32
Geometric Gyrokinetic Theory 几几几几几几几 Hong Qin 秦秦 Princeton Plasma Physics Laboratory, Princeton University Workshop on ITER Simulation May 15-19, 2006, Peking University, Beijing, China http://www.pppl.gov/~hongqin/Gyrokinetics.php

Geometric Gyrokinetic Theory 几何回旋动力论

  • Upload
    dava

  • View
    204

  • Download
    36

Embed Size (px)

DESCRIPTION

Geometric Gyrokinetic Theory 几何回旋动力论. Hong Qin 秦宏 Princeton Plasma Physics Laboratory, Princeton University Workshop on ITER Simulation May 15-19, 2006, Peking University, Beijing, China. http://www.pppl.gov/~hongqin/Gyrokinetics.php. Acknowledgement. - PowerPoint PPT Presentation

Citation preview

Page 1: Geometric Gyrokinetic Theory 几何回旋动力论

Geometric Gyrokinetic Theory几何回旋动力论

Hong Qin 秦宏Princeton Plasma Physics Laboratory, Princeton University

Workshop on ITER Simulation

May 15-19, 2006, Peking University, Beijing, China

http://www.pppl.gov/~hongqin/Gyrokinetics.php

Page 2: Geometric Gyrokinetic Theory 几何回旋动力论

Acknowledgement

Thank Prof. Ronald C. Davidson and Dr. Janardhan Manickam for their continuous support.

Thank Drs. Peter J. Catto, Bruce I. Cohen, Andris Dimits, Alex Friedman, Gregory W. Hammet, W. Wei-li Lee, Lynda L. Lodestro, Thomas D. Rognlien, Philip B. Snyderfor, and William M. Tang for fruitful discussions.

US DOE contract AC02-76CH03073.

LLNL’s LDRD Project 04-SI-03, Kinetic Simulation of Boundary Plasma Turbulent Transport.

Page 3: Geometric Gyrokinetic Theory 几何回旋动力论

Classical gyrokinetics: average out gyrophase

Magnetized plasmas fast gyromotion.

“Average-out" the fast gyromotion– Theoretically appealing– Algorithmically efficient

2

0

1[ Valsov Maxwell eqs ]

2d

pq

p- .ò

3

3

( ) 0

4 1( )

4 ( )

0

p

p

é ùæ ö¶ ¶ ´ ¶÷çê ú+ × + + × , , = ,÷ç ÷çê úè ø¶ ¶ ¶ë û

¶Ñ´ = , , + ,

Ñ × = , , ,

Ñ × = .

òå

òå

Vlasov-Maxwell Equations

j j

j jj

j jj

e f tt c

e d p f tc c t

e d pf t

v Bv E x p

x p

B v x p E

E x p

B

, ?f f

c

v Bv

x p

¶ ´ ¶× ׶ ¶

Highly oscillatory characteristics

dependentq

Does not work

Page 4: Geometric Gyrokinetic Theory 几何回旋动力论

Modern gyrokinetics: all about gyro-symmetry

Gyro-symmetry

Decouple gyromotion

Page 5: Geometric Gyrokinetic Theory 几何回旋动力论

What is symmetry?

Coordinate dependent version:

Geometric version:

L dShg=

Lie derivative

Symmetry vector field

Poincare-Cartan-Einstein 1-form

210 0

2

Problem, what is ?

L d LL v

dtf

q q

q

æ ö¶ ¶ ÷ç= , = , = × + -÷ç ÷çè ø¶ ¶A v&

Symmetry groupS. Lie (1890s)

.Advantage: general, stronger, enables techniques to find q

Disadvantage: it takes longer to explain.

Symmetry is group

Page 6: Geometric Gyrokinetic Theory 几何回旋动力论

What is Poincare-Cartan-Einstein 1-form?

2

2

( )2

( )

( 2 ),

, four vector potential, 1-form

1-form momentum

vA p d dt

A

p v

g f

f

é ùê ú= + = + × - + ,ê úë û

º - ,

º - / ,

A v x

A

p

( )

2

2

1

21

2

L v

v

f

f

= × + -

æ ö÷ç= + × - + ÷ç ÷çè ø

A v

A v v

dt´

On the 7D phase space

Page 7: Geometric Gyrokinetic Theory 几何回旋动力论

What is the phase space?

