GRI-Mech 3

Embed Size (px)

Citation preview

  • 7/24/2019 GRI-Mech 3

    1/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 1/15

    WHAT'S NEW IN GRIMech 3.0GETTING THE FILESHOW TO CITE GRIMECH 3.0TARGETSPERFORMANCE THAT WE KNOW ABOUT

    WHAT'S NEW IN GRIMech 3.0

    GRI-Mech 3.0 is an optimized mechanism designed to model natural gas combustion, including NOformation and reburn chemistry. It is the successor to version 2.11, and another step in the continuingupdating evolution of the mechanism. The optimization processis designed to provide sound basickinetics which also furnish the best combined modeling predictability of basic combustion properties.Improvements were made in the categories of updating the kinetics with recent literature results,including some new and improved target experiments to the optimization, expanding the mechanism

    and target selection, and examining the sensitivity to the thermodynamics.

    Ratecoefficient parameter changes are noted on the individual reaction Web pages. The CH kineticsimportant to prompt NO formation were altered in light of new measurements. New expressions werealso used for the H + O2reactions, CH3+ O2, CH2O + H and CH2O decomposition. The methanol

    decomposition/chemical activation system was recomputed. The oxidation steps CH3+ O and CH2+

    O2feature new branching paths.

    Two main additions were made to the kinetics mechanism, with the addition of 4 species.Acetaldehyde and vinoxy chemistry are included to better describe ethylene oxidation, and this path is

    now included among the Ox+ C2Hyreaction products. Because natural gas contains propane (and

    some higher hydrocarbons that may be approximately represented by propane), a minimal set ofpropane kineticsis included to model this species, as a minor constituent only.

    Other new target additions include a series of shock tube observations sensitive to the oxidation of theformaldehyde intermediate a set of shock tube, low pressure flame, and flow reactor experimentsconcerning prompt NO formation and reburn and a few targets concerning the shortening of methaneshock tube ignition delays by small amounts of propane or ethane. The sets of shock tube ignitiondelays and laminar flame speeds were revised and expanded. Many of these changes reflect theacquisition of improved data.

    The new mechanism contains 325 reactions (3 are duplicates because the sum of two rate parameterexpressions is required) and 53 species (including argon). The final optimization to 77 targets altered31 rate parameters.

    The major results of the new mechanism optimization are:

    1. Deviations from the target values are generally less than previously. (The chi square for the sum ofcommon retained targets dropped from 0.96 to 0.81.)

    2. Similar final values for the key rates CH3+ H, CH3+ OH, and CH3+ O2were found.

    3. Including formaldehyde target optimization did not require changes to the new expressions for thesensitive CH2O + M and CH2O + H rate constants. Other changes consistent with the rest of the

    targets sufficed.

    http://combustion.berkeley.edu/gri-mech/version30/propane.htmlhttp://combustion.berkeley.edu/gri-mech/version30/propane.htmlhttp://combustion.berkeley.edu/gri-mech/data/frames.htmlhttp://combustion.berkeley.edu/gri-mech/method.htmlhttp://-/?-http://-/?-http://-/?-http://combustion.berkeley.edu/gri-mech/version30/propane.htmlhttp://combustion.berkeley.edu/gri-mech/data/frames.htmlhttp://combustion.berkeley.edu/gri-mech/version30/ThermoSens.htmlhttp://combustion.berkeley.edu/gri-mech/method.htmlhttp://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 GRI-Mech 3

    2/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 2/15

    4. Significant thermodynamics sensitivitywas found only for HCN in some targets, leading to analterationof the JANAF value.

    5. A new, improved low pressure flame prompt NO target results in higher values for CH + N 2, and

    predictions of increased prompt NO.

    6. New lower experimental flame speed values remain overpredicted by the optimized mechanism.We have not examined transport uncertainties yet in this regard. Note also in making comparisons that

    some computational inaccuracies exist in the flame speed computations used for the GRI-Mech 1.2target optimization.

    Some detailson the new optimization are provided.

    GETTING THE FILES

    The following files can be loaded into your computer (you may need to select a load to diskoptionin your Web browser)

    grimech30.dat A reaction mechanism and rate coefficient file, in Chemkin

    format

    thermo30.dat A thermochemical data file to be used with grimech30.dat, as

    NASA polynomial coefficients

    transport.dat A file containing the parameters needed for calculating

    transport coefficients to be used in the Sandia flame code

    bugfix.dat A file containing selected user questions, comments, and

    suggestions related to the implementation of GRIMech

    These files may also be obtained by anonymous ftp from unix.sri.com, the directory gri.

    HOW TO CITE GRIMECH 3.0

    To cite GRIMech 3.0, please refer this web page: Gregory P. Smith, David M. Golden, MichaelFrenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K.Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qinhttp://www.me.berkeley.edu/gri_mech/

    TARGETS

    The rate parameters of 325 reactions were optimized against the following experimental targets(measurement uncertainties, when reported by the cited investigators, are indicated):

    http://combustion.berkeley.edu/gri-mech/bugfix.dathttp://combustion.berkeley.edu/gri-mech/version30/files30/transport.dathttp://combustion.berkeley.edu/gri-mech/data/nasa_plnm.htmlhttp://combustion.berkeley.edu/gri-mech/version30/files30/thermo30.dathttp://combustion.berkeley.edu/gri-mech/data/k_form.htmlhttp://combustion.berkeley.edu/gri-mech/data/frames.htmlhttp://combustion.berkeley.edu/gri-mech/version30/files30/grimech30.dathttp://combustion.berkeley.edu/gri-mech/version30/OptCom.htmlhttp://combustion.berkeley.edu/gri-mech/data/species/hcn.htmlhttp://combustion.berkeley.edu/gri-mech/version30/ThermoSens.html
  • 7/24/2019 GRI-Mech 3

    3/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 3/15

    SHOCK-TUBE IGNITION DELAY MEASUREMENTS

    IG.1a Seery, D.J., and Bowman, C.T. (1970)Combust. Flame14, 37.

    CH4-O2-Arphi = 1.0, P = 1.8, 2.04 atm, T = 1500,1700 KIG.1b

    IG.2

    Seery, D.J., and Bowman, C.T. (1970)Combust. Flame14, 37.

    CH4-O2-Arphi = 5.01, P = 3.8 atm, T = 1600 K

    IG.6a Hidaka, Y., Gardiner, W.C., and Eubank, C.S. (1982)J. of Molec.Sci.

    (China)2, p.141-53.

    C2H6-O2-Arphi = 0.275 - 0.764, P = 0.25 atm, T = 1600 K

    IG.6b

    IG.T1

    Frenklach, M., and Bornside, D.E., (1984)Combust. Flame56, 1

    CH4-C3H8-O2-Ar (9.5%-1.9%-19%-69.6%)phi = 1.5, P = 2.5 atm, T = 1410 K

    IG.T2

    Spadaccini, L.J., and Colket, M.B., (1994)Prog. Energy Combust. Sci.20,431.

