Author
jessica-nichols
View
221
Download
1
Embed Size (px)
iQUIPS
양자정보처리연구단
Experimental and theoretical studies of semiconductor quantum bits
Doyeol AhnInstitute of Quantum Information
Processing & Systems
University of Seoul
iQUIPS
Collaborators
H. K. Kim, S. H. Hong, B. C. Kim, Y. S. Choi: Dept. of Electronics & Computer Eng., Korea Univ.
Dr. J. H. Oh, Dr. H. J. Lee, Dr. J. S. Hwang, Dr. M. H. Son, Y. H. Moon: iQUIPS, Univ. of Seoul
S. Seong, Prof. T. H. Park: School of Chemical Eng., Seoul National Univ.
S. K. Kwak, Prof. D. J. Ahn: Dept. of Chemical & Biochemical Eng., Korea Univ.
Special Thanks to Program committee of AWAD 2005
iQUIPS
Further AcknowledgementsFurther Acknowledgements
This work is supported by the Korean Ministry of Science and
Technology through the Creative research Initiatives Program under
Contract No. M10116000008-02F0000-00610.
iQUIPS
Motivation
Solid state quantum bits: Spin vs Charge qubits
Decoherence control in charge qubit Very short decoherence of compound
semiconductor quantum dots Suppression of optical phonon processes in Si
quantum dots Utilization of multi-valley interactions in Si
Birth of New Information Technology
iQUIPS
Research Objectives (1998-2007) Understand and implement semiconductor
quantum bits (spin vs. charge qubit) Understand decoherence processes (non-
Markovian domain) Fundamentals of Quantum Entanglement Quantum Information Theory
iQUIPS
What is quantum information processing?
A research in quantum information processing is to understand how quantum mechanics can improve acquisition, transmission and processing of information.
Who may be involved? Computer scientists Mathematicians Electrical engineers Chemists Physicists
iQUIPS
양자 상태 vector 를 source 로 하는 경우
Qubit: a vector in Hilbert space
Superposition
|0> with prob. |C0|2 |1> with prob. |C1|2
{|0>, |1>} = H2 Vectors in 2-D Hilbert space
0"0""0" ie
1"1""1" ie
10 10 CC
iQUIPS
1
1 1 00 | 0
0 0 0
0
0
1 0 10 |1
0 1 0
0
0
0 1 01 | 0
1 0 1
0
0
0 0 01 |1
1 1 0
1
Tensor product
iQUIPS
Deutch Problem : quantum parallelism (1)
x f(x)Black
box
)1()0( ff : constant )1()0( ff : balanced
xfyxyxu f :ˆ
Set
102
1y
102
1ˆ xu f xfxfx 10
2
1
xfxf 10
101
01
10
xf
if
if 0)( xf
1)( xf
iQUIPS
0
1ˆ : 0 0 0 0 0 | 0 |1
0
0
fu f
: (0) 1, (1) 0Example f f
1
0ˆ : 0 1 0 1 0 | 0 | 0
0
0
fu f
iQUIPS
Deutch Problem : quantum parallelism (2)
102
1110
2
1ˆ xf
f xxu
Set 102
1x
102
110
2
1:ˆ fu
102
111
2
110
2
110
2
1 10 ff
102
11101
2
1 10 ff
Output f(0)&f(1) can be calculated at the same time!!!
iQUIPS
Deutch Problem : quantum parallelism (3)
fu on N qubits
Set
xfxxu f 0ˆ
12
022
110
2
1N
xN
N
x
02
1ˆ010
2
1ˆ
12
02
N
xNf
N
f xuu
xfxN
xN
12
022
1
Massive parallelism !!!
(2N outputs in one query)
iQUIPS
A Quantum Information Science and technology Roadmap
Cooper pair qubit(NEC)
Chrage qubit(NTT)
Cooper pair CNOT (NEC)
Chrage qubit(iQUIPS)
Real operation in time domain
Cooper pair qubit(NEC)
Chrage qubit(NTT)
Cooper pair CNOT (NEC)
Chrage qubit(iQUIPS)
Real operation in time domain
iQUIPS
Design and fabrication of hybrid circuits
SOI quantum dot transistors and circuits have been successfully fabricated and tested. We are now in the stage of designing, fabricating, and testing those circuits. The more important factor is that we will need to see the quantum gate operation and we have to wait for the setup of dilution refrigerator in the third stage. (In collaboration with SNU ISRC)
iQUIPS
Fabrication and characterization of a vertical QDT for quantum gate operation
A vertical QDT was successfully fabricated. The key processes are formation of vertical pillar and planarization by polyimide for contact isolation. The QDT also can include InAs quantum dots.
