ICE3BR0665J-16V30W-V11_11Aug2010

Embed Size (px)

Citation preview

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    1/29

     

    N e v e r s t o p t h i n k i n g .

    Power Management & Supply

     AN-EVAL3BR0665J

    3 0 W 1 6 V S M P S E v a l u a t i o n B o a r d w i t hC o o l S E T

    ®  F 3 R I C E 3 B R 0 6 6 5 J

     App l i ca t ion No te , V1 .1 , Aug 2010

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    2/29

     

    Edition 2010-08-11 

    Published by Infineon Technologies Asia Pacific,8 Kallang Sector,349282 Singapore 

     © Infineon Technologies AP 2008.All Rights Reserved.

    Attention please!

    The information herein is given to describe certain components and shall not be considered as a guarantee

    of characteristics.Terms of delivery and rights to technical change reserved.

    We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,regarding circuits, descriptions and charts stated herein. 

    Information 

    For further information on technology, delivery terms and conditions and prices please contact your nearestInfineon Technologies Office (www.infineon.com). 

    Warnings 

    Due to technical requirements components may contain dangerous substances. For information on the typesin question please contact your nearest Infineon Technologies Office.

    Infineon Technologies Components may only be used in life-support devices or systems with the expresswritten approval of Infineon Technologies, if a failure of such components can reasonably be expected tocause the failure of that life-support device or system, or to affect the safety or effectiveness of that device orsystem. Life support devices or systems are intended to be implanted in the human body, or to supportand/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the healthof the user or other persons may be endangered

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    3/29

     

    30W 16V Demoboard using ICE3BR0665J on board

    Revision History:  2010-08  V1.1

    Previous Version: 1.0

    Page Subjects (major changes since last revision)

    1, 5, 7 Change the demo board name to EVAL3BR0665J

    30W 16V SMPS Evaluation Board with CoolSET®F3R ICE3BR0665J:

    License to Infineon Technologies Asia Pacific Pte Ltd AN-PS0023 

    Kyaw Zin MinKok Siu Kam Eric

    We Listen to Your Comments

     Any information within this document that you feel is wrong, unclear or missing at all?Your feedback will help us to continuously improve the quality of this document.Please send your proposal (including a reference to this document) to:

    [email protected] 

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    4/29

      30W 16V Demoboard using ICE3BR0665J

    Table of Contents Page

     Application Note 4 2010-08-11

    1  Abstract..........................................................................................................................................5 

    2  Evaluation Board...........................................................................................................................5 

    3  List of Features .............................................................................................................................6 

    4  Technical Specifications ..............................................................................................................6 

    5  Circuit Description ........................................................................................................................7 5.1  Introduction......................................................................................................................................7 5.2  Line Input.........................................................................................................................................7 5.3  Start up............................................................................................................................................7 5.4  Operation mode ..............................................................................................................................7 5.5  Soft start ..........................................................................................................................................7 5.6  RCD Clamper circuit .......................................................................................................................7 5.7  Peak current control of primary current...........................................................................................7 5.8  Output Stage ...................................................................................................................................8 

    5.9  Feedback and regulation.................................................................................................................8 5.10  Blanking Window for Load Jump / Active Burst Mode ....................................................................8 5.11   Active Burst Mode ...........................................................................................................................8 5.12  Jitter mode.......................................................................................................................................8 5.13  Protection modes ............................................................................................................................9 

    6  Circuit Diagram ...........................................................................................................................10 

    7  PCB Layout..................................................................................................................................12 7.1  Component side component legend .............................................................................................12 7.2  Solder side copper & component legend ......................................................................................12 

    8  Component List...........................................................................................................................14 

    9  Transformer Construction..........................................................................................................15 10  Test Results.................................................................................................................................16 10.1  Efficiency.......................................................................................................................................16 10.2  Input Standby Power.....................................................................................................................17 10.3  Line Regulation .............................................................................................................................18 10.4  Load Regulation ............................................................................................................................19 10.5  Max. Output Power .......................................................................................................................19 10.6  ESD Test .......................................................................................................................................20 10.7  Lightning Surge Test .....................................................................................................................20 10.8  Conducted EMI..............................................................................................................................20 

    11  Waveforms and Scope Plots......................................................................................................22 11.1  Start up at low and high AC line input voltage and 30W load.......................................................22  

    11.2  Soft start at low and high AC line input voltage and 30W load .....................................................22 11.3  Frequency jittering.........................................................................................................................23 11.4  Drain to source voltage and Current at 30W load.........................................................................23 11.5  Load transient response (Load jump from 10% to 100%) ............................................................24 11.6   AC output ripple voltage at 30W load ...........................................................................................24 11.7   Active burst mode at 0.5W load ....................................................................................................25 11.8  Vcc overvoltage protection – Auto Restart....................................................................................26 11.9  Over load protection – Auto Restart..............................................................................................27 11.10  Open loop protection – Auto Restart.............................................................................................27 11.11  Vcc under voltage/Short optocoupler protection– Auto Restart....................................................28 11.12  External auto restart enable..........................................................................................................28 