    CH4-C3H8-O2-Ar (3.4%-0.1%-7%-89.5%)phi = 1.043, P = 7.095 atm, T = 1640 K

    IG.St1a Spadaccini, L.J., and Colket, M.B., (1994)Prog. Energy Combust. Sci.20,

    431.

    CH4-C2H6-O2-Ar (3.29%-0.21%-7%-89.5%)phi = 1.045, P = 6.1 - 7.6 atm, T = 1356 - 1688 K

    IG.St1b

    IG.St3a Seery, D.J., and Bowman, C.T., (1970)Combust. Flame14, 37.

    CH4-O2-Ar (4.8%-19.1%-76.1%)phi = 0.5, P = 1.6 - 1.9 atm, T =1530 - 1845 KIG.St3b

    IG.St4a

    Peterson, E.L., Davidson, D.F., Rohrig, M., Hanson, R.K., and Bowman,

    C.T. (1995), to be published.

    CH4-O2-Ar, phi = 1.0P = 34.6 - 83.9 atm, T =1408 - 1706 K

    IG.St4b

    SHOCK-TUBE SPECIES PROFILE MEASUREMENTS

    CH3.C1a MaximumCH3concentration

    Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K.,and Bowman, C.T. (1994) 25th Symposium(International) on Combustion, Poster 3 - 23.

    CH4-O2-Ar (994 ppm-0.2021%-99.7%)phi = 0.984, P = 1.0 atm, T = 2000,2400 K

    CH3.C1b

    CH3.T1a Time of CH3maximum

    CH3.T1b

    Maximum Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K.,

    http://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st4b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st4a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st3b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st3a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.t2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.t1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.6b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.6a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.1a.html
  • 7/24/2019 GRI-Mech 3

    4/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 4/15

    CH3.C2 CH3

    concentration

    and Bowman, C.T. (1994) 25th Symposium

    (International) on Combustion, Poster 3 - 23.

    C2H6-O2-Ar (295 ppm-0.1055%-99.865%)phi = 0.769, P = 1.17 atm, T = 1794 K

    CH3.T2 Time of CH3

    maximum

    CH3.C3MaximumCH3

    concentration

    Davidson, D.F., DiRosa, M., Chang, A.Y., Hanson, R.K.,and Bowman, C.T. (1992) 24th Symposium

    (International) on Combustion, p. 589.

    C2H6-Ar (206 ppm)P = 1.35 atm, T = 1684 K

    CH3.T3 Time of CH3

    maximum

    CH3.C4MaximumCH3concentration

    Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K.,and Bowman, C.T. (1994) 25th Symposium(International) on Combustion, Poster 3 - 23.

    CH4-O2-Ar (0.2021%-0.1%-99.7%)phi = 4.02, P = 1.02 atm, T = 2264 K

    CH3.T4 Time of CH3

    maximum

    CH3.StC6

    Time of CH3maximum

    Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K.,and Bowman, C.T. (1994) 25th Symposium(International) on Combustion, Poster 3 - 23.

    CH4-O2-Ar (0.1%-0.4%-99.5%)phi = 0.5, P = 1 atm, T = 1932 - 2454 K

    CH3.StC7

    OH.1a

    Time to halfof OHmaximum

    Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K.,and Bowman, C.T. (1994) 25th Symposium(International) on Combustion, Poster 3 - 23.

    CH4-O2-Ar (0.1%-0.2%-99.7%)phi = 1, P = 1.0 atm, T = 2000 - 2200 K

    OH.1b

    OH.2

    Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K.,and Bowman, C.T. (1994) 25th Symposium(International) on Combustion, Poster 3 - 23.

    C2H6-O2-Ar (300ppm-0.105%-99.89%)phi = 0.079, P = 1.21 atm, T = 1817 K

    OH.3aTime to halfof OHmaximum

    Yu, C.L., Wang, C., and Frenklach, M. (1995)J.Phys.Chem.99, 14377.

    CH4-O2-Ar, phi = 0.04, P = 1.51 atm, T = 1750 K

    CO.C1a Maximum CO

    concentration

    CO.T1aTime to halfof COmaximum

    OH.3bTime to halfof OHmaximum

    Yu, C.L., Wang, C., and Frenklach, M. (1995)

    http://combustion.berkeley.edu/gri-mech/version30/targets30/oh.3b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.t1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.c1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.3a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.stc7.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.stc6.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c2.html
  • 7/24/2019 GRI-Mech 3

    5/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 5/15

    CO.C1b Maximum CO

    concentration

    J.Phys.Chem.99, 14377.

    CH4-O2-Ar, phi = 0.04, P = 1.64 atm, T = 1900 K

    CO.T1bTime to halfof COmaximum

    OH.3c

    Time to half

    of OHmaximum

    Yu, C.L., Wang, C., and Frenklach, M. (1995)J.Phys.Chem.99, 14377.

    CH4-O2-Ar, phi = 0.667, P = 1.51 atm, T = 1750 K

    CO.C1c Maximum CO

    concentration

    CO.T1cTime to halfof COmaximum

    OH.3d

    Time to half

    of OHmaximum

    Yu, C.L., Wang, C., and Frenklach, M. (1995)J.Phys.Chem.99, 14377.

    CH4-O2-Ar, phi = 0.667, P = 1.64 atm, T = 1900 K

    CO.C1d Maximum CO

    concentration

    CO.T1dTime to halfof COmaximum

    OH.ST8

    Time to half

    of OHmaximum Yu, C.L., Wang, C., and Frenklach, M., 'Chemical

    Kinetics of Methyl Oxidation by Molecular Oxygen,'(1995)J.Phys.Chem.99, 14377.

    CH4-O2-Ar (1%-1.5%-97.5%)phi = 1.33, P = 2.45 atm, T = 1865 K

    CO.ST8Time to halfof COmaximum

    CO.SC8 Maximum CO

    concentration

    BCO.T1

    Time to half

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-Ar P = 1.17 atm, T = 2124 K

    BCO.T2

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-Ar P = 1.51 atm, T = 1724 K

    BCO.T3

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,

    M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-O2-Ar, phi = 5.88 P = 2.32 atm, T = 1784 K

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,

    http://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.sc8.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.st8.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.st8.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.t1d.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.c1d.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.3d.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.t1c.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.c1c.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/oh.3c.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.t1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/co.c1b.html
  • 7/24/2019 GRI-Mech 3

    6/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 6/15

    BCO.T4 of CO

    maximum

    M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-O2-Ar, phi = 0.25 P = 1.89 atm, T = 1442 K

    BCO.T5

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-O2-Ar, phi = 1.68 P = 0.911 atm, T = 1768

    BCO.T6

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-O2-Ar, phi = 0.17 P = 2 atm, T = 1515 K

    BCO.T7

    Eiteneer, B., Yu, C.-L., Goldenberg, M., and Frenklach,M.,J. Phys. Chem.102, 5196, (1998).