c i r c u i t f o r t h e g e n e r a t i o no f l o c a l B
t o p e l e c t r o d e
p i l l a r
c i r c u i t f o r t h e g e n e r a t i o no f l o c a l B
t o p e l e c t r o d e
p i l l a r0.0 0.1 0.2 0.3 0.4 0.5 0.6
5.0x1010
1.0x1011
1.5x1011
2.0x1011
2.5x1011
3.0x1011
Applied Voltage [eV]
Cur
rent
Den
sity
[A
/cm
2 ]
- 0 . 0 5 8
- 0 . 0 5 6
- 0 . 0 4 0
f - s t a t e
d - s t a t e
A S
S
S
A S
s y m m e t r i c : Sa n t i - s y m m e t r i c : A S
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
- 0 . 3 6 6
- 0 . 3 6 4
- 0 . 3 6 2
- 0 . 1 8 5- 0 . 1 8 4- 0 . 1 8 3- 0 . 1 8 2- 0 . 1 8 1- 0 . 1 8 0 A S - P y
S - P y
A S - P x
S - P x
A S
p - s t a t e
Ss - s t a t e
Ene
rgy
(eV
)B ( T )
0.08 0.10 0.12 0.140.0
0.1
0.2
0.3
0.4
0.5 B = 0 T, T=20 mK
Single QD
Stacked QD
dI/d
V (
S)
V (V)
0.08 0.09 0.10 0.11
0.1
0.2
0.3
0.4
0.5
dI/d
V (
S)
V (V)
iQUIPS
0 1
0
Simple spin dynamics for 1-qubit (interaction picture)
ˆ ˆˆ , ( cos sin )
( / 2) ( cos sin )
| ( ) exp( / 2) | ( )
| ( ) | ( )
| ( )
z x y
z
H B B B z B x t y t
g t t
t i t t
i t H tt
i tt
0
0
0 0
| ( )2
| ( ) exp | (0)2
ˆ ˆ =exp / 2 | (0) ; single qubit rotation about axis
ˆ ˆ ˆˆ when and
z x
z x
g t
t i g t
i n n
n z n x
2 20 ( ) 4t g
iQUIPS
Fabrication of nano-electromagnet for quantum gate operation
Nanometer size electromagnet is an important ingredient for the realization of qubits and quantum gates. An AC magnetic field around the quantum dot can rotate the spin of the electrons in the quantum dot. We successfully fabricated nano-electromagnet and demonstrated the operation by Faraday’s induction experiment.
0 200 400 600 800 1000
0
2
4
6
8
10
12 <V
in> = 1.1 ~ 6 mV (100 nm spacing)
<Vin> = 1.0 ~ 5 mV (11 m spacing)
<I 2>
(n
A)
f (Hz)
iQUIPS
Realization of a charge qubit using stacked InAs self-assembled quantum dots #1
A charge qubit has been realized utilizing the symmetric/anti-symmetric quantum states of stacked InAs self-assembled quantum dots. Short period (> 30 psec) electrical pulses were applied on the source electrode and time-averaged decay current was measured as a function of pulse width. The decay current exhibits periodic oscillations as a function of the pulse width and this is a direct evidence of the manipulation of the quantum state in time domain. Our achievement was before the first electrical measurement of charge qubit by Fujisawa.