    12  Appendix ......................................................................................................................................29 

    12.1  Slope compensation for CCM operation .......................................................................................29 13  References...................................................................................................................................29 

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    5/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 5 2010-08-11

    1 Abstract

    This document is an engineering report of a universal input 30W 16V off line fly back converter power supplyutilizing IFX F3R CoolSET

     ® 1ICE3BR0665J. The application demo board is operated in Discontinuous

    Conduction Mode (DCM) and is running at 65 kHz switching frequency. It has a one output voltage withsecondary side control regulation. It is especially suitable for small power supply such as DVD player, set-topbox, game console, charger and auxiliary power of high power system, etc. The ICE3BR0665J is the latestversion of the CoolSET

    ®. Besides having the basic features of 

     the F3R CoolSET

    ®  such as Active Burst

    Mode, propagation delay compensation, soft gate drive, auto restart protection for serious fault (Vcc overvoltage, Vcc under voltage, over temperature, over-load, open loop and short opto-coupler), it also has theBiCMOS technology design, built-in soft start time, built-in and extendable blanking time, frequency jitterfeature with built-in jitter period and external auto-restart enable, etc. The particular features needs to bestressed are the best in class low standby power and the good EMI performance.

    2 Evaluation Board

    Figure 1 – EVAL3BR0665J

    This document contains the list of features, the power supply specification, schematic, bill of material and the

    transformer construction documentation. Typical operating characteristics such as performance curve andscope waveforms are showed at the rear of the report.

    1 CoolSET

     ®  is a trade mark of Infineon which is a PWM control IC integrated with CoolMOS

     ®  in one package.

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    6/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 6 2010-08-11

    3 List of Features

    650V avalanche rugged CoolMOS ® 

     with built-in Startup Cell

     Active Burst Mode for lowest Standby Power

    Fast load jump response in Active Burst Mode

    65 kHz internally fixed switching frequency

     Auto Restart Protection Mode for Over-load, Open Loop, Vcc Under voltage, Over-temperature & VccOver-voltage

    Built-in Soft Start

    Built-in blanking window with extendable blanking time for short duration high currentExternal auto-restart enable

    Max Duty Cycle 75%

    Overall tolerance of Current Limiting < ±5%

    Internal PWM Leading Edge Blanking

    BiCMOS technology provides wide VCC range

    Built-in Frequency jitter feature and soft driving for low EMI

    4 Technical Specifications

    Input voltage 85VAC~265VAC

    Input frequency 50Hz, 60Hz

    Input Standby Power < 50mW @ no load; < 0.7W @ 0.5W load

    Output voltage and current 16V +/- 1%

    Output current 1.9A

    Output power 30.4WEfficiency >85% at full load

    Output ripple voltage < 150mVp-p

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    7/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 7 2010-08-11

    5 Circuit Description

    5.1 Introduction

    The EVAL3BR0665J demo board is a low cost off line fly back switch mode power supply (SMPS) using theICE3BR0665J system IC from the CoolSET

     ® -F3R family. The circuit, shown in Figure 2, details a 16V, 30W

    power supply that operates from an AC line input voltage range of 85Vac to 265Vac, suitable for applicationsin open frame supply or enclosed adapter.

    5.2 Line Input

    The AC line input side comprises the input fuse F1 as over-current protection. The choke L1, X2-capacitorsC1, C2 and Y1-capacitor C4 act as EMI suppressors. Spark gap device SG1, SG2 and varistor VAR1 canabsorb high voltage stress during lightning surge test. After the bridge rectifier BR1 and the input bulkcapacitor C2, a voltage of 120 to 375 VDC is present which depends on input voltage.

    5.3 Start up

    Since there is a built-in startup cell in the ICE3BR0665J, there is no need for external start up resistor. Thestartup cell is connecting the drain pin of the IC. Once the voltage is built up at the Drain pin of theICE3BR0665J, the startup cell will charge up the Vcc capacitor C6 and C7. When the Vcc voltage exceedsthe UVLO at 18V, the IC starts up. Then the Vcc voltage is bootstrapped by the auxiliary winding to sustainthe operation.

    5.4 Operation mode

    During operation, the Vcc pin is supplied via a separate transformer winding with associated rectification D2and buffering C6, C7. Ferrite bead FB1 used to suppress high frequency noise from auxiliary winding whichmay cause IC to malfunction. In order not to exceed the maximum voltage at Vcc pin, an external zenerdiode ZD1 and resistor R4 can be added.