    CH2O-O2-Ar, phi = 1 P = 1.51 atm, T = 1720 K

    BCH2O.T1Time to halfof COmaximum

    Hidaka, Y., Taniguchi, T., Tanaka, H., Kamesawa, T.,Inami, K., and Kawano, H. (1993) Combust. Flame 92,365.

    CH2O-O2-Ar, phi = 2.0 - 4.0P = 1.55 - 2.31 atm, T = 1256 - 1591 K

    BCH2O.T2

    BCH2O.T3

    REACTORS

    SR.10cTemperaturewhere [CO2]

    = 500 ppm

    Kristensen, P.G., Glarborg, P., and Dam-Johansen, K.(1995), unpublished data.

    LAMINAR FLAME SPEED

    F1

    Vagelopoulos, C.N., and Egolfopoulos,F.N., 'Direct ExperimentalDetermination of Laminar Flame Speeds,' Paper WSS/CI 97S-022,Western States Section/Combustion Institute Meeting, Livermore, CA,April 1997.

    CH4-air, T(0) = 300 Kphi = 0.98, P = 1 atm

    F2Vagelopoulos, C.M., Egolfopoulos, F.N., and Law, C.K., 'FurtherConsiderations on the Determination of Laminar Flame Speeds with theCounterflow Twin-Flame Technique,' (1994) 25th Symposium(International) on Combustion, p. 1341.

    CH4-air, T(0) = 300 Kphi = 1.43 - 0.67, P = 1 atm

    F3

    F4

    Egolfopolous, F.N., Cho, P., and Law, C.K., 'Laminar Flame Speeds ofMethane-Air Mixtures under Reduced and Elevated Pressures,' (1989)Combust. Flame76, 375.

    CH4-air, T(0) = 300 Kphi = 1.0, P = 3 atm

    http://combustion.berkeley.edu/gri-mech/version30/targets30/f4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sr.10c.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bch2o.t3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bch2o.t2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bch2o.t1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t7.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t6.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t5.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/bco.t4.html
  • 7/24/2019 GRI-Mech 3

    7/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 7/15

    F5 Just, Th. (1994) Private communication.

    CH4-air, T(0) = 400 Kphi = 1.0, P = 4.9 - 19.7 atmF6

    SF7

    McLean, I.C., Smith, D.B., and Taylor, S.B., (1994) 25th Symposium(International) on Combustion, p. 749.

    CO-H2-air, (20.8%, 20.8%, 58.4%) T(0) = 300 Kphi = 1.69, P = 1.0 atm

    StF8

    References: Vagelopoulos, C.N., and Egolfopoulos,F.N., 'DirectExperimental Determination of Laminar Flame Speeds,' Paper WSS/CI97S-022, Western States Section/Combustion Institute Meeting,Livermore, CA, April 1997.

    C2H6-air, T(0) = 300 Kphi = 1.0, P = 1.0 atm

    PROMPT NO

    SNO.C11 NO (2 cm)

    concentration

    Luque, J., Smith, G.P., and Crosley, D.R. (1996) 26thSymposium (International) on Combustion, 959.

    CH4-O2-N2 (13.8%-25.9%-60.3%)phi = 1.07, P = 0.033 atm

    SCH.C11 Maximum CH

    concentration

    Luque, J., Smith, G.P., and Crosley, D.R. (1996) 26thSymposium (International) on Combustion, 959

    CH4-O2-N2 (13.8%-25.9%-60.3%)phi = 1.07, P = 0.033 atm

    SCH.C12

    Maximum CHconcentration

    Berg, P.A., Hill, D.A., Noble, A.R., Smith, G.P., Jeffries,J.B., and Crosley, D.R., 'Absolute CH ConcentrationMeasurements in Low Pressure Hydrocarbon Flames:Comparison with Model Predictions,' (1997) 35th

    Aerospace Sciences Meeting, Paper 97-0905, Reno.

    CH4-O2-N2phi = 0.8 - 1.27, P = 0.033 - 0.0395 atm

    SCH.C13

    CH.St

    Maximum ofCHconcentrationwithout NOdoping

    Woiki, D., Votsmeier, M., Davidson, D.F., Hanson,R.K.,and Bowman, C.T., 'CH-Radical ConcentrationMeasurements in Fuel Rich CH4/O2/Ar andCH4/O2/NO/Ar Mixtures Behind Shock Waves', (1998)Combust. Flame113, 624.

    CH4-O2-Arphi=1.6, P = 1.8 atm, T = 2800 K

    HCN OXIDATION

    NFR1 HCN relative

    concentration Flow Reactor: Glarborg, P., and Miller, J.A. (1994)Combust. Flame 99, 475.

    http://combustion.berkeley.edu/gri-mech/version30/targets30/nfr1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch.st.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sch.c13.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sch.c12.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sch.c11.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sno.c11.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/stf8.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sf7.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f6.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f5.html
  • 7/24/2019 GRI-Mech 3

    8/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 8/15

    NFR2 NO relative

    concentrationHCN-CO-O2-H2O-N2(318 ppm-1710 ppm-2.4%-2.8%-94.6%)P = 798 torr, T = 1165K, residence time = 54 ms

    NFR3 N2O relative

    concentration

    NF6 Maximum NO

    mole fractionSandia Flame: Miller, J.A., et al. (1984) 20th Symposium(International) on Combustion, p. 673.

    H2-O2-HCN-Arphi = 1.5, P = 25 torr

    NF7 Maximum CN

    mole fraction

    REBURNING

    NF11

    Ratio of CHmaximumconcentrationsat two levelsof NO doping

    NRL Flame: Williams, B.A., and Fleming, J.W. (1994)Combust. Flame 98, 93.

    CH4-O2-Ar-NO or N2O (1.2%)phi = 1.0, P = 10 torr

    NF12/13

    Ratio of CNmaximumconcentrationsfor NO and

    N2O doping

    NFR4NO molefraction atreactor exit

    Flow Reactor: Alzueta, M.U., Glarborg, P., and Dam-Johansen, K., 'Low Temeprature Interactions betweenHydrocarbons and Nitric Oxide. An Experimental Study,'Combust. Flame109, 25.

    CH4-C2H6-O2-NO-H2O-N2 (2864 ppm - 298 ppm -5090 ppm - 947 ppm - 2.16% - 96.92%)

    phi = 1.33, P = 1.05 bar, T = 1323 K, residence time =207 ms

    NFR5HCN molefraction atreactor exit

    CHNO.St

    Maximum ofCHconcentration

    with NOdoping

    Woiki, D., Votsmeier, M., Davidson, D.F., Hanson,R.K.,and Bowman, C.T., 'CH-Radical ConcentrationMeasurements in Fuel Rich CH4/O2/Ar andCH4/O2/NO/Ar Mixtures Behind Shock Waves', (1998)

    Combust. Flame113, 624.