1 2 2{( ) ( ) }xP x p x M p T M g p p mc* -= , | Î , Î , , = -

7D

spacetime inverse of metric

Phase space is a fiber

bundle P Mp : ¾® .

Hamilton's Eq. 0 .i dt g =

World-line

Page 8: Geometric Gyrokinetic Theory 几何回旋动力论

Symmetry is invaraint

( )L d i i d dSh h hg g g= + =

Noether’s Theorem (1918)

Cartan’s formula

( )

is conversed.

d dS

S

g h t t

g h

× × = ×

× -

Page 9: Geometric Gyrokinetic Theory 几何回旋动力论

What is gyrosymmetry?

1 1x y

y x

v vB x v B y v

hæ ö æ ö¶ ¶ ¶ ¶÷ç ÷ç÷ ÷ç= + + -ç÷ ÷ç ç÷ ÷ç÷¶ ¶ ¶ ¶ç è øè ø

Noether’s Theorem

Gyrophasecoordinate

Coordinate perturbation to find .

Q: How does the dynamics transform?

A: It transforms as an 1-form!

h

2 2

2x yv v

Bm

+=

hq

¶=

Amatucci, Pop 11, 2097 (2004).

Page 10: Geometric Gyrokinetic Theory 几何回旋动力论

Dynamics under Lie group of coordinate transformation

[ ]

1 1 2( )

2( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

G Z

G Z

Z g z g Z Z L Z O

Z i d Z d G Z O

g g g g e

g g g e

- * -é ùG = = = - +ë û= - - × +

0

10

( )

Continuous Lie group,

Vector field (Lie algbra),

,

g z Z g z

G dg d

G dg d

e

e

e

e

e=

-=

: = ,

= / |

- = / | .

a

Zg in Pullback

Cartan’s formula Insignificant

No need for Poisson bracket

Taylor expansion

Page 11: Geometric Gyrokinetic Theory 几何回旋动力论

Lie perturbations

0 1 2

0 1

( )

0, 0,

Noncanonical coordinates:

Z u w q

g g g g

g gq q

= , , ,

= + + +...,

¶ ¶= ¹

¶ ¶

X

: ( ) 0 .g Z Z g Z such that g q® = ¶ / ¶ =

1

1

1 2

20 1

0 0

1 1 ( ) 0 1

2 2 ( ) 1

2( ) ( ) 0 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ,

( ) ( ) ( )

1( ) .

2

G Z

G Z

G Z G Z

Z Z Z O

Z Z

Z Z i d Z dS

Z Z L Z

L L Z dS

g g g e

g g

g g g

g g g

gæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

= + + ,

= ,

= - -

= -

+ - +

1 2 1 2, , , G G S S

Gyrocenter gauges

0 1 0 1

0 00 1 1 1 1 0

0 0 0 00

0 0 0 0

1 1 1 1

1 1 1 1

1 1

1 11

e e

r r e

r r

= + , = + ,

´ ´, , ,

æ ö æ öÑ ¶ Ñ ¶÷ ÷ç ç÷ ÷, , ,ç ç÷ ÷ç ç÷ ÷ç çW ¶ W ¶è ø è ø

æ ö æ öÑ ¶ Ñ ¶÷ ÷ç ç÷ ÷, , ,ç ç÷ ÷ç ç÷ ÷W ¶ W ¶è ø è ø

: : :

: :

: :

c c

E E B B

E E t B B t

E E B B

E E t B B t

E E E B B B

v B v BE E B B

Page 12: Geometric Gyrokinetic Theory 几何回旋动力论

Perturbation techniques — quest of good coordinates

Peanuts by Charles Schulz. Reprint permitted by UFS, Inc.

Page 13: Geometric Gyrokinetic Theory 几何回旋动力论

20 1 ( )Og eg g= + + ,

( )22 2 2

0 0002 2

Dw u wA u d d dtB

q fgæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷çè ø

+ += + + × + - + ,b D X

0 110 0

3

0 1 130 0 0

1 0

0

1( )

2 2

1( ) ( )

2

1( )

