1010

57/1

0106

1 O

ri21

366

604.

552

260/

27–

61

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

–0

365

604.

636

308/

31–

112

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

–0

362

605.

562

154/

6424

9/23

81

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

605.

255

114/

17R

ock

occu

rren

ce10

1057

/101

051

1

364

a60

6.2

1930

5/47

–12

159

0–60

061

3–61

762

9–63

170

4–70

871

4–72

375

2–75

3

605.

413

055/

80B

roke

n fra

ctur

e1

168

KFM

05A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

369

a61

0.2

5616

7/74

284/

1410

359

0–60

061

3–61

762

9–63

170

4–70

871

4–72

375

2–75

3

610.

639

186/

86B

roke

n fra

ctur

e2

368

610.

961

232/

25–

122

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

611.

073

191/

52B

roke

n fra

ctur

e1

371

613.

946

258/

3614

1/67

122

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

613.

531

027/

89B

recc

iaR

ock

occu

rren

ce10

1057

/600

5 B

recc

ia1

372

628.

237

158/

86–

102

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

628.

033

007/

88B

roke

n fra

ctur

e2

373

a64

1.1

4230

1/20

–4

159

0–60

061

3–61

762

9–63

170

4–70

871

4–72

375

2–75

3

640.

734

107/

55R

ock

occu

rren

ce10

1057

/101

061

1

169

KFM

05A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

376

657.

441

311/

20–

202

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

656.

941

031/

14U

nbro

ken

1

378

671.

756

258/

22–

72

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

671.

931

160/

89B

roke

n fra

ctur

e1

379

678.

863

159/

55–

51

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

679.

634

115/

58S

truct

ural

feat

ure

Folia

ted

1

382

694.

845

259/

3814

2/68

61

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

694.

537

212/

84S

eale

d ne

twor

k1

385

a70

0.0

1528

5/62

–9

359

0–60

061

3–61

762

9–63

170

4–70

871

4–72

375

2–75

3

701.

121

284/

59B

roke

n fra

ctur

eP

yrite

3

170

KFM

05A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

385

712.

832

123/

71–

31

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

712.

421

121/

81R

ock

occu

rren

ce10

1061

/102

017

3

313

871

7.1

806

3/80

–18

259

0–60

061

3–61

762

9–63

170

4–70

871

4–72

375

2–75

3

717.

225

030/

82B

roke

n fra

ctur

e3

386

718.

119

338/

37–

41

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

718.

824

044/

85R

ock

occu

rren

ceV

ein

1010

51/1

0106

11

389

734.

938

288/

3015

5/79

62

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

735.

239

152/

82R

ock

occu

rren

ce10

1057

/101

061

Ori2

3

390

741.

438

271/

32–

82

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

741.

738

325/

20B

roke

n fra

ctur

e2

171

KFM

05A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

391

749.

229

276/

51–

52

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

748.

028

012/

82R

ock

occu

rren

ce10

1057

/111

058

1

392

750.

239

248/

62–

41

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

751.

327

035/

84R

ock

type

1010

57/1

0201

71

394

757.

836

268/

55–

31

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

757.

831

011/

85B

roke

n fra

ctur

e1

397

779.

224

032/

82–

81

590–

600

613–

617

629–

631

704–

708

714–

723

752–

753

778.

938

120/

64R

ock

occu

rren

ceD

yke

1010

57/1

0106

11

411

090

3.2

2808

6/48

–10

390

5–91

290

3.5

4623

0/70

Bro

ken

fract

ure

14

111

909.

334

041/

26–

62

905–

912

909.

328

233/

89U

nbro

ken

fract

.1

511

593

2.9

2200

1/33

005/

757

293

6–95

093

1.5

1605

1/43

Roc

k oc

curr

ence

1010

57/1

0106

12

511

794

6.1

3025

8/65

–12

293

6–95

094

6.1

3223

0/87

Unb

roke

n fra

ct.

Laum

ontit

e2

Ext

118

950.

930

241/

81–

82

–95

2.1

3821

7/85

Sea

led

netw

ork

Cal

cite

, lau

mon

tite

2E

xt12

096

0.8

4707

1/15

–10

2–

961.

936

041/

20U

nbro

ken

fract

Pre

hnite

2E

xt12

797

7.8

2622

0/79

–2

797

8–97

997

8.1

4021

4/83

Bro

ken

fract

ure

3E

xt12

2a98

0.2

3433

1/28

–2

498

1–98

298

0.9

2307

7/45

Bro

ken

fract

ure

1

172

KFM

06A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

Ext

Dx

112.

248

030/

76–

21

–11

2.5

4203

8/78

Roc

k ty

pe10

2017

/101

057

31

J13

3.6

6334

0/16

158/

536

112

8–13

113

4–13

614

0–14

6

–0

1Lx

142.

642

050/

75–

163

128–

131

134–

136

140–

146

142.

946

024/

73B

roke

n fra

ctur

eA

spha

lt 4

mm

3

1K

145.

630

014/

84–

112

128–

131

134–

136

140–

146

145.

540

024/

80R

ock

occu

rren

ce10

1057

/101

061

2

1L

145.

946

043/

72–

503

128–

131

134–

136

140–

146

145.