    5.5 Soft start

    The Soft-Start is a built-in function and is set at 20ms.

    5.6 RCD Clamper circuit

    While turns off the CoolMOS ® 

    , the clamper circuit R1, C4 and D1 absorbs the current caused by transformerleakage inductance once the voltage exceeds clamp capacitor voltage. Finally drain to source voltage ofCoolMOS

     ®  is lower than maximum break down voltage (V(BR)DSS = 650V

    2) of CoolMOS

     ® . 

    5.7 Peak current control of primary current

    The CoolMOS ® 

     drain source current is sensed via external shunt resistors R5 and R5A which determine thetolerance of the current limit control. Since ICE3BR0665J is a current mode controller, it would have a cycle-by-cycle primary current and feedback voltage control which can make sure the maximum power of theconverter is controlled in every switching cycle. Besides, propagation delay compensation is implemented toensure the maximum input current/power can be controlled in an even tighter manner. The demo board

    shows approximately. +/-0.97% (refer to Figure 14).

    2 V(BR)DSS = 650V @ Tj = 110°C

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    8/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 8 2010-08-11

    5.8 Output Stage

    On the secondary side the power is coupled out by a schottky diode D3. The capacitor C11 provides energy

    buffering following with the LC filter L2 and C12 to reduce the output voltage ripple considerably. Storagecapacitor C11 is selected to have an internal resistance as small as possible (ESR) to minimize the outputvoltage ripple. The common mode choke L3 and ceramic capacitor C16 are added to withstand high voltageelectrostatic static discharge during ESD test.

    5.9 Feedback and regulation

    The output voltage is controlled using a TL431 (IC3). This device incorporates the voltage reference as wellas the error amplifier and a driver stage. Compensation network C14, C15, R8, R10, R11, R12 and R13constitutes the external circuitry of the error amplifier of IC3. This circuitry allows the feedback to be preciselymatched to dynamically varying load conditions and provides stable control. The maximum current throughthe optocoupler diode and the voltage reference is set by using resistors R6 and R7. Optocoupler IC2 is

    used for floating transmission of the control signal to the “Feedback” input via capacitor C9 of theICE3BR0665J control device. The optocoupler used meets DIN VDE 884 requirements for a wider creepagedistance.

    5.10 Blanking Window for Load Jump / Active Burst Mode

    In case of Load Jumps the Controller provides a Blanking Window before activating the Over Load Protectionand entering the Auto Restart Mode. There are 2 modes for the blanking time setting; basic mode and theextendable mode. If there is no capacitor added to the BA pin, it would fall into the basic mode; i.e. theblanking time is set at 20ms. If a longer blanking time is required, a capacitor, C8 can be added to BA pin toextend it. The extended time can be achieved by an internal 13uA constant current at BA pin to charge C8from 0.9V to 4.0V. Thus the overall blanking time is the addition of 20ms and the extended time. Forexample, CBK (external capacitor at BA pin) = 0.1uF, IBK (internal charging current) = 13uA

    ms I 

    C ms Extended  Basict 

     BK 

     BK 

    blanking  43)9.00.4(

    20   =×−

    +=+=  

    Note: A filter capacitor (e.g. 100pF (min. value)) may be needed to add to the BA pin if the noises cannot beavoided to enter that pin in the physical PCB layout. Otherwise, some protection features may be mis-triggered and the system may not be working properly.

    5.11 Active Burst Mode

     At light load condition, the SMPS enters into Active Burst Mode. At this start, the controller is always activeand thus the VCC  must always be kept above the switch off threshold VCCoff  ≥  10.5V. During active burst

    mode, the efficiency increases significantly and at the same time it supports low ripple on VOUT  and fastresponse on load jump. When the voltage level at FB falls below 1.35V, the internal blanking timer starts tocount. When it reaches the built-in 20ms blanking time, it will enter Active Burst Mode. The Blanking Windowis generated to avoid sudden entering of Burst Mode due to load jump.

    During Active Burst Mode the current sense voltage limit is reduced from 1V to 0.34V so as to reduce theconduction losses and audible noise. All the internal circuits are switched off except the reference and biasvoltages to reduce the total VCC  current consumption to below 0.45mA. At burst mode, the FB voltage ischanging like a sawtooth between 3.05 and 3.5V. To leave Burst Mode, FB voltage must exceed 4V. It willreset the Active Burst Mode and turn the SMPS into Normal Operating Mode. Maximum current can then beprovided to stabilize VOUT.

    5.12 Jitter mode

    The ICE3B0665J has frequency jittering feature to reduce the EMI noise. The jitter frequency is internally setat 65 kHz (+/-2.6 kHz) and the jitter period is set at 4ms.