2 2

w w wu d

B B

ww d dwB B B

w wu dt

t B t

r r rg

r q r

f r r r r

é ùæ ö÷çê ú= Ñ × + + × ´ - Ñ × + + ×Ñ÷ç ÷çê úè øë ûé ù é ùê ú ê ú+ - × × + + × + + ×Ñê ú ê úë û ë ûé ùæ ö¶ ¶÷çê ú- + + × - ×Ñ × - + × .÷ç ÷çê úè ø¶ ¶ë û

ca b D a A X XB

a b A X c A X aB

D c aX E b

11 0 1( ) ( )

dgZ g Z G Z

d eee == , , | = , 11 ( ) 0 11( ) ( ) ( ) ( )G ZZ Z i d Z dS Zg gg= - + ,

under coordinate perturbationg

Page 14: Geometric Gyrokinetic Theory 几何回旋动力论

01 1 0 1 1

0

1 11 1 1

0 0

31

01 1 30 0 0

1 0 1

0

1( )

2 2

( )

1( )

2

( )

u

w

w wZ G S u

B

S Sw wd du G

B u B w

Sw wdw G

B B B

wd

B

q

g r r

r

rq

r q

é æ ö÷çê= ´ - +Ñ + Ñ × + + × ´Ñ÷ç ÷çê è øëù éé ù¶ ¶ú êê ú- Ñ × + + × + × + + + +ú êê ú¶ ¶ë ûû ë

ù é ¶ú ê+ + × + - + - × ×Ñú ê ¶û ëùú+ + × + - × +úû

X

X

X

cG B b a b B

D a A X X G b

A X a a bB

A X c E G 11 1 1

0

0

( )

1

2 2

u w

SuG wG

t

w wu dt

t B t

f r

r r r

é ¶ê + + - +ê ¶ë

ùæ ö¶ ¶÷ç ú- × + ×Ñ × + + × .÷ç ÷ç úè ø¶ ¶ û

X

D c aE b

1 0g q¶ / ¶ = .

+

1 1, G S

FreedoomGyro-center gauges

under coordinate perturbationg

Page 15: Geometric Gyrokinetic Theory 几何回旋动力论

( )

( )

0 1

2 2 2 2

0 0 0

0

2

1 10

( ) ( )

2 2

( )2

Z Z Z

w u w DA u d d dt

B

wZ d H dt

B

g g g

g q f

g

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷çè ø

= + ,

+ += + + × + - + ,

=- × - ,

b D X

R X

( )

2 2

01 0 130 0

2 2

0 0 020 0

0

2 4

4 2

w w uH

B B

w wR

B B

Rt

y= × + ×Ñ´ +Ñ

- Ñ × - :Ñ - ,

¶º Ñ × , º - × ,

E b bB

E bb E

cR c a a

°

011 1 1

0

2

0

( ) ( ) ( )

1

2

wB

d

E bX A X Xc A

p

y f r r r

a a q a a ap

^´º + - × + - + ,×

º , º - .ò

Gyrocenterdynamics

in gyrocenter coordinate, / =0g g q¶ ¶

0

( )

( )

( ) ( )

( )

Gyro-gauge invariant

R R X

X

R R X t

t

d

q q d

¢

¢

¾® +Ñ ,

¾® + .

= , , = , ,

Ñ = - ¶/ ¶ ,Ñ .

R X

Page 16: Geometric Gyrokinetic Theory 几何回旋动力论

Gyrocenter dynamics

0i dt g= .

† †

† †

† †

0 00 0 2

0

1 2 0 00

2

0

( )2

2

1

2

02

du

dt

du

dtBd d u

B Rdt dt B

B

d w

dt B

m

q

y ym

mm

é ùê úë û

´= + ×Ñ´ - ,

× ××

= ,×

×Ñ= + × - + + ×Ñ´

¶+ + - Ñ × - :Ñ

= , º ,

X B b Eb b

b B b B

B E

B bEX

R b b

E bb E

( )†0

2†

0 0 1 2

2†

0 0 1 2

†0

†† † † †

2

2

u

DB u

t t

DB

u

t

m y y

ff m y y

f

é ùê úê úê úê úê úë û

º Ñ´ + + ,

¶ ¶º - Ñ + + + - - .

¶ ¶

º + + + + ,

º + + ,

¶=Ñ´ , =- Ñ - .

B A b D

b DE E

A A b D

AB A E

Banos drift

, driftB´ ÑE B

drift by spacetime

inhomogeneties of 0E

Curvature drift

& curvature driftDÑ D

Effective potentials

Page 17: Geometric Gyrokinetic Theory 几何回旋动力论

Gyrokinetic equations

( )0 0 6

.

¶= , £ £ .