741

024/

80R

ock

occu

rren

ce10

1057

/101

061

3

2X

206.

078

033/

15–

242

217–

221

236–

240

241–

244

206.

261

105/

10B

roke

n fra

ctur

e2.

5 m

m2

22

218.

873

045/

1603

2/45

182

217–

221

236–

240

241–

244

218.

170

050/

11B

roke

n fra

ctur

eC

lay

5 m

m3

2Z

225.

921

207/

3821

1/81

142

217–

221

236–

240

241–

244

224.

513

241/

76B

roke

n fra

ctur

eC

lay

Ori2

2

214

226.

025

228/

8505

6/66

212

217–

221

236–

240

241–

244

226.

119

187/

82B

roke

n fra

ctur

e2

25

238.

863

041/

5101

8/10

232

217–

221

236–

240

241–

244

237.

958

134/

05B

roke

n fra

ctur

eP

yrite

1

173

KFM

06A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

26

243.

755

027/

65–

102

217–

221

236–

240

241–

244

244.

165

020/

54R

ock

occu

rren

ce10

1057

/101

061

3

311

269.

346

217/

09–

182

268.

751

289/

17C

rush

23

11x

269.

475

043/

47–

162

267–

270

269.

262

005/

62R

ock

type

1010

57/1

1105

82

427

335.

633

209/

2603

4/89

122

330–

338

347–

359

334.

249

040/

73U

nbro

ken

fract

.P

yrite

Ori2

3

428

xx35

4.0

2020

9/79

202/

386

133

0–33

834

7–35

935

3.6

2721

0/86

Unb

roke

n fra

ct.

Oxi

dize

d w

alls

3

585

x62

2.6

3820

9/81

–18

262

0–62

562

2.5

3220

7/90

Sea

led

netw

ork

Qua

rtz3

585

624.

037

117/

42–

62

620–

625

624.

652

100/

49R

ock

occu

rren

ce10

1051

/101

061

36

88x

656.

238

047/

88–

51

651–

658

656.

344

053/

80R

ock

occu

rren

ce11

1058

/101

061

37

105

743.

440

168/

25–

183

743–

746

768–

773

744.

353

107/

45R

ock

type

1010

61/1

0201

71

710

5xx

756.

725

249/

80–

14–1

82

743–

746

768–

773

756.

631

210/

89B

roke

n fra

ctur

eLa

umon

tite

2

716

477

1.2

3723

6/17

057/

899

174

3–74

676

8–77

377

0.8

3009

9/42

Cru

sh1

711

1x77

2.3

7002

7/35

080/

4414

274

3–74

676

8–77

377

2.7

6908

6/39

Bro

ken

fract

ure

Ori2

2

711

177

2.4

5701

1/39

–18

374

3–74

676

8–77

377

2.0

6301

2/43

Roc

k oc

curr

ence

1010

58/1

0106

13

913

788

6.1

1627

6/76

294/

4512

288

4–89

088

5.3

2033

1/68

Roc

k oc

curr

ence

1010

58/1

0106

12

913

388

7.2

2924

1/23

241/

813

188

4–89

088

7.1

2424

1/76

Sea

led

netw

ork

Laum

ontit

e H

emat

ite

Ori2

3

1013

692

5.7

2323

9/76

–17

292

6–93

192

5.4

2321

5/78

Unb

roke

n fra

ct.

Chl

orite

Lau

mon

tite

311

144

962.

568

062/

1006

2/66

41

964–

969

962.

677

068/

50R

ock

occu

rren

ce10

1058

/101

061

Ori2

3

174

KFM

06B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nID

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

113

55.6

8008

4/09

–10

220

–27

48–5

265

–70

55.2

8801

9/08

Cru

sh3

125

68.5

6323

5/33

–13

–28

220

–27

48–5

265

–70

68.5

6509

2/27

Bro

ken

fract

ure

Cla

y, re

flect

or o

utsi

de

bore

hole

2

118

86.1

5102

9/49

–3

120

–27

48–5

265

–70

86.3

6606

0/30

Bro

ken

fract

ure

2

Ext

1694

.812

234/

72–

41

88–9

494

.223

037/

74B

roke

n fra

ctur

e2

175

KFM

06C

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

121

x13

8.5

1118

0/89

–6–

82

106–

110

114–

121

126–

131

154–

156

138.

916

180/

88S

eale

d ne

twor

kR

efle

ctor

out

side

the

bore

hole

3

18

139.

852

209/

1709

0/68

122

106–

110

114–

121

126–

131

154–

156

139.

451

017/

17B

roke

n fra

ctur

e2

111

145.

955

104/

67–

302

106–

110

114–

121

126–

131

154–

156

145.

554

132/

68R

ock

occu

rren

ce10

1057

/101

061

3

114

151.

957

112/

6402

0/03

71

106–

110

114–

121

126–

131

154–

156

152.

259

045/

12B

roke

n fra

ctur

eO

ri22

121

152.

615

183/

82–

62

106–

110

114–

121

126–

131

154–

156

154.

716

184/

88B

roke

n fra

ctur

eA

pertu

re =

13

mm

, Ca,

Q

z, Z

eol,

Py

3

292

361.