    CH4-O2-NO-Arphi=1.6, P = 1.8 atm, T = 2800 K

    PERFORMANCE THAT WE KNOW ABOUT

    Summary

    Ignition DelaysSpecies Profiles in Shock-Tube Ignition ExperimentsLaminar Flame SpeedsLaminar Flame Species ProfilesFlow Reactor Experiments

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://combustion.berkeley.edu/gri-mech/version30/OptRes.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/chno.st.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr5.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf12.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf11.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf7.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf6.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr2.html
  • 7/24/2019 GRI-Mech 3

    9/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 9/15

    Stirred ReactorsPropane-Oxygen and Propane-Methane-Oxygen Ignition Delays

    Ignition Delays

    Asaba, T., Gardiner, W.C. Jr., and Stubbeman, R.F., 10th Symposium (International) onCombustion, p. 295 (1965). Ignition delays in H2-O2-Ar mixtures.Burcat, A., Crossley, R.W., and Scheller, K. Combust. Flame 18, 115 (1972). Ignition delays in2% C2H6 - 7% O2 mixtures.Cheng, R.K. and Oppenheim, A.K. Combust. Flame 58,125-139 (1984). Ignition delays in H2-O2-Ar mixtures.Crossley, R.W., Dorko, E.A., Scheller, K., and Burcat, A., Combust. Flame 19, 373 (1972).Ignition delays in CH4-C2H6 mixtures.Frenklach, M. and Bornside, D.E., Combust. Flame 56, 1 (1984). Ignition delays in a 9.5% CH4- 19.0 O2-Ar mixture.Gardiner, W.C. Jr., McFarland, M., Morinaga, K., Takeyama, T., and Walker, B.F. J. Phys.Chem. 75,1504-1509 (1971). Ignition delays in H2-O2-CO-Ar mixtures.Hidaka, Y., Gardiner, W.C., and Eubank, C.S. J. of Mol. Sci. (China) 2,141-153 (1982).

    Ignition delays in C2H6-O2-Ar mixtures. (Target IG.6aand IG.6b)Lifshitz, A., Scheller, K., Burcat, A., and Skinner, G.B., Combust. Flame 16, 311 (1971).Ignition delays in CH4-O2-Ar mixtures with 0.0% H2, 0.073% H2and 0.52% H2.Ignition delay time for 0.5%CH4/2.5%O2/diluent mixtures, as determined from time to peakOH concentration."High-Pressure Methane Oxidation behind Reflected Shock Waves," E. L.Petersen, M. Rohrig, D. F. Davidson, R. K. Hanson and C. T. Bowman, 26th Symp. (Int.) onCombustion, The Combustion Institute, Pittsburgh, pp. 799-806.Seery, D.J. and Bowman, C.T., Combust. Flame 14, 37 (1970). Ignition delays in several CH4-O2-Ar mixtures.

    4.8%CH4+19.1%O2+76.1%Ar(Targets IG St3aand IG St3b)

    9.1%CH4+18.2%O2+72.7%Ar(Targets IG 1aand IG 1b)16.7%CH4+16.7%O2+66.6%Ar33.3%CH4+13.3%O2+53.4%Ar(Target IG 2)

    Slack, M. and Grillo, A., Grumman Research Department Report RE-537, Investigation ofHydrogen-Air Ignition Sensitized by Nitric Oxide and by Nitrogen Dioxide, 1977. H2-Airignition delays.Snyder, A.D., Robertson, J., Zanders, D.L., and Skinner, G.B., Technical Report AFAPL-TR-65-93, Shock Tube Studies of Fuel-Air Ignition Characteristics, 1965. H2-Air ignition delays.Spadaccini, L.J. and Colket, M.B., III, Prog. Energy Combust. Sci., 20, 431 (1994).

    Ignition delays in CH4-O2 and CH4-C2H6-O2 mixtures

    % CH4 % O2 % C2H6 Density(10-5mol/cm3)

    Temperature (K) Ignition Delay

    3.29 7.0 0.21 5.5 1354 - 1698Graph

    (Targets IG.St1aand IG.St1b)

    3.40 7.0 0.10 5.5 1418 - 1742 Graph

    3.46 15.25 3.3, 6.3 1336 - 1679 Graph

    3.50 5.6 2.2, 4.2 1461 - 2025 Graph

    3.50 7.0 2.7, 4.9 1516 - 1918 Graph

    3.50 7.0 0.04

    0.35 5.5

    1682 - 17231445 - 1669

    Graph

    3.50 9.3 3.1, 5.8 1479 - 1759 Graph

    http://combustion.berkeley.edu/gri-mech/version30/figs30/v15.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v17.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v10.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v14.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v13.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v16.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v11.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v12.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v96_Synder.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v96_Slack.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/33.3Bowman-Seery.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/16.7Bowman-Seery.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/9.1Bowman-Seery.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st3b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.st3a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/4.8Bowman-Seery.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/elp_tau.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/Lif3c.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/Lif3b.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/Lif3a.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.6b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ig.6a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hidaka.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gardiner.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/fb.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/crossley.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/cheng.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/asaba.gifhttp://-/?-http://-/?-
  • 7/24/2019 GRI-Mech 3

    10/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 10/15

    6.00 12.0 3.9, 8.0 1464 - 1708 Graph

    Takahashi, K., Inomata, T., Moriwaki, T., and Okazaki, S. Bull. Chem. Soc. Jpn. 62, 2138(1989). Ignition delays in C2H6-O2-Ar mixtures.Tsuboi, T. and Wagner, H.Gg., 15th Symposium (International) on Combustion, p.883 (1974).Ignition delays in 0.2% CH4 - 2% O2 shock waves.

    Species Profiles in Shock-Tube Ignition Experiments

    Dean, A.M. et al., 17th Symposium on Combustion, p. 577, 1979. Profiles of CH2O in CH2O-Ar mixture.Dean, A.M., Johnson, R.L., and Steiner, D.C., Combust. Flame 37, 41, 1980. Profiles of CH2Oin CH2O-O2-Ar mixture.Hidaka, Y., Taniguchi, T., Tanaka, H., Kamesawa, T., Inami, K., and Kawano, H. (1993)Combust. Flame92, 365. CH2O Profiles:

    4.0% CH2O in Ar at 19.0 mol/m3 and T = 1805 K0.01% CH2O in Ar at 16.9 mol/m3 and T = 1907 K

    Eiteener, B. et al.J. Chem. Phys.102, (1998), 5196. CO Profiles:1.97% CH2O in Ar at 7.9 mol/m3 and T = 1959 K1.5% CH2O 1.5% O2 in Ar at 15.3 mol/m3 and T = 1532 K

    Hochgreb and Dryer, (1992) Combust. Flame91, 257. CH2O profile.Chang, A.Y., Davidson, D.F., DiRosa, M., Hanson, R.K., and Bowman, C.T., Shock TubeExperiments for Development and Validation of Kinetic Models of Hydrocarbon Oxidation,Work-in-Progress Poster 3-23, 25th Combustion Symposium.