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    9/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 9 2010-08-11

    5.13 Protection modes

    Protection is one of the major factors to determine whether the system is safe and robust. Therefore

    sufficient protection is necessary. ICE3BR0665J provides all the necessary protections to ensure the systemis operating safely. The protections include Vcc over-voltage, over-temperature, over-load, open loop, Vccunder-voltage, short opto-coupler, etc. When those faults are found, the system will go into auto-restartwhich means the system will stop for a short period of time and re-start again. If the fault persists, the systemwill stop again. It is then until the fault is removed, the system resumes to normal operation. A list ofprotections and the failure conditions are showed in the below table.

    Protection function Failure condition Protection Mode

    Vcc Over-voltage1. Vcc > 25.5V or2. Vcc > 20.5V & FB > 4.0V & during soft start period

    Auto Restart

    Over-temperature(controller junction)

    TJ > 130°C Auto Restart

    Over-load / Open loop VFB > 4.0V and VBA > 4.0V(Blanking time counted from charging VBA from 0.9V to

    4.0V )Auto Restart

    Vcc Under-voltage / shortOpto-coupler

    Vcc < 10.5V Auto Restart

    External Auto-restart enable VBA < 0.33V Auto Restart

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    10/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 10 2010-08-11

    6 Circuit Diagram

    Figure 2 – 30W 16V ICE3BR0665J power supply Schematic

       1   6   V   /   1

     .   9   A

       C   O   M

       F   1   1   A

       C   1

       0 .   2   2  u   F   /   2   7   5   V

       2  x   3   9  m   H ,   1 .   4   A

       B   R

       1   D   F   0   8   M

       R   1

       3   3   0   k   /   2   W

       D   1

       U   F   4   0   0   5

       C   4   2 .   2  n   F   /   4   0   0   V

       2   1

       3   4

       I   C   2

       S   F   H   6   1   7   A  -   3

       C   8   1   0   0  p   F

       C   6

       2   2  u   F   /   3   5   V

       C   7   0 .   1  u   F

       D   2

       1   N   4   1   4   8

       R   6

       6   2   0   R

       R   5   1   R

       I   C   3

       T   L   4   3   1

       C   1   4

       1   5   0  p   F

       R   8   1   5   0   k

       C

       1   5

       1

       0   0  n   F

       R   1   1

       0   R    R   1   2   5   6   k

         +   C   1   1   2   2   0   0  u   F   /   2   5   V

       L   2

       1 .   5  u   H

         +

       C   1   2

       6   8   0

      u   F   /   2   5   V

       8   5   V  -

       2   6   5   V  a  c

       3   0   W   1   6   V   S   M   P   S   D  e  m  o   b  o  a  r   d  w   i   t   h   I   C   E   3   B   R   0   6   6   5   J   (   V   0 .   1   )

       K  y  a  w   Z   i  n   M   i  n ,   E  r   i  c   K  o   k   /   0   8   J  u   l   2   0   0   8

       L   1

       L   N

       R   7   1 .   2   K

       R   1   0   3   0   0   k

       C   5

       2 .   2  n   F   /   2   5   0   V ,   Y   1

       C   9   1  n   F

       R   5   A   1 .   1   R

       *   R   1   3

       *   C   1   3

       *   R   9

       *   Z   D   1

       2   4   V

       *   R   4   3   9   R

       *   S   G   1

       D   S   P  -   3

       0   1   N  -   S

       0   0   8

       *   S   G   2

       D   S   P  -   3

       0   1   N  -   S

       0   0   8

          *      C      1      6

          0 .      1

        u     F

          /     5      0     V

          *     L

          3

       D   3

       B   Y   W   2   9   E   1   5   0

          *     V

          A     R

          1

          S      1      0     K

          2     7     5

          /     R

       R   3   0   R

       C   2

       0 .   1  u   F   /   2   7   5   V

       6

       5 4   3

       8

       2 1

         T     R

          1

          3      2     5    u

         H

       *   C   1   0

       1   0   0  p   F   /   1   k   V

        1    B    A

        7    V    C    C

        8    G    N    D

        4

        5

        2    F    B

        3    C    S

         D    r    a

          i    n

         I      C      1

         I      C     E

          3     B     R

          0      6      6     5     J

         F     B

          1

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    11/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 11 2010-08-11

    N.B. : In order to get the optimized performance of the CoolSET ® 

    , the grounding of the PCB layout must be

    connected very carefully. From the circuit diagram above, it indicates that the grounding for theCoolSET

     ®  can be split into several groups; signal ground, Vcc ground, Current sense resistor ground

    and EMI return ground. All the split grounds should be connected to the bulk capacitor groundseparately.

    •  Signal ground includes all small signal grounds connecting to the CoolSET ® 

     GND pin such as filtercapacitor ground, C7, C8, C9 and opto-coupler ground.