757

190/

0910

2/67

102

–36

1.1

5321

9/09

Cru

sh3

293

376.

646

135/

7900

2/19

62

–37

5.5

4313

5/85

Roc

k oc

curr

ence

1010

57/1

0106

13

296

380.

932

140/

90–

91

–38

0.5

5011

4/74

Roc

k oc

curr

ence

1010

57/1

0106

12

210

038

8.4

6011

6/66

161/

0515

1–

387.

757

103/

63R

ock

occu

rren

ce10

1057

/101

061

32

99x

392.

946

262/

1111

1/79

403

–39

4.4

2729

3/27

Cru

sh2

310

942

5.9

6909

1/46

161/

3812

245

1–45

946

6–47

142

6.0

6110

6/54

Roc

k oc

curr

ence

1010

58/1

0201

73

311

143

0.0

6516

0/39

090/

458

245

1–45

946

6–47

143

0.0

6910

5/43

Roc

k oc

curr

ence

1010

58/1

0201

7, O

ri23

332

744

4.9

5508

4/57

–21

345

1–45

946

6–47

144

4.9

5009

5/63

Roc

k oc

curr

ence

1010

58/1

0801

93

176

KFM

06C

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

331

7x44

9.0

1304

8/89

313/

7525

345

1–45

946

6–47

1R

efle

ctor

out

side

the

bore

hole

311

744

9.4

6608

4/45

163/

4316

245

1–45

946

6–47

144

8.9

6109

2/41

Roc

k oc

curr

ence

1010

58/1

0201

73

311

845

3.8

6508

9/48

167/

4110

245

1–45

946

6–47

145

3.8

6810

5/43

Roc

k oc

curr

ence

1010

58/1

0201

73

312

246

0.8

7009

4/32

–24

245

1–45

946

6–47

146

0.7

6910

6/42

Roc

k oc

curr

ence

1010

58/1

0201

73

312

848

0.1

5914

4/64

077/

203

145

1–45

946

6–47

147

8.8

6710

9/48

Roc

k oc

curr

ence

1010

58/1

0106

12

414

150

7.4

2634

0/89

014/

376

153

3–54

050

7.6

2400

3/85

Bro

ken

fract

ure

Cla

y3

414

050

9.8

6415

0/56

085/

2918

253

3–54

050

9.7

5408

0/34

Roc

k oc

curr

ence

1010

58/1

0106

1, O

ri23

414

853

3.8

6617

1/38

097/

5110

253

3–54

053

4.0

5709

9/50

Roc

k oc

curr

ence

1010

58/1

0201

7, O

ri23

431

753

7.3

922

3/88

–30

–36

353

3–54

0R

efle

ctor

out

side

the

bore

hole

, par

t of 3

17x

415

254

0.2

5509

0/62

–25

253

3–54

054

0.6

5207

8/31

Roc

k oc

curr

ence

1010

51/1

0106

12

517

663

0.2

5110

6/74

211/

275

1–

630.

148

118/

73R

ock

occu

rren

ce10

1058

/101

061

35

177

633.

956

200/

1311

9/74

152

–63

4.2

4310

6/71

Roc

k oc

curr

ence

1010

58/1

0106

1, O

ri23

533

364

0.1

1035

4/65

–6

1–

638.

58

292/

65S

eale

d ne

twor

k2

520

5x65

3.6

1721

7/79

–24

–40

3–

651.

723

023/

89B

roke

n fra

ctur

eR

efle

ctor

out

side

the

bore

hole

, par

t of 2

052

533

065

5.6

4623

0/06

130/

809

1–

655.

145

137/

85R

ock

occu

rren

ce10

1058

/101

061,

Ori2

35

205

659.

319

210/

81–

243

–65

9.9

1822

4/81

Sea

led

netw

ork

35

183

662.

614

059/

84–

132

–0

518

5x66

2.6

2520

8/67

066/

716

1–

662.

819

290/

78R

ock

occu

rren

ce10

1058

/101

061

25

184

663.

618

203/

8104

8/70

122

–66

3.7

1522

4/86

Bro

ken

fract

ure

35

185

666.

322

052/

69–

202

–66

6.1

3703

3/89

Sea

led

netw

ork

25

185x

xxx

675.

