63
June, 2010 ICRAT Budapest, Hungary June, 2010 Presented by: Valentin Polishchuk, Ph.D. Throughput/Complexity Tradeoffs for Routing Traffic in the Presence of Dynamic Weather

ICRAT Budapest, Hungary June, 2010

  • Upload
    read

  • View
    19

  • Download
    0

Embed Size (px)

DESCRIPTION

ICRAT Budapest, Hungary June, 2010. Throughput/Complexity Tradeoffs for Routing Traffic in the Presence of Dynamic Weather. Presented by: Valentin Polishchuk, Ph.D. Team of Collaborators. Jimmy Krozel, Ph.D., Metron Aviation, Inc., USA - PowerPoint PPT Presentation

Citation preview

Page 1: ICRAT Budapest, Hungary June, 2010

June, 2010

ICRATBudapest, HungaryJune, 2010

Presented by:

Valentin Polishchuk, Ph.D.

Throughput/Complexity Tradeoffs for Routing Traffic

in the Presence of Dynamic Weather

Page 2: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Team of Collaborators

• Jimmy Krozel, Ph.D., Metron

Aviation, Inc., USA

• Joseph S.B. Mitchell, Ph.D., Applied

Math, Stony Brook University, USA

• Valentin Polishchuk, Ph.D., and Anne Pääkkö,

Computer Science, University of Helsinki, Finland

Funding provided by: Academy of Finland, NASA and NSF

Page 3: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Algorithmic Problem

• Givenweather-impacted airspace

• Findweather-avoiding trajectories for aircraft

• Assumptionsen-route

fixed flight level (2D, xy)

generally unidirectional (e.g., East-to-West) flow

Page 4: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Airspace

Sector

Page 5: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Airspace

Center

Page 6: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Airspace

FCA

FCA

Page 7: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Generic Model

Sin

k

Sou

rce

• Polygonal domain– outer boundary

• source and sink edges

– obstacles • weather, no-fly zones

Page 8: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Aircraft: Disk

• Radius = RNP = 5nmi

Page 9: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Airlane: “thick path”

• Thickness = 2*RNP = 10nmi

MIT = 10nmi

Page 10: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Algorithmic Problem

• Givenweather-impacted airspace

• Findweather-avoiding trajectories for aircraft

Page 11: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Model

• Givenpolygonal domain with obstacles, source and sink

• Findthick paths

pairwise-disjoint

avoiding obstacles

Page 12: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Solution: Search Underlying Grid

Page 13: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Hexagonal disk packing in free space

Page 14: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

• Nodes: disks• Edges between

touching disks• Source, sink

• Every node has capacity 1

Graph

Page 15: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Source-Sink Flow

• Decomposes into disjoint paths

Page 16: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Source-Sink Flow

• Decomposes into disjoint paths

• Inflate thepaths

MaxFlow → Max # of paths MinCost Flow → Shortest paths

Page 17: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Examples

Page 18: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 19: ICRAT Budapest, Hungary June, 2010

June, 2010

Page 20: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Additional constraints: Sector boundaries crossing

Communication between ATCs

Page 21: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Higher cost for crossing edges in the graph

Page 22: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Conforming flow

Page 23: ICRAT Budapest, Hungary June, 2010

June, 2010

Page 24: ICRAT Budapest, Hungary June, 2010

June, 2010

Page 25: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Capacity = length of shortest B-T path in “critical graph”

Maximum Flow Rates for Capacity Estimation in Level Flight with Convective Weather Constraints Krozel, Mitchell, P, Prete Air Traffic Control Quarterly 15(3):209-238, 2007

Theoretical guarantee: Max # of paths

ℓij = floor(dij/w)

Page 26: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Moving obstacles?

• Paths become infeasible

Page 27: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

FreeFlight

Page 28: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Solution: Search Time-Expanded Grid

Page 29: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Lifting to (x,y,t)

Page 30: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Obstacles

Page 31: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Time Slicing

Page 32: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Disk Packings

Page 33: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Edges

Page 34: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Node Capacity = 1

Page 35: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Supersource, supersink

Page 36: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Supersource-supersink flow

Page 37: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Examples

Page 38: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 39: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 40: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 41: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 42: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 43: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Holding

Page 44: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 45: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 46: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Holding

Page 47: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 48: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

The two extremes

• Static airlanes– coherent traffic– not adjustable to dynamic constraints

• Flexible flow corridors– paths, morphing with obstacles motion– keep threading amidst obstacles

• FreeFlight– fully dynamic– “ATC nightmare”

Page 49: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 50: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 51: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Computing the Corridors

• Decide– how many are possible– threading amidst obstacles

• At every time slice– route paths– with given threadings

– Shortest paths • “pulled taut” against obstacles →

• morph slowly

Page 52: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Experiments

Page 53: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Airspace• 300 x 210 nmi rectangle• Weather Severity Index (WSI)

– percentage of space covered with obstacles

• Weather organizations– Popcorn Convection (PC)

• scattered obstacles

– Squall Line (SL)• aligned obstacles

Page 54: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Setup

• For WSI = 0,10,…,60– until reaching WSI

• generate random obstacle

• place it randomly in the airspace

• Random velocity

• Squall Line– WSI = 0,5,…,35

Page 55: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

100 instances for each WSI

• Static • FreeFlight • Corridors

speed = 420 knots

Compute trajectories

Page 56: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Traffic Complexity

• Average over time and tiles• In a tile, at a time

– # of aircraft– Var(velocites)

Page 57: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Complexity (100 instances / WSI)

Page 58: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Throughput (100 instances / WSI), aircraft / .5 hr

Page 59: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

• Airspace capacity estimationFundamental research question: can study either theoretically or empirically

At the root of Traffic Flow Management (TFM):

How do you know that you have a TFM problem, Demand > Airspace Capacity, unless you have a good way of estimating the airspace capacity?

Capacity ≠ function( airspace )

• Different paradigms → different capacity → different complexity

• Operational requirements

– e.g., conforming flows

• Temporal component

– e.g., holding

Help in quantifying tradeoffs

Summary

Page 60: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Future Research

• Sensitivity to complexity parameters• Route Planning in Terminal or Transition Airspace

– Trees (e.g., STARS)• static

• “free”?

• flexible

• Further Dimensions– Multiple Altitudes, Directions of Flows– 4D Space-Time Constraints (flow and weather constraints)– Different route types

• Real Weather

Page 61: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 62: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Page 63: ICRAT Budapest, Hungary June, 2010

June, 2010ICRAT ’10 Budapest, Hungary