    CH3 data0.10%CH4-0.40%O2-Ar 1 atm Peak CH3and Time to peak CH30.10%CH4-0.20%O2-Ar 1 atm Peak CH3and Time to peak CH3(TargetsCH3.C1a, CH3.C1b, CH3.T1a, and CH3.T1b)

    0.20%CH4-0.10%O2-Ar 1 atm Peak CH3and Time to peak CH31000ppm CH4 + 4034ppm O2 + Ar at 2210K and 1 atm. CH3 profile994ppm CH4 + 2021ppm O2 + Ar at 2224K and 1 atm. CH3 profile2012ppm CH4 + 1000ppm O2 + Ar at 2264K and 1 atm. CH3 profile(TargetsCH3.C4and CH3.T4)503ppm CH4 + 247ppm C2H6 + 1855ppm O2 + Ar at 1759K and 1.2 atm. CH3

    profile295ppm C2H6 + 1055ppm O2 + Ar at 1794K and 1.2 atm. CH3 profile(TargetsCH3.C2and CH3.T2)

    OH data

    1002ppm CH4 + 2000ppm O2 + Ar at 2166K and 1.1 atm. OH profile300ppm C2H6 + 1052ppm O2 + Ar at 1817K and 1.2 atm. OH profile

    CO2 data3007ppm CH4 + 6055ppm O2 + Ar at 2238K and 0.54 atm. OH profile2012ppm C2H6 + 7062ppm O2 + Ar at 2216K and 0.62 atm. CO2 profile

    Yu, C.-L., Wang, C., and Frenklach, M., 'Chemical Kinetics of Methyl Oxidation by MolecularOxygen,'J. Phys. Chem.99, 14377 (1995).

    OH and CO profiles in CH4-O2 mixtures

    %CH4

    %O2

    Density (10-5

    mol/cm3)

    Temperature(K)

    Profile Graphs

    0.4 5.0 1.04 1821 CO,OH

    0.4 5.0 1.58 1941 CO,OH

    0.4 20 1.04 1711 CO,OH

    http://combustion.berkeley.edu/gri-mech/version30/figs30/v20.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v19.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v28.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v27.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v30.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v29.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v91p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v54p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v92p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v54p.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v90p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v56p.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c4.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v52p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v51p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v50p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v49p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v48p.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v47p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v46p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v45p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v44p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hochgreb01.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/eiteneer02.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/eiteneer01.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hidaka02.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hidaka01.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/dean1980.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/dean1979.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/tsuboi.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/takahashi.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v15.gif
  • 7/24/2019 GRI-Mech 3

    11/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 11/15

    0.4 20 1.07 1944 CO,OH

    0.5 10 1.05 1752 CO,OH

    0.5 10 1.06 1843 CO,OH

    1.0 1.5 1.56 2025 CO,OH

    1.0 1.5 1.60 1865CO,OH

    (Targets CO.SC8, C0.SC8, andOH.ST8)

    1.0 2.0 1.06 2040 CO,OH

    1.0 2.0 1.57 1800 CO,OH

    1.0 3.0 1.07 1826 CO,OH

    1.0 3.0 1.58 1856 CO,OH

    E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, and C. T. Bowman, 'A Shock TubeStudy of High-Pressure Methane Oxidation,' Paper 95F-153, Western StatesSection/Combustion Institute Fall Meeting, October 30-31, 1995. Sample OH profile at 79.1

    atm, 1778 K, 0.56% CH4 + 1.14% O2 + Argon.Woiki, D., Votsmeier, M., Davidson, D.F., Hanson, R.K.,and Bowman, C.T., 'CH-RadicalConcentration Measurements in Fuel Rich CH4/O2/Ar and CH4/O 2/NO/Ar Mixtures BehindShock Waves,' (1998) Combust. Flame113, 624. Sample CH profile at 1.8 atm, 80 ppm CH4 +100 ppm O2 balance Ar without NO at 2875 Kand with 400 ppm NO at 2896 K.

    Laminar Flame Speeds

    Laminar flame speeds of methane-air at 1 atm. Vagelopoulos, C.N. and Egolfopoulos, F.N.,Twenty-seventh Symposium (International) on Combustion, p.513, 1998. Vagelopoulos, C.M.,

    Egolfopoulos, F.N., and Law, C.K., 25th Symp. (Int'l.) on Combust.p. 1341 (1994) VanMaaren, A., Thung, D.S., and deGoey, L.P.H., Combust. Sci. Tech.96, 327 (1994). (See alsoTargets F1, F2and F3.)Vagelopoulos, C.N. and Egolfopoulos, F.N., Twenty-seventh Symposium (International) onCombustion, p.513, 1998., Egolfopoulos, F.N., Zhu, D.L., and Law, C.K., Twenty-thirdSymposium (International) on Combustion, p.471,1990. Laminar flame speeds at 1 atm inC2H6-air mixtures. (Target StF8)Just, Th., personal communication. Laminar flame speeds of methane at 1, 5(Target F5), and20atm (Target F6), phi=0.75-1.25, at different cold-gas temperatures.Laminar flame speeds of methane at phi=1 and a range of pressures from 0.25 to 20 atm . Thesources are: Egolfopoulos F.N., Cho, P. and Law, C.K., Combust. Flame 76, 375 (1989).Garforth, A.M. and Rallis, C.J., Combust. Flame 31, 53 (1978). Babkin, V.S., Kozachenko,L.S., and Kuznetsov, I.L., Zh. Prikl. Mekhan. Tekn. Fiz. 145 (1964) Babkin, V.S. andKozachenko, L.S., Combust. Explosion and Shock Waves 2(3), 46 (1966) Babkin, V.S., V'yun,A.V. and Kozachenko, L.S., Combust. Explosion and Shock Waves 2(2), 32 (1966). Andrews,G.E. and Bradley, D., Combust. Flame 19, 275 (1972). Lijima, T. and Takeno, T., Combust.Flame 65, 35 (1986).Laminar flame speeds at 1 atm in H2-air mixtures. The sources are: Egolfopoulos, F.N., Zhu,D.L., and Law, C.K., Twenty-third Symposium (International) on Combustion, p.471,1990.Laminar flame speeds at 1 atm in C2H6-air mixtures. Dowdy, D.R., Smith, D.B., Taylor, S.C.,and Williams, A., Twenty-third Symposium (International) on Combustion, 325, 1990.