819

222/

6806

6/83

18–3

03

–67

5.5

2622

0/75

Sea

led

netw

ork

Ref

lect

or o

utsi

de th

e bo

reho

le3

177

KFM

06C

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

331

7x44

9.0

1304

8/89

313/

7525

345

1–45

946

6–47

1R

efle

ctor

out

side

the

bore

hole

311

744

9.4

6608

4/45

163/

4316

245

1–45

946

6–47

144

8.9

6109

2/41

Roc

k oc

curr

ence

1010

58/1

0201

73

311

845

3.8

6508

9/48

167/

4110

245

1–45

946

6–47

145

3.8

6810

5/43

Roc

k oc

curr

ence

1010

58/1

0201

73

312

246

0.8

7009

4/32

–24

245

1–45

946

6–47

146

0.7

6910

6/42

Roc

k oc

curr

ence

1010

58/1

0201

73

312

848

0.1

5914

4/64

077/

203

145

1–45

946

6–47

147

8.8

6710

9/48

Roc

k oc

curr

ence

1010

58/1

0106

12

414

150

7.4

2634

0/89

014/

376

153

3–54

050

7.6

2400

3/85

Bro

ken

fract

ure

Cla

y3

414

050

9.8

6415

0/56

085/

2918

253

3–54

050

9.7

5408

0/34

Roc

k oc

curr

ence

1010

58/1

0106

1, O

ri23

414

853

3.8

6617

1/38

097/

5110

253

3–54

053

4.0

5709

9/50

Roc

k oc

curr

ence

1010

58/1

0201

7, O

ri23

431

753

7.3

922

3/88

–30

–36

353

3–54

0R

efle

ctor

out

side

the

bore

hole

, par

t of 3

17x

415

254

0.2

5509

0/62

–25

253

3–54

054

0.6

5207

8/31

Roc

k oc

curr

ence

1010

51/1

0106

12

517

663

0.2

5110

6/74

211/

275

1–

630.

148

118/

73R

ock

occu

rren

ce10

1058

/101

061

35

177

633.

956

200/

1311

9/74

152

–63

4.2

4310

6/71

Roc

k oc

curr

ence

1010

58/1

0106

1, O

ri23

533

364

0.1

1035

4/65

–6

1–

638.

58

292/

65S

eale

d ne

twor

k2

520

5x65

3.6

1721

7/79

–24

–40

3–

651.

723

023/

89B

roke

n fra

ctur

eR

efle

ctor

out

side

the

bore

hole

, par

t of 2

052

533

065

5.6

4623

0/06

130/

809

1–

655.

145

137/

85R

ock

occu

rren

ce10

1058

/101

061,

Ori2

35

205

659.

319

210/

81–

243

–65

9.9

1822

4/81

Sea

led

netw

ork

35

183

662.

614

059/

84–

132

–0

518

5x66

2.6

2520

8/67

066/

716

1–

662.

819

290/

78R

ock

occu

rren

ce10

1058

/101

061

25

184

663.

618

203/

8104

8/70

122

–66

3.7

1522

4/86

Bro

ken

fract

ure

35

185

666.

322

052/

69–

202

–66

6.1

3703

3/89

Sea

led

netw

ork

25

185x

xxx

675.

819

222/

6806

6/83

18–3

03

–67

5.5

2622

0/75

Sea

led

netw

ork

Ref

lect

or o

utsi

de th

e bo

reho

le3

KFM

07A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

15

108.

015

133/

82–

92

111–

113

118–

121

150–

170

108.

17

253/

78B

roke

n fra

ctur

e2

12

111.

671

326/

1800

1/45

31

111–

113

118–

121

150–

170

111.

576

017/

33B

roke

n fra

ctur

e1.

5 m

m O

ri23

13x

120.

965

343/

55–

31

111–

113

118–

121

150–

170

120.

752

127/

11B

roke

n fra

ctur

e1.

5 m

m2

14

133.

455

250/

1000

2/63

183

111–

113

118–

121

150–

170

133.

752

097/

18C

rush

2

18

134.

214

161/

73–

123

111–

113

118–

121

150–

170

136.

77

127/

75R

ock

occu

rren

ce10

1057

/102

017

3

18x

159.

337

342/

82–

61

111–

113

118–

121

150–

170

159.

737

200/

24B

roke

n fra

ctur

e1

118

169.

618

148/

80–

132

111–

113

118–

121

150–

170

168.

723

170/

82B

roke

n fra

ctur

e3

110

178.

468

303/

15–

213

111–

113

118–

121

150–

170

178.

454

256/

17C

rush

3

215

203.

030

343/

87–

51

195–

205

203.

844

230/

21U

nbro

ken

fract

13

5341

9.9

3017

5/89

–3

141

8–42

242

0.6

2719

0/84

Roc

k oc

curr

ence

1010

57/1

0106

13

415

782

7.1

2920

8/85

–9

182

3–82

783

5–84

085

4–86

187

4–87

988

0–88

689

6–89

992

1–92

493

3–93

796

0–97

2

827.

231

175/

86B

roke

n fra

ctur

e3

178

KFM

07B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

11

52.9

3129

5/61

153/

7170

3N

/A50

.740

167/

63R

ock

occu

rren

ce10

1057

/102

017,

Ori2

32

1096

.174

221/

5420

9/19

203

95–1

0296

.076

225/

24R

ock

occu

rren

ce10

1057

/102

017,

Ori2

33

1412

0.1

3319

5/90

–20

211

8–12

313

2–13

612

2.2

2717

0/81

Roc

k oc

curr

ence

1010

57/1

0205

82

322

127.

130

145/

64–

61

118–

123

132–

136

127.

428

150/

64R

ock

occu

rren

ce10

1057

/102

017

3

442

231.

724

153/

79–

483

232–

240

232.

315

147/

80R

ock

occu

rren

ce10

1057

/101

061

3

KFM

07C

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

12x

94.0

2216

0/68

–36

3–

–N

o bo

rem

ap d

ata

N/A

110

98.0

3815

1/49

320/

5025

3–

–N

o bo

rem

ap d

ata

N/A

14

102.

622

151/

68–

52

–10

2.6

2314

0/65

Roc

k oc

curr

ence

1020

17/1

0106

13

248

332.