    •  Vcc ground includes the Vcc capacitor ground, C6 and the auxiliary winding ground, pin 2 of thepower transformer.

    •  Current Sense resistor ground includes current sense resistor R5 and R5A.

    •  EMI return ground includes Y capacitor, C5.

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    12/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 12 2010-08-11

    7 PCB Layout

    7.1 Component side component legend

    Figure 3 – Component side Component Legend – View from Component Side

    7.2 Solder side copper & component legend

    Figure 4 – Solder side copper – View from Component Side

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    13/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 13 2010-08-11

    Figure 5 – Solder side component Legend – View from Component Side

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    14/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 14 2010-08-11

    8 Component List

    No Ckt Code Component desciption Quantity Manufacturer

    1 BR1 DF08M 1 -

    2 C1 0.22µF/275V 1 Epcos

    3 C2 0.1µF/275V 1 Epcos

    4 C3 68µF/400V 1 Epcos

    5 C4 2.2nF/400V 1 Epcos

    6 C5 2.2nF/250V 1 Murata

    7 C6 22µF/35V 1 Epcos

    8 C7 0.1µF 1 Murata

    9 C8 100pF 1 Epcos

    10 C9 1nF 1 Murata

    11 C11 2200µF/25V 1 -

    12 C12 680µF/25V 1 -

    13 C14 150pF 1 Epcos

    14 C15 100nF 1 Murata

    15 D1 UF4005 1 -

    16 D2 1N4148 1 -

    17 D3 BYW29E150 1 -

    18 F1 1A Fuse 1 -

    19 FB1 Ferrite Bead 1 Epcos

    20 IC1 ICE3BR0665J (DIP-8) 1 Infineon

    21 IC2 SFH617A-3 1 -

    22 IC3 TL431 1 -

    23 J1~J5 Jumper 5 -

    24 L1 2X39mH,1.4A 1 Epcos

    25 L2 1.5µH 1 NEC-Tokin

    26 R1 330kΩ/2W 1 -

    27 R3 0Ω, (SMD 0805) 1 Rohm

    28 R5 1Ω (0.5W, 1%) 1 -

    29 R5A 1.1Ω (0.5W, 1%) 1 -

    30 R6 620Ω  1 Rohm

    31 R7 1.2kΩ  1 Rohm

    32 R8 150kΩ  1 -

    33 R10 300kΩ,1% 1 -34 R11 Jumper 1 -

    35 R12 56kΩ,1% 1 -

    36 TR1 Lp=325µH, ER28, BH1 1 Epcos

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    15/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 15 2010-08-11

    9 Transformer Construction

    Core: ER28, BH1Bobbin: Vertical VersionPrimary Inductance, Lp: 325mH (+/-2%) measured between pin 4 and pin 5 (Gapped to Inductance)

    Transformer structure:

    Figure 6 – Transformer structure and top view of transformer complete

    Wire size requirement:

    Start Stop No. of turns Wire size Layer

    1 2 5 3XAWG#29 Auxiliary

    3 5 15 2XAWG#291/2 Primary

    6 8 6 5XAWG#29 Secondary

    4 3 15 2XAWG#291/2 Primary

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    16/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 16 2010-08-11

    10 Test Results

    10.1 Efficiency

    Active-Mode Efficiency versus AC Line Input Voltage

    85.5

    87.087.6

    87.9   87.9   87.8

    86.7

    87.7   87.8

    87.487.8

    87.5

    83.00

    84.00

    85.00

    86.00

    87.00

    88.00

    89.00

    90.00

    85 115 150 180 230 265

    AC Line Input Voltage [ Vac ]

       E   f   f   i  c   i  e  n  c  y   [   %    ]

     Full load Efficiency Average Efficiency(25%,50%,75% & 100%)

     

    Figure 7 – Efficiency vs. AC Line Input Voltage

    Efficiency versus Output Power 

    84.5

    87.788.1

    87.0

    88.0

    86.9

    87.788.5   87.9

    82.0

    75.00

    80.00

    85.00

    90.00

    95.00

    0 7.5 15 22.5 30

    Output Power [ W ]

       E   f   f   i  c

       i  e  n  c  y   [   %

       ]

    Vin=115Vac Vin=230Vac

     

    Figure 8 – Efficiency vs. Output Power @ Low and High Line

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    17/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 17 2010-08-11

    10.2 Input Standby Power

    Figure 9 – Input Standby Power @ no load Vs. AC Line Input Voltage (measured by Yokogawa WT210power meter - integration mode)

    Standby Power @ 0.5W & 0.3W load versus AC Line Input Voltage

    0.620.610.600.590.590.59

    0.410.40

    0.39

    0.390.390.39

    0.30

    0.50

    0.70

    85 115 150 180 230 265

    AC Line Input Voltage [ Vac ]