    Edmondson, H. and Heap, M.P., Combust. Flame, 16, 161 (1971). Egolfopoulos, F.N. and Law,C.K., Twenty-third Symposium (International) on Combustion, 333, 1990. (corrected inVagelopoulos et al., 1994) Gunther, R. and Janish, G., Combust. Flame, 19, 49 (1972). Koroll,G.W., Kumar, R.K., and Bowles, E.M., Combust. Flame 94, 330 (1993). Liu, D.S. andMacFarlane, Combust. Flame, 49, 59 (1983). Scholte, T.G. and Vaags, D.B., Combust. Flame,

    http://combustion.berkeley.edu/gri-mech/version30/figs30/h2fl.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/phi1.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f6.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/just20.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f5.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/just5.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/just1.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/stf8.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c2h6fl.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/f1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/CH4Su.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/chnostp.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/chstp.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/petersen.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v34.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v33.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v32.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v31.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v38.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v37.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v36.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v35.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.t1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c1b.htmlhttp://combustion.berkeley.edu/gri-mech/version30/targets30/ch3.c1a.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v40.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v39.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v42.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v41.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v26.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v25.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v24.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v23.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v22.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v21.gif
  • 7/24/2019 GRI-Mech 3

    12/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 12/15

    2, 495 (1959).McLean, I.C., Smith, D.B., and Taylor, S.B., 25th Symposium (International) on Combustion,(1994), 749. 1994. Laminar flame speeds at 1 atm in CO-H2. (Target SF7)Vagelopoulos C.M., Egolfopoulos F.N., and Law, C.K., Paper 25-303, Presented at the 25thSymposium (International) on Combustion, 1994. Laminar flame speeds of methane at 1 atm,

    phi=0.4-1.7, with three bath gases: Ar, N2, and CO2.Egolfopoulos, F.N., Zhu, D.L., and Law, C.K., 'Experimental and Numerical Determination ofLaminar Flame Speeds: Mixtures of C2 Hydrocarbons with Oxygen and Nitrogen,' 23th

    Symposium (International) on Combustion, p. 471, 1990. Laminar flame speeds of ethylene-airat 1 atm 300K.Vagelopoulos, C.N. and Egolfopoulos, F.N., Twenty-seventh Symposium (International) onCombustion, p.513, 1998. Laminar flame speeds ofpropane-airat 1 atm 300K.Egolfopoulos, F.N., Xhu, D.X., and Law, C.K., Combust. Sci. Tech. 83, 33, 1989. Laminarflame speeds of methanol-airat 1 atm 300K.Brown, M.J., and Smith, D.B., 'Aspects of Nitrogen Flame Chemistry Revealed by BurningVelocity Modeling,' Twenty-fifth Symposium (International) on Combustion, The CombustionInstitute, pp. 1011-1018 (1994). Laminar flame speeds in premixed flames at 70 torr and 60C.H2/N2O flames,a reanalysis of the data of Gray, P., Holland, S., and Smith, D.B., Combust.

    Flame 14, 361-374 (1970).

    Comments on GRI-Mech 1.2 flame speed computations.

    Laminar Flame Species Profiles

    Bernstein, J.S., Fein, A., Choi, J.B., Cool, T.A., Sousa, R.C., Howard, S.L., Locke, R.J., andMiziolek, A.W., Combust. Flame 82, 85 (1993). OH, CH, H, O, CO, CH3and HCOprofiles ina 20 torr CH4-O2-Ar flame.Fleming, J.W., Burton, K.A., and Ladouceur, H.D., Chem. Phys. Lett. 175, 395 (1990). OHand

    CHprofiles in a 10 torr CH4-O2 flame.Heard, D.E., Jeffries, J.B., Smith, G.P., and Crosley, D.R., Combust. Flame 88, 137 (1992).OH, CH, and Hprofiles in a 30 torr CH4-air flame.Williams, B.A., and Fleming, J.W., Combust. Flame 98, 93 (1994). OHand CHprofiles in a 10torr CH4-O2-Ar flame.Diau, E.W.-G., Smith, G.P., Jeffries, J.B., and Crosley, D.R., 'HCO Concentrations in Flamesvia Quantitative Laser-Induced Fluorsecence,' 27th Symposium (International) on Combustion,1998. Absolute HCO concentraion profiles in 25 torr methane-oxygen-nitrogen flames of lean,slightly rich, and fuel richstoichiometries.Berg, P.A., Hill, D.A., Noble, A.R., Smith, G.P., Jeffries, J.B., and Crosley, D.R., 'Absolute CHConcentration Measurements in Low Pressure Methane Flames,' Combust. and Flame, to be

    published, 1999.Absolute CH(optimization target SCH.c12) and OHprofiles in a 25 torr methane-oxygen-nitrogen flame of lean(0.80) stoichiometryCHand OHprofiles for a slightly rich(1.07) stoichiometry at 25 torrCH(optimization target SCH.c13) and OHprofiles for a rich(1.27) stoichiometry at 30torr.

    Berg, P.A., Smith, G.P., Jeffries, J.B., and Crosley, D.R., 'Nitric Oxide Formation and Reburnin Low Pressure Methane Flames,' 27th Symposium (International) on Combustion, 1998.NOlevelsvs. stoichiometry in low pressure methane-oxygen-nitrogen flames. Amount ofNOreburnat various seeding levels in rich(1.27) and lean(0.80) low pressure methane-oxygen-

    nitrogen flames.Luque, J., Smith, G.P., and Crosley, D.R., 'Quantitative CH Determinations in Low PressureFlames", 26th Symposium (International) on Combustion, p. 959, 1996.

    Absolute CHandNOprofiles in a stoichiometric 40 torr propane-air flame.Absolute CHandNOprofiles in a rich 40 torr propane-air flame.

    http://combustion.berkeley.edu/gri-mech/version30/figs30/ProRNO.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/ProRCH.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/ProSNO.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/ProSCH.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/berg_reburn.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/berg_no.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sriRoh.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sch.c13.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sriRch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sriSoh.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sriSch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sriLoh.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sch.c12.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sriLch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hcoRsri.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hcoSsri.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/hcoLsri.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/wf20.ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/wf20.oh.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sri30.h.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sri_ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sri30.oh.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/fleming.ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/fleming.oh.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.hco.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.ch3.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.co.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.o.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.h.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bernstein.oh.gifhttp://combustion.berkeley.edu/gri-mech/version30/flamecomment.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/h2n2ov.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/CH3OHSu.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/C3Su.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/C2H4Su.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/edlaw.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sf7.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/coh2fl.html
  • 7/24/2019 GRI-Mech 3

    13/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 13/15

    Thomsen, D.D., Kuligowski, F.F., and Laurendeau, N.M., 'Modeling of NO Formation in LeanPremixed High-Pressure Methane Flames' 1997 Klassen, M.S., Thomsen, D.D., Riesel, J.R.,and Laurendeau, N.M., 'Laser Induced Fluorescence Measurements of Nitric Oxide Formationin High Pressure Premixed Methane Flames,' Combust. Sci. Techn. 110, 229, 1995.

    NO formation in premixed atmospheric pressuremethane-oxygen-3.1nitrogen flames as afunction of stoichiometry.