=

j

j

dZ Fj

dt Z

F F

0dZ

dtq

æ ö¶ ÷ç = ,÷ç ÷çè ø¶

0¶ ¶

+ ×Ñ + = ,¶ ¶

F Fd duF

t dt dt uX

X

Page 18: Geometric Gyrokinetic Theory 几何回旋动力论

Pullback of distribution function

[ ] ( )

pullback from ( ) :

( ) ( ) ( )

F Z

f z g F Z F g z*= = .

Particle distribution

Don't know ( ).f z

Gyrocenterdistribution

Page 19: Geometric Gyrokinetic Theory 几何回旋动力论

Physics of pullback transformation — Spitzer paradox

3 30

2 3

2 3

( ) ( )

( ) ( ) ( )

1

y y y

y

yy

j v g F Z dv v F x v dv

v F x F x O dv

F pv dv b

x B B

r

r e

* é ù= = + ,ë û

é ù= + ×Ñ +ë ûæ ö¶ Ñ ÷ç= = ´ .÷ç ÷çè ø¶

ò ò

ò

ò

Page 20: Geometric Gyrokinetic Theory 几何回旋动力论

Finally, gyrokinetic equations

0¶ ¶

+ ×Ñ + = ,¶ ¶

F Fd duF

t dt dt uX

X

( )

( )

0

0

22 31 1 2

( )

22 31 1 2

( )

14 ( ) ( ) ( ) ( )

2

14 ( ) ( ) ( ) ( )

2

ss Z g z

ss Z g z

q F Z G F Z G F Z G F Z d

q F Z G F Z G F Z G F Z d

f p

p

®

®

é ùê úÑ =- + ×Ñ + ×Ñ + ×Ñ .ê úë û

é ùê úÑ = + ×Ñ + ×Ñ + ×Ñ ,ê úë û

òå

òå

v

A v v

Gyrokinetic Maxwell’sequations

Page 21: Geometric Gyrokinetic Theory 几何回旋动力论

Gyrokinetic Poisson equation

( ) ( )

( ) ( )

0 1

0

2

0

1 1 2 220

( ) 4

( ) 2

1( ) ( ) ( )

ff

f

f p

p r

é ùê úê úê úê úë û

^

Ñ =- + + ,

º Ñ , , ,

é ùº + Ñ + ×Ñ ,ê úë û

å

ò

P

ss

q N N N

N wdwdu I F w u

N n VB

x

x x

x e e e e x D x b D

( )

( )( ) ( )

1

2

1 2 221 0

2 2

12 220 0 0

0

2( ) ( ) ( )

2

2( ) ( )

2 2

i

ii

i j

i ji ji j

iN M

i

i jM

i j

f f

f

¥^

-=

¥^ ^

+ -, =+ ¹

æ öÑ ÷ç ÷çº - ÷ç ÷ç ÷W! è ø

é ùæ ö æ ö+ Ñ Ñê ú÷ ÷ç ç÷ ÷ç ç+ ,ê ú÷ ÷ç ç÷ ÷ç ç÷ ÷ê úW W!! è ø è øê úë û

å

å

x x x

x x

( ) 4 412

0

1n O

Bf ræ ö÷ç ÷ç ÷÷ç^ ^ ^è øÑ × Ñ + Ñ

Polarization density2 2 1r ^Ñ =

Page 22: Geometric Gyrokinetic Theory 几何回旋动力论

Physics of pullback transformation — polarization density

1Xx X Gr= + + ,

01 ( ) 22 X Z g z

e ep G dq f

p ® ^

-= = Ñ .

1 1

1 XG S

B= ´ Ñ .

Page 23: Geometric Gyrokinetic Theory 几何回旋动力论

Conclusions

Gyrokinetic theory is about gyro-symmetry.

Decouple the gyro-phase, not "averaging out".

Pullback transformation is indispensable.

http://www.pppl.gov/~hongqin/Gyrokinetics.php

Decouple. Not average.