       I  n  p

      u   t   P  o  w  e  r   [   W

       ]

    Po=0.5W Pout=0.3W

     

    Figure 10 – Input Standby Power @ 0.5W & 0.3W Vs. AC Line Input Voltage (measured by YokogawaWT210 power meter - integration mode)

    Standby Power @ no-load versus AC Line Input Voltage

    31.00 31.48  32.4033.59

    38.71

    43.95 

    20 

    30 

    40 

    50 

    60 

    85  115  150 180 230 265 

    AC Line Input Voltage [ Vac ]

    Input Power [ mW ]

    Po = 0W

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    18/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 18 2010-08-11

    Standby Pow er Efficiency @ 0.5W & 0.3W load versus AC Line Input Voltage

    77.80   77.76 77.38 76.87

    75.51

    73.31

    84.51 84.45   84.01 83.55

    82.04

    80.24

    70

    75

    80

    85

    90

    85 115 150 180 230 265

    AC Line Input Voltage [ Vac ]

       E   f   f   i  c   i  e  n  c  y   [   %   ]

    Pout=0.5W Pout=0.3W

     

    Figure 11 – Input Standby Power Efficiency @ 0.5W & 0.3W vs. AC Line Input Voltage

    10.3 Line Regulation

    Line Regulation : Output Voltage @ Full Load vers us AC Line Input Voltage

    15.95 15.95 15.95 15.95 15.95 15.95

    15.50

    16.00

    16.50

    85 115 150 180 230 265

    AC Line Input Voltage [ Vac ]

       O  u   t  p  u   t   V  o   l   t  a  g  e   [   V   ]

    Vo @ full load

     

    Figure 12 – Line Regulation Vo @ full load vs. AC Line Input Voltage

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    19/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 19 2010-08-11

    10.4 Load Regulation

    Load Regulation: Vout versus Outoput Power 

    15.98 15.97 15.9615.95

    15.98

    15.9515.9615.97

    15.9815.98

    15.80

    15.85

    15.90

    15.95

    16.00

    16.05

    16.10

    0 7.5 15 22.5 30Output Power [ W ]

       O  u  p  u   t   V  o   l   t  a  g  e   [   V   ]

    Output V oltage @ 230Vac Output V oltage @ 115Vac

     

    Figure 13 – Load Regulation Vout vs. Output Power

    10.5 Max. Output Power

    Max. Overload Output & Input Powe r ( Peak Powe r ) vers us AC Line Input Voltage

    39.3538.7138.3938.2337.9137.28

    44.744.1243.8643.8443.944

    30

    35

    40

    45

    50

    85 115 150 180 230 265

    AC Line Input Voltage [ V ]

       M  a

      x .

       O  v  e  r   l  o  a   d   O  u   t  p  u   t   P  o  w  e  r   [   W   ]

    Peak Output Power Peak Input Power  

    Pin=44.27±0.97% & Pout=38.31±2.7%

     

    Figure 14 – Max. Output Power (before over-load protection) vs. AC Line Input Voltage

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    20/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 20 2010-08-11

    10.6 ESD Test

    Pass* (EN61000-4-2) Level 4: 8kV for contact discharge.

    *Add L3 and C16

    10.7 Lightning Surge Test

    Pass* (EN61000-4-5) 4kV for line to earth

    *Add SG1 & SG2 (DSP-301N-S008)

    10.8 Conducted EMI

    The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN55022class B. The demo board was set up at maximum load (30W) with input voltage of 115Vac and 230Vac.

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0.1 1 10 100

    f / MHz

       d   B  µ   V

      EN_V_QP EN_V_AV QP Pre AV Pre

     

    Figure 15 – Max. Load (30W) with 115 Vac (Line)

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    21/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 21 2010-08-11

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0.1 1 10 100

    f / MHz

       d   B  µ   V

      EN_V_QP EN_V_AV QP Pre AV Pre

     

    Figure 16 – Max. Load (30W) with 230 Vac (Line)

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    22/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 22 2010-08-11

    11 Waveforms and Scope Plots

     All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope

    11.1 Start up at low and high AC line input voltage and 30W load

    Channel 1; C1 : Drain Source voltage (VDS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    Channel 1; C1 : Drain Source voltage (VDS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    Startup time = 0.57s Startup time = 0.56sFigure 17 – Startup @ Vin=85Vac & 30W load Figure 18 – Startup @ Vin=265Vac & 30W load

    11.2 Soft start at low and high AC line input voltage and 30W load

    Channel 1; C1 : CS voltage (VCS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    Channel 1; C1 : CS voltage (VCS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    Soft Star time = 22mS Soft Star time = 20mS