5 nm GaAs
InAs QD
6 nm GaAs
0.6 m GaAsbuffer (1018)
n+ GaAssub
5 nm GaAs
InAs QD
Isub
-0.9 -0.8 -0.7 -0.6 -0.5-1.0
-0.8
-0.6
-0.4
-0.2
0.0
T = 4 K
ASS
V (V)
I (
A)
-2
0
2
4
6
8
dI/dV (S
)
iQUIPS
Evolution of a quantum state
)6,5,4,3,2,1(0)0(
1)0(
|/exp)()(|
)(|)()(|
6
0
kS
S
ktitSt
ttHt
ti
k
o
kkk
iQUIPS
Realization of a charge qubit using stacked InAs self-assembled quantum dots #2
0 100 200 300 400 5000
1
2
3
4
5
360 380 400 420 440-0.12-0.08-0.040.000.040.08
290 300 310 320 330 340-0.2-0.10.00.10.2
0 100 200 300 400 5000.0
0.5
1.0
1.5
100 110 120 130 140 150-0.02
-0.01
0.00
0.01
0.02
0 100 200 300 400 5000
1
2
3
0 100 200 300 400 5000
2
4
6
290 300 310 320 330 340-0.04
-0.02
0.00
0.02
0.04
350 360 370 380 390 400
-0.06-0.04-0.020.000.020.040.06
0 100 200 300 400 5000
2
4
6
8
Frequency (GHz)
Am
plit
ude
(arb
. uni
t)(e)
4 K
Isu
b (pA
)
t (ps)
(d) 88 K
Isu
b (pA
)
t (ps)
Frequency (GHz)
Am
plit
ude
(arb
. uni
t)
(a) 4 K
Isu
b (pA
)
t (ps)
Frequency (GHz)
Am
plit
ude
(arb
. uni
t)
Frequency (GHz)
Am
plit
ude
(arb
. uni
t)
(b) 4 K
Isu
b (pA
)
t (ps)
(c)4 K
Isu
b (pA
)
t (ps)
Frequency (GHz)
Am
plit
ude
(arb
. uni
t)
0 100 200 300 400 500
-20
-15
-10
-5
0
D
C
B
A
t (psec)
I sub (
pA)
-1.0
-0.5
0.0
0.5
1.0
dIsub /d(t) (Arb. unit)
-1.0 -0.8 -0.6
-1.6
-1.2
-0.8
-0.4100ps
I sub (
pA)
Veff
(V)
iQUIPS
Direct measurement of tunneling rate through InAs self-assembled quantum dots #1
The tunneling rate through InAs self-assembled quantum dots was measured again by the electrical pump and probe measurement. Microwave (MW) signal was combined with the DC bias and was applied on the diode with InAs self-assembled quantum dots. Non-adiabacity factor of the decay current as a function of the frequency of the MW signal gives the direct estimate of the tunneling rate through the quantum dot. This experiment is another important achievement in time-domain transport measurements.
-0.29 -0.28 -0.27-1.5
-1.4
-1.3
-1.2
-1.1
9
12
15
18
21
dI/dV (nS)
I (nA
)
V(V)
ABC
CBA
-0.29 -0.28 -0.27
10
15
20
25 from 1 to 0
dI/d
V (
nS)
VDC
(V)
SourceDrain QD
S
SD
D
iQUIPS
Direct measurement of tunneling rate through InAs self-assembled quantum dots #2
-0.29 -0.28 -0.27
High Frequency (50 M
Hz to 2 G
Hz)
DC
dI/
dV
VDC
(V)
0 4 8 12 16 20 24 28
0.2
0.4
0.6
0.8
1.0
1/f (ns)
Experiment Fit
iQUIPS
Evidence of double layer quantum dot formation in SOI QDT
SOI QDT with a thin silicon layer showed, for the first time, evidences of double quantum dot formation each at the front and the back interface. This double layer formation can be used to automatically fabricate coupled Si quantum dot by fabricating a single quantum dot.
0.50 0.55 0.60-10
0
10
VGS
(V)
VD
S(mV
)
VGS
VBS
VDS
QD 1 QD 2
CGS1 CGS2
CBS1
CD1 CD2
CS1 CS2
CBS2
Cm
0.55
0.60
-50 0 50
VG
S(V)
VDS
(mV)
iQUIPS
New proposal for Si quantum dot qubit and quantum gate
The multi-valley quantum state transitions in a Si quantum dot is studied as a possible candidate for a quantum bit with a long decoherence time. Qubits are the multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field, which turns on and off the inter-valley interactions. Such silicon quantum dot transistors were already fabricated for the test of the proposal.