    NO formation in lean premixed0.4methane-1.0oxygen-3.1nitrogen flames as a functionof pressure.

    NO formation in rich premixed0.6methane-1.0oxygen-3.1nitrogen flames as a functionof pressure.

    Miller, J.A., Branch, M.C., McLean, W.J., Chandler, D.W., Smooke, M.D., and Kee, R.J., 'TheConversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,' TwentiethSymposium (International) on Combustion, The Combustion Institute, pp. 673-684, 1984.Species profiles in rich and lean laminar premixed flames at 25 Torr.

    Rich flame, 28% H2/9% O2/2% HCN/61% Ar, phi=1.5 (fig. 3):NO(optimization targetNF6), CN(optimization targetNF7), HCN, andN2Lean flame, 24% H2/24% O2/1% HCN/51% Ar, phi=0.5 (fig. 1):NO, CN, HCN, andN2.

    Heard, D.E., Jeffries, J.B., Smith, G.P., and Crosley, D.R., 'LIF Measurements in Methane/Air

    Flames of Radicals Important in Prompt-NO Formation,' Combustion and Flame 88, 137(1992).NOand relative CHprofiles in a slightly rich (phi=1.13) CH4-air flame at 30 Torr.Williams, B.A. and Fleming, J.W., 'Comparative Species Concentrations in CH4/O2/Ar FlamesDoped with N2O, NO and NO2,' Combustion and Flame 98, 93 (1994). Relative CH(optimization targetNF11), CN(optimization targetNF12/13),NCO, andNHconcentration

    profiles in 10 Torr stoichiometric CH4-O2-Ar flames doped with NO and N2O.Etzkorn, T., Muris, S., Wolfrum, J., Dembny, C., Bockhorn, H., Nelson, P.F., Attia-Shahin, A.,and Warnatz, J., 'Destruction and Formation of NO in Low Pressure Stoichiometric CH4/O2Flames,' Twenty-fourth Symposium (International) on Combustion, The Combustion Institute,

    pp. 925-932, 1992.NO concentration profilein a stoichiometric 10 Torr CH4-O2 flame with

    added NO.Zabielski, M.F. and Seery, D.J. 'Mechanisms and Reaction Dynamics Related to MethaneCombustion,' GRI Report 84/0126, 1984. CH, CN, andNOmole fraction profiles in a 35 Torrslightly rich CH4-O2-Ar flame with added NO.Sausa, R.C., Anderson, W.R., Dayton, D.C., Faust, C.M., and Howard, S.L., 'Detailed Structureof a Low Pressure, Stoichiometric H2/N2O/Ar Flame,' Combust. Flame 94, 407-425 (1993).Profiles ofNO and O2 andNH and OH in a 20 torr 35% H2, 35% N2O, 30% Ar laminar

    premixed flame.Riesel, J.R., Carter, C.D., and Laurendeau, N.M., 'Evaluation of Chemical Kinetics Predictionsfor NO and OH in Atmospheric Pressure C2H6/O2/N2 Flames,' International Symposium onTransport Phenomena, 1995.NO concentrationsin 1 atm. flat premixed ethane-air flames.

    Luque, J., Smith, G.P., and Crosley, D.R., 'Quantitative CH Determinations in Low PressureFlames,' Twenty-sixth Symposium (International) on Combustion, 1996, 959. Absolute CH

    profile in a 25 torr laminar premixed 0.138 CH4, 0.258 O2, 0.603 N2 flame (phi = 1.07).(Target SCH.C11)

    An NO concentration of 1.8+/-0.6E12 cm-3 was measured at 2 cm, while GRI-Mech 3.0predicts 1.3E12 cm-3.

    Harrington, J.E., Smith, G.P., Berg, P.A., Noble, A.R., Jeffries, J.B., and Crosley, D.R.,'Evidence for a New NO Production Mechanism in Flames,' Twenty-sixth Symposium

    (International) on Combustion, 1996, 2133. Absolute NO profiles in Phi = 1.5 H2-air premixedlaminar flames at 38 torrand 78 torr.

    Flow Reactor Experiments

    http://combustion.berkeley.edu/gri-mech/version30/figs30/nnh78.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/nnh38.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sch.c11.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/tgchr96.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/rclno.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/brl21oh.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/brl21no.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/utrc_no.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/utrc_cn.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/utrc_ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/etzkorn.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/nrl_nh.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/nrl_nco.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf12.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/nrl_cn.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf11.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/nrl_ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sri_ch.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/sri_no.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/lean_n2.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/lean_hcn.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/lean_cn.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/lean_no.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/rich_n2.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/rich_hcn.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf7.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/rich_cn.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nf6.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/rich_no.sand.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/PurNOp2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/PurNO_p.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/PurNO_phi.gif
  • 7/24/2019 GRI-Mech 3

    14/15

    11/25/2015 GRI-Mech 3.0

    http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles 14/15

    Stapf, D., Ph.D. Dissertation, Universitat Karlsruhe (TH), Germany (1994). A flow reactorstudy of NOx reburning kinetics. Concentrations of N species as a function of residence timefor mimic flue mixture gases: initial [O2] = 1.13%and initial [O2] = 0.12%at temperature T =1300 C and pressures P = 1 atm.Kim, T.J., Yetter, R.A. and Dryer, F.L., Paper 25-240, 25th Combustion Symposium, 1994. Aflow reator study of moist CO oxidationat moderate temperatures and pressures from 1-10atmospheres.Kristensen, P.G., Glarborg, P., and Dam-Johansen, K., unpublished data. A 9-mm quartz flow

    reactor study of methane oxidation the initial conditions are: [CH4]=1473 ppm, [O2]=2996ppm, [H2O]=0.019, N2 carrier, P=1.07 atm, residence time=127/T (T in K, constant massflow). Numerical tests were performed for the combustion of methane, (COand CO2) (targetSR.10c), ethane (COand CO2), and ethylene (COand CO2).Glarborg. P., Dam-Johansen, K., Kristensen, P.G., Alzueta, M., and Rojel, H., 'LowTemperature Nitrogen Chemistry,' GRI Report 97/0130, 1997. Flow reactor hydrocarbonoxidation and NO reburn experiments at 1.1 atm in nitrogen with 2% water.

    Methane: 2800ppm CH4, 4830ppm O2, 920ppm NO, t=181/T.Natural gas: 2770ppm CH4, 260ppm C2H6, 4890ppm O2, 850ppm NO, t=170/K .Ethane: 1530ppm C2H6, 3970ppm O2, 870ppm NO, t=167/K .

    Ethylene: 1020ppm C2H4, 2015ppm O2, 790ppm NO, t=165/K .Acetylene: 910ppm C2H2, 1730ppm O2, 989ppm NO, t=157/K .

    NO Concentrationas a function of natural gas (90.5%CH4, 8.5%C2H6, 0.6%C3H8)concentration at 1.1 atm 1573K 170 ms for 2% oxygen, 6% water, 900ppm NO innitrogen.