    Figure 19 – Soft Start @ Vin=85Vac & 30W load Figure 20 – Soft Start @ Vin=265Vac & 30W load

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    23/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 23 2010-08-11

    11.3 Frequency jittering

    Channel 1; C1 : Drain Source voltage (VDS) Channel 1; C1 : Drain Source voltage (VDS)

    Frequency changing from 63.1 kHz ~ 67.7 kHz,Jitter period is set at 4ms internally

    Frequency changing from 63kHz ~ 67.8 kHz, Jitterperiod is set at 4ms internally

    Figure 21  – Frequency change shown at VDS @Vin=85Vac and 30W Load

    Figure 22  – Frequency change shown at VDS @Vin=265Vac and 30W Load

    11.4 Drain to source voltage and Current at 30W load

    Channel 1; C1 : Drain Current (IDS)Channel 2; C2 : Drain Source Voltage (VDS)

    Channel 1; C1 : Drain Current (IDS)Channel 2; C2 : Drain Source Voltage (VDS)

    Duty cycle = 43.77% Duty cycle = 10.76%

    Figure 23 – Operation @ Vin = 85Vac and 30Wload

    Figure 24 – Operation @ Vin = 265Vac and30W load

    67.8 kHz

    63 kHz

    67.7 kHz

    63.1 kHz

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    24/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 24 2010-08-11

    11.5 Load transient response (Load jump from 10% to 100%)

    Channel 1; C1 : Output Ripple Voltage (Vo)

    Channel 2; C2 : Output Current (Io)

    Channel 1; C1 : Output Ripple Voltage (Vo)

    Channel 2; C2 : Output Current (Io)

    Current step slew rate = 0.4A/us Current step slew rate = 0.4A/us

    Figure 25  – Load jump @ Vin=85Vac from 3W to30W load

    Figure 26 – Load jump @ Vin=265Vac from 3W to30W load

    11.6 AC output ripple voltage at 30W load

    Channel 1; C1 : Output Ripple Voltage (Vo_ripple) Channel 1; C1 : Output Ripple Voltage (Vo_ripple)

    Vo_ripple_pk to pk = 140mV

    Probe Terminal end with decoupling capacitor of0.1uF(ceramic) & 1uF(Electrolytic), 20MHz filter

    Vo_ripple_pk to pk = 150mV

    Probe Terminal end with decoupling capacitor of0.1uF(ceramic) & 1uF(Electrolytic), 20MHz filter  

    Figure 27 – AC output ripple @ Vin=85Vac and30W load

    Figure 28 – AC output ripple @ Vin=265Vac and30W load

    120mV120mV

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    25/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 25 2010-08-11

    11.7 Active burst mode at 0.5W load

    Channel 1; C1 : Drain Source Voltage (VDS)Channel 2; C2 : Current Sense Voltage (VCS)Channel 3; C3 : Feedback voltage (VFB)

    Channel 1; C1 : Drain Source Voltage (VDS)Channel 2; C2 : Current Sense Voltage (VCS)Channel 3; C3 : Feedback voltage (VFB)

    Blanking time to enter burst mode : 19.2ms Blanking time to enter burst mode : 19.4ms

    Figure 29 – Active burst mode @ Vin=85Vac andstep from 1.9A to 0.03A

    Figure 30 – Active burst mode @ Vin=265Vacand step from 1.9A to 0.03A

    Channel 4; C4 : Output Voltage ( Vo ) Channel 4; C4 : Output Voltage ( Vo )

    Output ripple : app. 40mV Output ripple : app. 40mV

    Figure 31 – Output ripple at active burst mode @Vin=85Vac and 0.5W load

    Figure 32 – Output ripple at active burst mode @Vin=265Vac and 0.5W load

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    26/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 26 2010-08-11

    11.8 Vcc overvoltage protection – Auto Restart

    Channel 1; C1 : Drain Source voltage (VDS)Channel 2; C2 : Supply voltage (VCC)Channel 3; C3 : Feedback Voltage (VFB)Channel 4; C4 : BA voltage (VBA)

    Channel 1; C1 : Drain Source voltage (VDS)Channel 2; C2 : Supply voltage (VCC)Channel 3; C3 : Feedback Voltage (VFB)Channel 4; C4 : BA voltage (VBA)

    System enters auto restart mode when VCC>20.5V &VFB >4.0V during soft start period

    System enters auto restart mode when VCC>20.5V& VFB >4.0V during soft start period

    Figure 33 – Vcc overvoltage protection @Vin=85Vac; R10 disconnected before system startup with no load

    Figure 34 – Vcc overvoltage protection @Vin=265Vac; R10 disconnected before system startup with no load