421

264/

7308

6/62

31

365–

372

333.

212

214/

83U

nbro

ken

Hem

atite

, oxi

dize

d w

alls

12

6134

0.6

1313

0/76

–16

236

5–37

234

3.2

1215

7/78

Roc

k oc

curr

ence

1010

61/1

0105

72

266

388.

527

276/

7010

2/58

121

365–

372

388.

715

240/

81B

roke

n fra

ctur

e–

2

179

KFM

08A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

125

190.

158

076/

62–

142

256–

260

272–

276

308–

311

339–

344

189.

957

086/

55R

ock

occu

rren

ce10

1057

/101

061

3

130

198.

358

319/

05–

252

256–

260

272–

276

308–

311

339–

344

197.

844

204/

14B

roke

n fra

ctur

e2

131

202.

360

050/

67–

202

256–

260

272–

276

308–

311

339–

344

203.

460

089/

50R

ock

occu

rren

ce10

1058

/101

061

2

123

521

7.9

1233

2/76

– 8

–14

325

6–26

027

2–27

630

8–31

133

9–34

4

216.

815

323/

73S

truct

ural

feat

.Fo

liatio

n, ra

dar r

efle

ctor

out

side

th

e bo

reho

le, d

o no

t rea

ch b

ore-

hole

in ra

darg

ram

3

137

224.

445

055/

7722

5/10

61

256–

260

272–

276

308–

311

339–

344

224.

657

079/

59R

ock

occu

rren

ce10

1057

/101

061

2

138

229.

634

014/

78–

303

256–

260

272–

276

308–

311

339–

344

229.

844

070/

78B

roke

n fra

ctur

e1

123

424

3.2

4206

4/81

–15

125

6–26

027

2–27

630

8–31

133

9–34

4

242.

544

032/

79B

roke

n fra

ctur

e2

180

KFM

08A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

143

247.

733

172/

36–

102

256–

260

272–

276

308–

311

339–

344

248.

429

340/

68R

ock

type

1010

57/1

0106

11

153

307.

056

122/

43–

122

256–

260

272–

276

308–

311

339–

344

307.

543

142/

34B

roke

n fra

ctur

eO

xidi

zed

2

155

312.

531

008/

80–

31

256–

260

272–

276

308–

311

339–

344

311.

835

355/

70R

ock

type

1010

57/1

0106

13

157

x31

8.6

5100

2/51

–4

125

6–26

027

2–27

630

8–31

133

9–34

4

318.

440

009/

74R

ock

occu

rren

ce10

1057

/101

061

2

123

632

1.7

5112

4/42

015/

596

125

6–26

027

2–27

630

8–31

133

9–34

4

321.

274

073/

45R

ock

occu

rren

ce10

1057

/101

061

1

160

x33

2.9

4734

1/39

–15

–20

325

6–26

027

2–27

630

8–31

133

9–34

4

332.

940

003/

69R

ock

occu

rren

ce10

1057

/101

061

2

160

341.

633

354/

68–

153

256–

260

272–

276

308–

311

339–

344

342.

028

004/

85B

roke

n fra

ctur

e3

181

KFM

08A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

296

495.

664

107/

3903

2/52

303

476–

483

490–

497

496.

278

070/

48R

ock

occu

rren

ce10

1057

/101

061

Ori2

2

310

453

0.2

5811

1/50

–14

254

2–54

555

2–55

753

0.0

6305

1/67

Roc

k oc

curr

ence

1010

57/1

0106

1, p

roba

bly

a po

int

refle

ctor

1

324

053

5.1

5110

2/65

–16

–24

254

2–54

555

2–55

753

5.6

4707

8/80

Roc

k oc

curr

ence

1010

57/1

0106

11

310

754

4.1

6909

8/42

–7

154

2–54

555

2–55

754

4.4

7303

4/44

Roc

k oc

curr

ence

1010

57/1

0106

12

414

067

5.4

6907

2/20

–12

268

6–69

067

3.3

6309

5/21

Sea

led

netw

ork

Adu

laria

24

143

686.

147

001/

30–

82

686–

690

686.

849

354/

08R

ock

occu

rren

ce10

1057

/802

1 Q

uartz

35

243

807.

315

149/

84–

91

800–

803

820–

823

807.

013

184/

85U

nbro

ken

fract

.2

524

481

0.4

5112

7/50

–9

180

0–80

382

0–82

381

0.5

5510

3/69

Roc

k ty

pe10

1058

/102

017

2

516

981

2.5

6905

9/29

086/

6710

280

0–80

382

0–82

381

2.5

7907

0/57

Roc

k oc

curr

ence

1010

58/1

0106

1 O

ri23

KFM

08B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

NO

DIR

EC

TIO

NA

L R

AD

AR

RE

FLE

CTO

RS

182

KFM

08C

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

138

173.

950

279/

08–

31

185–

188

174.

253

111/

67R

ock

occu

rren

ce10

1058

/101

057

11

237

174.

323

178/

86–

202

185–

188

174.

410

248/

85B

roke

n fra

ctur

e1

133

178.

49

027/

73–

92

185–

188

178.

513

297/

72B

roke

n fra

ctur

e1

293

439.