    Glarborg, P. and Miller, J.A., 'Mechanism and Modeling of Hydrogen Cyanide Oxidation in aFlow Reactor,' Combustion and Flame 99, 475 (1994). Species profiles at the exit of a laminarisothermal flow reactor for temperatures between 900 and 1400 K in two mixtures:

    318ppm HCN/1710ppm CO/2.4% O2/2.8%H2O mixture (fig 4):

    HCN(optimization targetNFR1),NO(optimization targetNFR2), andN2O(optimization targetNFR3)298ppm HCN/1620ppm CO/434ppm NO/2.3% O2/2.6%H2O mixture (fig. 6):

    HCN,NO, andN2O.

    Stirred Reactors

    Bartok, W., Engleman, V.S., Goldstein, and del Valle, E.G., 'Basic Kinetic Studies andModeling of Nitrogen Oxide Formation in Combustion Processes,' AIChE Symposium Series

    No. 126, Vol. 68, pp. 30-38, 1972. NO mole fraction in a jet stirred reactor for CH4-air at 1atm, 60-150% stoichiometric air with 1300 ppm NO, with 200 ppm NO, and withoutNO added.Steele, R.C., Malte, P.C., Nichol, D.G., and Kramlich, J.C., 'NOx and N2O in Lean-PremixedJet-Stirred Flames,' Combustion and Flame 100, 440 (1995).NOandN2Omole fractions in alean premixed jet-stirred reactor of CH4-air at 1 atm, phi=0.52-0.62, t=3.2-3.5 ms.

    Propane-Oxygen and Propane-Methane-Oxygen Ignition Delays

    Borisov, A.A., Zamansky, V.M., Lissianski, V.V., Skachkov, G.I., and Troshin, K.Y., Progressin Astronautics and Aeronatics, 114, 124 (1988). Comparisons of computed and measuredignition delays are made for the data of Borisov et al., who reported ignition delay times ofC3H8 - O2 mixtures in Arand 4% C3H8 - 20% O2 in N2using reflected shock waves with

    post-shock temperatures in the range from 1250 to 1700 K and pressures in the range from 0.6to 8 atm. Ignition delay times were determined using pressure and luminosity records. To

    http://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_Borisov_n2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_Borisov_Ar.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/steele_n2o.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/steele_no.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bartok_wo.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bartokB2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/bartok_w.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gm298_n2o.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gm298_no.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gm298_hcn.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr3.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gm318_n2o.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr2.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gm318_no.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/nfr1.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gm318_hcn.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gr6.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gr2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gr3.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gr4.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gr5.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/gr1.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/glarC2H4.CO2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/glarC2H4.CO.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/glarC2H6.CO2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/glarC2H6.CO.gifhttp://combustion.berkeley.edu/gri-mech/version30/targets30/sr.10c.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/SR10c.CO2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/SR10c.CO.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/MoistCO.B25.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/Stapf+Leuckel_A2.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/Stapf+Leuckel_A1.gif
  • 7/24/2019 GRI-Mech 3

    15/15

    11/25/2015 GRI-Mech 3.0

    compare ignition delays measured in the same mixtures at different pressures, the P - 0.7

    pressure dependence of ignition delay derived by Borisov et al. was used. The data werereduced to a common postshock pressure P5= 4 atm.

    Burcat, A., Lifshitz, A., Scheller, K., and Skinner, G.B., 13rd Symposium (International) onCombustion, p. 745 (1971). A shock-tube study of ignition delay times in C3H8- O2in Ar

    mixtures was reported by Burcat and Lifshitz in 1970. Ignition delays were determined frompressure and heat-flux measurements in the reflected shock region. The temperature range

    covered was from 1250 to 1600 K, the post-shock pressures ranged from 2 to 10 atm.Comparisons of computed ignition delays with their experimental data are shown in the links:

    1.6% C3H8 - 8.0% O20.48% C3H8 - 2.4% O21.6% C3H8 - 8.0% O23.85% C3H8 - 19.23% O20.8% C3H8 - 8.0% O20.84% C3H8 - 2.1% O20.41% C3H8 - 4.1% O21.6% C3H8 - 4.0% O2

    0.41% C3H8 + 16.4% O20.8% C3H8 - 16.0% O2.Frenklach, M. and Bornside, D.E., Combust. Flame 56, 1 (1984). Ignition delays measured in a9.5% CH4 + 1.9% C3H8 + 19.0% O2 + 69.6% Armixture are compared with computed values.

    The experiments were done using reflected shock waves at densities near 20 mol/m3over atemperature range from 1300 to 1600 K . Reaction progress was monitored by calibrated

    pressure transducers. Ignition was defined as the point of maximum curvature in the pressuretrace.Qin, Z., Ph.D. Dissertation, The University of Texas at Austin (1998). Mixtures of C3H8and

    O2in Ar were studied using reflected shock waves and UV laser absorption spectroscopy.

    Ignition delay times were derived from OH absorption profiles. The ranges of experimentalconditions were: = 0.75 1.0, P = 3 4 atm, T = 1300 1900 K. Comparisons of computedignition delay times with experimental data:

    0.15% C3H8 - 0.84% O20.20% C3H8 - 1.00% O20.15% C3H8 - 1.00% O20.20% C3H8 - 1.33% O2.

    Spadaccini, L.J. and Colket, M.B., III, Prog. Energy Combust. Sci., 20, 431 (1994). Ignitiondelay times from Spadaccini and Colket for mixtures of methane with propane are compared tocomputed results. Pressure transducers were used to define ignition. Temperatures ranged from

    1300 to 1700 K post-shock pressures were near 7 atm. The test gases studied contained 3.4%CH4 + 0.1% C3H8 + 7.0% O2 + 89.5% Arand 3.29% CH4 + 0.21% C3H8 + 7.0% O2 + 89.5%Ar.Yang, H., Qin, Z., Lissianski, V.V., and Gardiner, W.C., Israel Journal of Chemistry, 36(3),305, (1996). Ignition delays in mixtures: 2% CH4 - 4% O2and 0.5% C2H6 - 9.5% CH4 -19.0% O2 Concentration of CH3 radicals at half of the ignition delay in mixtures: 2% CH4 -4% O2and 0.5% C2H6 - 9.5% CH4 - 19.0% O2.

    GRIMechMain Menu

    http://combustion.berkeley.edu/gri-mech/index.htmlhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v55_yang.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v43_yang.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v18_yang.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/v6_yang.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_colket.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_colket.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_D_qin.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_C_qin.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_B_qin.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_A_qin.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_Frenchla.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_4B_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_4A_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_3B_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_3A_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_2B_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_2A_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_1D_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_1C_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_1B_Burcat.gifhttp://combustion.berkeley.edu/gri-mech/version30/figs30/c3h8_1A_Burcat.gif