    Channel 1; C1 : Drain Source voltage (VDS)Channel 2; C2 : Supply voltage (VCC)Channel 3; C3 : Feedback Voltage (VFB)

    Channel 4; C4 : BA voltage (VBA)

    Channel 1; C1 : Drain Source voltage (VDS)Channel 2; C2 : Supply voltage (VCC)Channel 3; C3 : Feedback Voltage (VFB)

    Channel 4; C4 : BA voltage (VBA)System enters auto restart mode when VCC>25.5V System enters auto restart mode when VCC>25.5V

    Figure 35 – Vcc overvoltage protection @Vin=85Vac; R10 disconnected under light load

    Figure 36 – Vcc overvoltage protection @Vin=265Vac; R10 disconnected under light load

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    27/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 27 2010-08-11

    11.9 Over load protection – Auto Restart

    Channel 1; C1 : Drain to Source Voltage (VDS)Channel 2; C2 : Supply Current (VCC)Channel 3; C3 : Feedback Voltage (VFB)Channel 4; C4 : BA voltage (VBA)

    Channel 1; C1 : Drain to Source Voltage (VDS)Channel 2; C2 : Supply Current (VCC)Channel 3; C3 : Feedback Voltage (VFB)Channel 4; C4 : BA voltage (VBA)

    System enters auto-restart when VFB>4.0V, VBA >4V

    with (built-in+extendable) blanking time ≈42ms

    System enters auto-restart when VFB>4.0V, VBA>4V

    with (built-in+extendable) blanking time ≈42ms

    Figure 37 – Over load protection with extendedblanking time @ Vin=85Vac; output power step up

    from 1.9A to 2.5A load(C8 = 0.1µF)

    Figure 38 – Over load protection with extendedblanking time @ Vin=265Vac; output power step

    up from 1.9A to 2.5A load(C8 = 0.1µF)

    11.10 Open loop protection – Auto Restart

    Channel 1; C1 : Drain Source voltage (VDS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    Channel 1; C1 : Drain Source voltage (VDS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    System enters auto-restart when VFB>4.0V, VBA >4Vwith (built-in+extended) blanking time ≈42ms

    System enters auto-restart when VFB>4.0V, VBA >4V with (built-in+extended) blanking time ≈42ms

    Figure 39  – Open loop protection with extendedblanking time @ Vin=85Vac; R10 disconnectedduring system operation at 30W load(C8=0.1µF)

    Figure 40  – Open loop protection with extendedblanking time @ Vin=265Vac; R10 disconnectedduring system operation at 30W load(C8=0.1µF)

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    28/29

      30W 16V Demoboard using ICE3BR0665J

     Application Note 28 2010-08-11

    11.11 Vcc under voltage/Short optocoupler protection– Auto Restart

    Channel 1; C1 : Drain Source voltage (VDS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    Channel 1; C1 : Drain Source voltage (VDS)

    Channel 2; C2 : Supply Voltage (VCC)

    Channel 3; C3 : Feedback voltage (VFB)

    Channel 4; C4 : BA Voltage (VBA)

    System enters Auto Restart mode when Vcc

  • 8/16/2019 ICE3BR0665J-16V30W-V11_11Aug2010

    29/29

      30W 16V Demoboard using ICE3BR0665J

    12 Appendix

    12.1 Slope compensation for CCM operation

    This demo board is designed in Discontinuous Conduction Mode ( DCM ) operation. If the application isdesigned in Continuous Conduction Mode ( CCM ) operation where the maximum duty cycle exceeds the50% threshold, it needs to add the slope compensation network. Otherwise, the circuitry will be unstable. Inthis case, three more components ( 2 ceramic capacitors C17 / C18 and one resistor R19) is needed to addas shown in the circuit diagram below.

    Figure 41 – Circuit Diagram Switch Mode Power Supply with Slope Compensation

    More information regarding how to calculate the additional components, see application note AN_SMPS_ICE2xXXX – available on the internet: www.infineon.com  (directory : Home > PowerSemiconductors > Integrated Power ICs > CoolSET® F2) 

    13 References

    [1] Infineon Technologies, Datasheet “CoolSET ® 

    -F3R ICE3BR0665J Off-Line SMPS Current ModeController with integrated 650V CoolMOS

     ®  and Startup cell( Frequency Jitter Mode ) in DIP-8”

    [2] Eric Kok Siu Kam, Kyaw Zin Min, Infineon Technologies, Application Note “ICE3BRxx65J CoolSET ® 

      -F3R (DIP-8) new Jitter version Design Guide”

    [3] Harald Zoellinger, Rainer Kling, Infineon Technologies, Application Note “AN-SMPS-ICE2xXXX-1,CoolSET

     ®  ICE2xXXXX for Off-Line Switching Mode Power supply (SMPS )”