PullbackPullbackPullback

Page 24: Geometric Gyrokinetic Theory 几何回旋动力论

Gyrokinetic Poisson equation

( ) ( ) ( )0 1N N N= + ,x x x

20 0( ) 4 s

s

q Nf pÑ =- ,åx

0 1

21 1( ) 4 s

s

q N N Nfff pé ùê úê úê úê úë û

Ñ =- + + .åx

Page 25: Geometric Gyrokinetic Theory 几何回旋动力论

1-form, 2-form, 3-form and all that …

Vector ii

v vx

¶=

1-form iip p dx= 2-form j ii

j

pdp dx dx

x

¶=

d

Exterior

derivative

X

iip v Î ¡

Vector ii

v vx

¶=

X

*j iijj i

ppv dx T M

x x

æ ö¶¶ ÷ç ÷- Îç ÷ç ÷ç¶ ¶è ø

Inner product

Pullback

Push forward

vL g

Vector field

Any tensor

Contra-variant base

Page 26: Geometric Gyrokinetic Theory 几何回旋动力论

Vector field and flow

®: ( )g z Z t

zZ

( )G z TgVector field Î

Lie symmetry group

Phase Space

Lie algebra is the Infinitesimal generator of Lie group

Page 27: Geometric Gyrokinetic Theory 几何回旋动力论

Lie perturbations

0 1 2

0 1

( )

0, 0,

Noncanonical coordinates:

Z u w q

g g g g

g gq q

= , , ,

= + + +...,

¶ ¶= ¹

¶ ¶

X

: ( ) 0 .g Z Z g Z such that g q® = ¶ / ¶ =

1

1

1 2

20 1

0 0

1 1 ( ) 0 1

2 2 ( ) 1

2( ) ( ) 0 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ,

( ) ( ) ( )

1( ) .

2

G Z

G Z

G Z G Z

Z Z Z O

Z Z

Z Z i d Z dS

Z Z L Z

L L Z dS

g g g e

g g

g g g

g g g

gæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

= + + ,

= ,

= - -

= -

+ - +

1 2 1 2, , , G G S S

Gyrocenter gauges

0 1 0 1

0 00 1 1 1 1 0

0 0 0 00

0 0 0 0

1 1 1 1

1 1 1 1

1 1

1 11

c c

E E B B

E E t B B t

E E B B

E E t B B t

e e

r r e

r r

= + , = + ,

´ ´, , ,

æ ö æ öÑ ¶ Ñ ¶÷ ÷ç ç÷ ÷, , ,ç ç÷ ÷ç ç÷ ÷ç çW ¶ W ¶è ø è ø

æ ö æ öÑ ¶ Ñ ¶÷ ÷ç ç÷ ÷, , ,ç ç÷ ÷ç ç÷ ÷ç çW ¶ W ¶è ø è ø

E E E B B B

v B v BE E B B: : :

: :

: :

Time dependentPedestal dynamics

Large Er shearingOrbit squeezing

Micro turbulence ELM

Page 28: Geometric Gyrokinetic Theory 几何回旋动力论

Leading order gyrocenter coordinates

[ ][ ]

[ ]0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) 1

( ) ( ) ( )

( ) ( ) ( )( )

( )

x x

x x x

x x

x x

xx

u y y y y y

w y y y y y

y y

y y y

y y yy

B yr

, º - × ,

, , º - ´ ´ ,

, × , = ,

, º ´ , ,

´ -, º .

v b v D b b

v c v v D b b

c v c v

a v b c v

b v Dv

[ ]

0

1

0 0 02

00

( ) ( )

( ) ( ) ( ) sin ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( )

x x x x

g z t Z u w t

u u w w t t

y y u y y w y y

y y yy y

B yB y

q

r q

: = , , = , , , ,

º + , , º , , º , , º - × , º ,

º + , + , , .

´º , º ,

x v X

x X X v X v X v c X e X

v D v b v c v

E B BD b

a

( ) ( ) ( )u w= + + .v D X b X c X

Lab phase space coords

Time-dependentBackground EXB drift

Page 29: Geometric Gyrokinetic Theory 几何回旋动力论

( )

[ ]

21

01 3 2 20 0 0

1 1

0

2

01 1 120 0 0

20 1

101 20

0 111

( )2

( )