931

212/

5507

2/71

102

453–

465

496–

500

518–

535

440.

337

060/

53R

ock

occu

rren

ce10

1061

/101

057,

Ori2

2

297

456.

636

074/

69–

122

453–

465

496–

500

518–

535

––

–0

210

045

7.6

5021

1/22

107/

669

245

3–46

549

6–50

051

8–53

5

––

–0

210

146

8.1

3308

4/77

–30

345

3–46

549

6–50

051

8–53

5

468.

447

080/

55R

ock

occu

rren

ce80

21/1

0105

72

210

950

9.0

3704

2/44

–24

245

3–46

549

6–50

051

8–53

5

509.

128

052/

60R

ock

occu

rren

ce10

1061

/101

057

3

222

352

0.5

4221

3/45

–6

145

3–46

549

6–50

051

8–53

5

521.

045

215/

39B

roke

n fra

ctur

e3

313

868

3.2

3019

6/71

–12

269

2–69

668

3.6

2904

6/54

Roc

k oc

curr

ence

1020

17/1

0105

71

314

369

8.0

1632

0/71

–20

369

2–69

669

8.3

1730

0/71

Unb

roke

n fra

ctur

e3

314

570

1.5

3602

5/34

164/

8214

269

2–69

670

1.1

4006

1/50

Roc

k oc

curr

ence

1010

61/1

0105

72

417

782

9.7

4617

9/61

–12

282

7–83

282

9.7

3219

5/72

Unb

roke

n fra

ctur

e2

183

KFM

09A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

12

18.8

5519

2/11

–20

216

–21

30–3

219

.451

149/

09B

roke

n fra

ctur

e2

239

83.0

2618

0/44

336/

8920

292

–106

82.7

2334

0/88

Roc

k ty

pe10

1058

/802

1, O

ri23

222

97.5

4831

8/70

–20

292

–106

97.4

3534

1/75

Roc

k oc

curr

ence

1010

57/1

0106

13

224

110.

717

206/

67–

203

92–1

0611

0.8

1915

4/85

Roc

k oc

curr

ence

1010

57/1

0106

12

370

246.

88

154/

71–

62

226–

237

247.

511

163/

76S

truct

ural

feat

ure

Brit

tle d

uctil

e sh

ear z

.3

390

265.

840

139/

16–

152

226–

237

264.

835

075/

25R

ock

occu

rren

ce10

1057

/101

061

23

9127

3.9

3021

9/57

–30

322

6–23

727

3.9

2910

9/85

Roc

k ty

pe10

1057

/101

061

13

8427

7.8

3219

5/44

–24

222

6–23

727

7.8

3634

5/77

Bro

ken

fract

ure

14

246x

730.

051

360/

07–

203

731–

754

731.

145

146/

88R

ock

occu

rren

ce10

1057

/102

017

15

253

783.

948

313/

8404

4/14

61

782–

785

783.

850

330/

89B

roke

n fra

ctur

e3

184

KFM

09B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

13

28.2

5623

5/70

–4

113

–21

26–5

010

6–11

011

9–12

2

28.8

5823

3/67

Roc

k oc

curr

ence

1010

57/1

0106

13

15

40.4

4023

0/86

–4

113

–21

26–5

010

6–11

011

9–12

2

40.5

4325

6/77

Sea

led

netw

ork

3

19

49.6

4609

5/11

234/

7914

213

–21

26–5

010

6–11

011

9–12

2

49.9

4108

5/16

Bro

ken

fract

ure

Ape

rture

= 5

mm

, cla

y, a

spha

lt3

111

76.5

1713

9/71

299/

8210

213

–21

26–5

010

6–11

011

9–12

2

76.4

1412

9/65

Roc

k ty

pe10

1061

/101

061

folia

ted

3

120

81.6

2500

9/88

–12

213

–21

26–5

010

6–11

011

9–12

2

80.7

2604

6/81

Bro

ken

fract

ure

2

117

101.

752

124/

0823

3/74

152

13–2

126

–50

106–

110

119–

122

101.

742

212/

81B

roke

n fra

ctur

eO

ri22

116

105.

520

131/

62–

243

13–2

126

–50

106–

110

119–

122

105.

818

167/

87R

ock

occu

rren

ce10

1057

/101

061

2

185

KFM

09B

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

118

123.

724

148/

69–

102

13–2

126

–50

106–

110

119–

122

123.

422

168/

83A

ltera

tion

2

261

311.

738

094/

16–

303

–31

1.4

3909

4/17

Bro

ken

fract

ure

Laum

, hem

atite

32

63x

327.

929

029/

2304

6/81

253

–32

7.6

3205

9/84

Bro

ken

fract

ure

Ori2

32

6433

5.0

3007

4/85

–15

1–

335.

037

250/

89B

roke

n fra

ctur

e3

257

x33

6.4

913

0/77

299/

899–

132

–33

6.5

814

7/85

Roc

k oc

curr

ence

1010

57/1

0106

1, o

utsi

de b

oreh

ole

33

8240

7.8

2715

4/65

–7

1–

407.

722

359/

88S

truct

ural

feat

ure

13

122

411.