( )2

( )2

1( )

u

w

S w wu w

u B B B

S

B

w wu wG S

B B B

B S wG

w B

B SG

w w wq

r

r

rq

r

¶=- + + Ñ × ´ - Ñ × ´×Ñ

Ñ + ++ ´

= × + ×Ñ × - ×Ñ × - ×Ñ + + ,×Ñ

¶= - × + + ,×Ñ ×

¶=- - + .×

XG b a b b D a baa B

A Xb

c b a b b D a b A Xa B

b Xa B c A

Xa A

±

( ) °

² ±

201 1 1

1 0 0 0 030 0

2 2

02 2 20 0 0 0

3 2

0 1 02 20 0 0 0 0

2

( )2

2 2

S S S wu S E B B

t B u B

wu w w u wu

B B B B

wu w w w uw

B B B t B B t

q

y

éêêê^ êêë

æ ö´¶ ¶ ¶÷ç ÷+ + ×Ñ + + = × ×Ñç ÷ç ÷ç¶ ¶ ¶è ø

ùú+ Ñ × ´ - Ñ × ´ - : - ×Ñ ×Ñúû

¶ ¶+ ×Ñ × + × + × + - Ñ : + × .×Ñ

¶ ¶

E bb E aa

a b b D a b ca b a bB

D bb D a b a E aa aa B

P

1 1 and G S

Page 30: Geometric Gyrokinetic Theory 几何回旋动力论

( )

2 2

† † † †2 0 1 1 1 1 1 1

†1 1 1 1

0 0

† 11 1 1

1 1

2 2

w

dt

u w

wG G

B B

t

q

g y

y

f y

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç^ è ø è ø

= ,

é ùº × ´ ´ - + × ´ + ×ê úë û

º + + ,

¶º - Ñ - - Ñ .

x

E G B b b c G B E G

a cG G

AE

2 1 2 1: ( ) ( ) g g Z Z g g Z® = o

†22 2 1 1

0 0

†2 2 1 1

†0 22 1 1

†0 22 1 1

1 1

2

1

21

21

2

u

w

SS

u B B

G S

B SG

wB S

Gw wq

q

æ ö÷ç ÷ç ÷÷çè ø

æ ö÷ç ÷ç ÷÷çè ø

æ ö÷ç ÷ç ÷÷çè ø

æ ö÷ç ÷ç ÷÷çè ø

¶=- + Ñ ´ + ´ ´ ,

= ×Ñ + × ´ ,

¶= + × ´ ,

¶¶

=- + × ´ ,¶

XG b b G B b

b b G B

c G B

a G B

²02 2 21 0 0 2

0

S S Su S E B

t B uy

q

æ ö´¶ ¶ ¶÷ç ÷+ + ×Ñ + + = .ç ÷ç ÷ç¶ ¶ ¶è ø

E bb P

2 2 2, ,Second order, and g G S

1

1 2

2 2 ( ) 1

2( ) ( ) 0

( ) ( ) ( )

1( ) .

2

G Z

G Z G Z

Z Z L Z

L L Z

g g g

gæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

= -

+ -

2 0gq

¶=

Page 31: Geometric Gyrokinetic Theory 几何回旋动力论

Curvature drfit

( )

† 22 2

2 2 2

2 2

1 ( )

( )

( )

B Bu u b b b bu ub u u O

b B B ub b B B

b b bub u b u O

B Bb

ub u OB

e

e

e

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

^

æ ö+ Ñ´ Ñ´ ×Ñ´ ÷ç= = + - +÷ç ÷çè ø× + ×Ñ´

Ñ´ ×Ñ´= + - +

Ñ´= + + .

0D case=

Page 32: Geometric Gyrokinetic Theory 几何回旋动力论

Pullback of distribution function

3( ) ( ) ( ) [ ( ) ( )] [ 1 ]

( ). ( ).

,

Problem: don't know Solution: pullback from

j x f z v d j x n x x v

f z F Z

= , = - , º - ,ò v j v

[ ] ( )( ) ( ) ( )f z g F Z F g z*= = .

( )

( )0

0 1 2 0 2 1

2

1 10

32

13

2

1 2( )

( ) ( ) ( ) ( ( ))

1( ) ( ) ( )

2

( ) ( )

( ) ( )( )1

( ) ( )2 Z g z

f z g F Z g g g F Z g F g g Z

F Z G F Z G F Zg

G F Z O

F Z G F ZO

G F Z G F Z

e

e

* * * * *

*

®

é ù= = = ë û

é ùê ú+ ×Ñ + ×Ñê ú=ê úê ú+ ×Ñ +ë û

é ù+ ×Ñê úê ú= + .ê ú+ ×Ñ + ×Ñê úë û

o o

Needed for Maxwell’q eqs.

Definition of pullback2 1 0

0

2 1

g g g g

g z Z

g g Z Z

= ,

: ,

: ,

o o

a

o a

0Pullback of

nonperturbative

g