841

276/

7315

5/46

61

–41

2.2

3727

8/78

Alte

ratio

nA

lbiti

zatio

n3

410

252

2.7

2614

5/61

–18

352

2–52

952

2.4

3117

7/76

Roc

k oc

curr

ence

1010

57/1

056

24

139

538.

311

122/

58–

10–1

42

522–

529

537.

37

096/

61R

ock

type

1010

57/1

0106

1O

utsi

de b

oreh

ole

3

510

956

9.2

6319

6/60

262/

374

156

6–57

357

0.5

6423

1/20

Roc

k ty

pe10

1057

/101

061,

Ori2

3

186

KFM

10A

DZ

Bor

ehol

e ra

dar

Infe

rred

geo

logi

cal f

eatu

re fr

om b

orem

apC

onfid

ence

le

vel

In d

ata

Inte

rpre

tatio

nC

orre

latio

nId

Bor

ehol

e le

ngth

(m)

Alp

haO

ri1O

ri2R

adiu

s (m

) St

reng

thLo

w ra

dar

ampl

itude

(m)

Bor

ehol

e le

ngth

(m)

Alp

haO

riFe

atur

eC

omm

ent

11

78.3

4603

0/48

133/

639

284

–125

131–

136

78.4

4014

2/77

Roc

k oc

curr

ence

1020

17/1

0105

7, O

ri23

16

86.8

5203

4/50

–12

284

–125

131–

136

86.6

4306

4/79

Bro

ken

fract

ure

2

19

106.

185

085/

4109

2/44

31

84–1

25

131–

136

106.

067

096/

64B

roke

n fra

ctur

eA

spha

lt, O

ri22

116

133.

349

033/

51–

122

84–1

25

131–

136

133.

032

142/

89R

ock

occu

rren

ce10

2017

/101

057

1

119

143.

945

028/

51–

152

84–1

25

131–

136

144.

269

092/

63C

rush

1

296

435.

435

337/

0928

7/74

403

428–

433

431.

842

048/

13B

roke

n fra

ctur

eA

pertu

re =

5 m

m1

310

148

0.7

3534

5/11

290/

7415

248

3–48

848

0.6

5209

9/17

Bro

ken

fract

ure

1

187

App

endi

x 2

Cor

rela

tion

betw

een

rada

r ref

lect

ors

and

occu

rren

ces

of v

uggy

rock

Vugg

y ro

ckB

orem

apB

oreh

ole

rada

r

Vugg

y ro

ck s

ectio

nIn

dat

aIn

terp

reta

tion

Bor

ehol

eFr

omTo

Alp

haO

riLo

w ra

dar

ampl

itude

Ref

lect

or

IDB

oreh

ole

leng

thA

lpha

Ori1

Ori2

Stre

ngth

Rad

ius

(m)

Com

men

tC

onfi-

denc

e

KFM

02A

171.

4062

102/

2816

5–18

5–

017

2.04

4210

2/28

165–

185

–0

KFM

02A

174.

334

306/

2316

5–18

510

a17

3.9

7604

3/18

251/

112

15S

traig

ht re

flect

or, p

roba

bly

indi

cate

s a

natu

ral f

ract

ure

with

hem

atite

at 1

73.8

m

with

alp

ha 7

2 an

d or

ient

atio

n 01

2/23

0

175.

2765

306/

2316

5–18

5–

0K

FM02

A17

6.90

6332

5/30

165–

185

10b

176.

351

038/

44–

220

Stra

ight

refle

ctor

. Pro

babl

y in

dica

tes

rock

oc

curr

ence

(peg

mat

ite) a

t 176

.1 m

with

al

pha

64 a

nd o

rient

atio

n 03

8/30

or r

ock

occu

rren

ce (f

ine-

grai

ned

gran

ite) a

t 176

.5 m

w

ith a

lpha

64

and

the

orie

ntat

ion

028/

31

1

177.

0058

325/

3016

5–18

5–

0K

FM02

A17

9.42

2603

2/69

165–

185

–0

180.

0575

032/

6916

5–18

5–

0K

FM02

A24

7.86

4807

4/46

240–

320

17a

240.

350

036/

45–

324

Stra

ight

refle

ctor

whi

ch b

ends

clo

se to

the

bore

hole

and

pro

babl

y in

ters

ects

dee

per

2

296.

5321

137/

6724

0–32

016

280.

216

090/

7411

8/73

220

Ref

lect

or p

aral

lel t

o bo

reho

le a

long

18

0–24

0 m

bor

ehol

e le

ngth

2

KFM

02A

298.

8967

066/

2724

0–32

0–

029

9.05

240–

320

–0

KFM

02A

299.

2429

9.51

4907

9/44

240–

320

–0

KFM

02A

301.

6030

1.71

6604

2/28

240–

320

1930

0.9

70–

16

1

188

Vugg

y ro

ckB

orem

apB

oreh

ole

rada

r

Vugg

y ro

ck s

ectio

nIn

dat

aIn

terp

reta

tion

Bor

ehol

eFr

omTo

Alp

haO

riLo

w ra

dar

ampl

itude

Ref

lect

or

IDB

oreh

ole

leng

thA

lpha

Ori1

Ori2

Stre

ngth

Rad

ius

(m)

Com

men

tC

onfi-

denc

e

KFM

06A

332.

4963

037/

5933

0–34

025

332.

856

––

13

233

2.75

6409

2/22

330–

340

–0

KFM

06B

66.5

627

019/

6965

–72

–0

70.1

662

199/

2265

–72

2568

.563

235/

33–

330

Cur

ved

refle

ctor

2

KFM

06C

451.

4650

171/

7045

0–46

011

744

9.4

6608

4/45

163/

433

20S

traig

ht re

flect

or, p

roba

bly

indi

cate

s am

phib

olite

at 4

48.9

m w

ith a

lpha

60

and

orie

ntat

ion

097/

48

0

452.

2328

351/

8645

0–46

011

845

3.8

6508

9/48

167/

413

12S

traig

ht re

flect

or, p

roba

bly

indi

cate

s am

phib

olite

at 4

53.8

m w

ith a

lpha

68

and

orie

ntat

ion

105/

43

0

KFM

08A

409.

8554

095/

5940

9–41

474 74

x74

xx

410.

1(4

15.8

)(4

32.8

)

4312

3/58

358/

583

12R

efle

ctor

s 74

x an

d 74

xx p

roba

bly

part

of 7

4,

they

are

obs

erve

d ou

tsid

e th

e bo

reho

le3

412.

0439

013/

7740

9–41

475

413.

248

––

26

Ref

lect

or p

roba

bly

indi

cate

s a

brok

en

fract

ure

with

cla

y at

413

.0 m

, 49

degr

.0

KFM

08C

454.

9645

8.29

3504

1/43

453–

466

97 100

456.

645

7.6

36 5007

4/69

211/

22– 10

7/66

2 110 9

1 0K

FM08

C46

2.09

462.

5050

029/

1545

3–46

6–

0K

FM08

C49

7.84

499.

041

195/

6149

5–50

110

810

749

7.9

499.

261 41

– –1 1

3 100 1

KFM

08C

511.

6251

1.64

3321

1/60

495–

501

111

511.

749

–1

31

KFM

08C

512.

8951

2.93

2816

6/83

495–

501

–0

KFM

08C

519.

1551

9.98

4007

5/56

516–

535

112

520.

444

–1

21

KFM

08C

520.

4352

0.79

2004

4/65

516–

535

223

520.

542

213/

451

40

189

Vugg

y ro

ckB

orem

apB

oreh

ole

rada

r

Vugg

y ro

ck s

ectio

nIn

dat

aIn

terp

reta

tion

Bor

ehol

eFr

omTo

Alp

haO

riLo

w ra

dar

ampl

itude

Ref

lect

or

IDB

oreh

ole

leng

thA

lpha

Ori1

Ori2

Stre

ngth

Rad

ius

(m)

Com

men

tC

onfi-

denc

e

KFM

08C

523.

1252

5.77

3924

6/28

516–

535

–0

KFM

08C

526.

2452

6.44

2603

1/48

516–

535

–0

KFM

08C

531.

553

1.8

5817

6/53

516–

535

–0

KFM

09A

511.

7531

.830

6/82

510–

520

259

511.

036

––

312

352

0.03

37.6

135/

8851

0–52

019

451

8.8

40–

–2

12R

efle

ctor

dis

loca

ted

at 1

2 m

351

0–52

019

251

7.0

38–

–3

60S

trong

and

per

sist

ent r

efle

ctor

3

KFM

09B

382.

3141

224/

89–

7738

3.8

38–

–2

6R

efle

ctor

mig

ht a

s w

ell i

ndic

ate

brok

en

fract

ure

with

hem

atite

at 3

83.9

m w

ith a

lpha

35

and

orie

ntat

ion

191/

86

1

382.

3241

222/

90–

KFM

09B

568.

9238

280/

8456

6–57

310

956

9.2

6319

6/60

262/

371

3R

efle

ctor

mig

ht in

dica

te ro

ck ty

pe

(peg

mat

ite) a

t 570

.49

m w

ith a

lpha

64

and

orie

ntat

ion

231/

21

0

573.

4547

210/

8256

6–57

311

057

2.1

72–

–1

3R

efle

ctor

mig

ht in

dica

te ro

ck o

ccur

renc

e (p

egm

atite

) at 5

73.0

m w

ith a

lpha

70

and

orie

ntat

ion

258/

31

0

KFM

10A

86.9

388

.79

4813

5/72

82–1

246

86.8

5203

4/50

210

1K

FM10

A89

.32

89.9

147

030/

3882

–124

–0

KFM

10A

92.6

094

.25

3913

7/82

82–1

247

92.4

78–

13

0K

FM10

A96

.69

97.4

563

122/

6382

–124

898

.146

–1

21

KFM

10A

98.7

710

1.09

6212

2/64

82–1

24–

0K

FM10

A10

4.02

104.

7157

127/

6782

–124

–0

KFM

10A

104.

9610

5.48

6212

1/64

82–1

2410

105.

054

12

1K

FM10

A11

1.48

118.

5661

126/

6382

–124

12 1311

3.3

116.

666 62

– –1 1

2 21 1

KFM

10A

483.

5548

7.78

7911

7/66

483–

488

112

485.

561

–1

61