0
0.02
0.04
0.06
0.08
0.1
0 100 200 300 400 500
En
erg
y (
eV
)
Electric Field (kV/cm)
E0(valley 5,6)
E1 (valley 1,2)
E2 (valley 3,4)
E3 (valley 5,6)
E4 (valley 1,2)
E5 (valley 5,6)
Anti-symmetric state
Symmetric state
C
D
E5
E3
D. Ahn, J. Appl. Phys. 98, 033709 (2005)
iQUIPS
New proposal for Si quantum gate Inter-valley interactions Qubit: multi-valley symmetric and anti-symmetric states Control: external electric field Long decoherence time
iQUIPS
,
k
rkikFrF
)exp()()(
Electron state in a quantum dot
F(
k ) iFi(
k )
i
: expansion coefficient for the valley i (group )i dT
iQUIPS
, nn
, nn
, , ,
'
( ) ( ) ( n) ( n) ( )
n
n n
( ) ( ) ( ) (
i j
i j i j i j
iji i j ik k
j k
ij ijK Kkk
ij ij ijK K K K K K
i j
ij ij ij
l l ll
k F k D V k k F k F k
D D
D D DK K
I J J
H i V r E F r H r
'
'
, ) ( ) 0ll l
i F r
iQUIPS
H ll' (r , i
)
Ill' exp[ i(K l
K l' )
r ](V(r ))
i(J ll'
)exp[ i(
K l
K l' )
r ](V (r ))
exp[ i(K
l
K
l' )
r ](V(r ))( i
J
ll'
)
iQUIPS
D K l ,
K l'
ll' Ill' e l
e l '
D(K,0,0), (0,K, 0)13 0.3915, D(K,0, 0),( K,0,0 )
12 0.2171
Ill'
1
2(1
e l
e l' )
1
2(1
e l
e l ' )cos(2K )
iQUIPS
J ll'
K l
Ill'
e l
K
Ill'
e l(1
e l
e l' )
K
Ksin(2K )
iQUIPS
0
0.05
0.1
0.15
0 100 200 300 400 500
En
erg
y (
meV
)
Electric Field (kV/cm)
E
B (operation)
A (preparation)
Field
Energy
E~
|0>
|1>
Eo
iQUIPS
0
0.02
0.04
0.06
0.08
0.1
0 100 200 300 400 500
En
erg
y (
eV
)
Electric Field (kV/cm)
E0(valley 5,6)
E1 (valley 1,2)
E2 (valley 3,4)
E3 (valley 5,6)
E4 (valley 1,2)
E5 (valley 5,6)
Anti-symmetric state
Symmetric state
C
D
E5
E3
0.0912
0.0914
0.0916
0.0918
0.092
126 128 130 132 134
En
erg
y (
eV
)
Electric Field (kV/cm)
E3 symmetric
E3 anti-symmetric
E5 anti-symmetric
E5 symmetric
E: prepartion and read-out
F: operation
Anti-crossing Energies (Point D of figure 3)
iQUIPS
)()(1
1
2
1,,,, rr ASASASAS
2 †12
2211
12112 )()(),()(* babTa rrrHrrdrdT
iQUIPS
)( )( )(
)(*)(*)(*)(*
221121
12211221221121
rrrrV
rrrrrdrdV
sc
if
-
21 12 1when electrons in dot 1 and dot 2 have same parity
21 1 and 12 0when electrons 1 dot 1 and 2 have opposite parities, which are preserved
21 0 and 12 1
when electrons 1 dot 1 and 2 have opposite parities, which are both changed
iQUIPS
0
5
10
15
20
25
0
5
10
15
20
25
0 100 200 300 400 500
Co
ulo
mb
En
erg
y (
eV
)
Electric Field (kV/cm)
iQUIPS
00
01
10
11
000
00
00
000
ˆ
E
EE
EE
E
HC
c
ˆ U exp(i ˆ H t)
exp(3it) | 1111| cos1t i
2
sin2t
|1010 | | 0101|
exp( it) | 0000 | cos3t 1 i
2
sin2t
| 1001 | | 0110 | ,
iQUIPS
|10 (cos1t i
2
sin2t ) |10 ( 1 cos3t i2
sin 2t) | 01
t /(23 ) (4 13)
|10 | 01 cos1
22
| 10 | 01
Swap Operation
for
iQUIPS
)(||||)2
1
2
1(
2
2 22
2qif
rqi
f qq
qac EEiefN
V
qEW
Electron-phonon interactions in a Si dot
iQUIPS
10-7
10-6
10-5
0.0001
0.001
0.01
0.1
1
10
0 50 100 150 200 250
Deco
here
nce
tim
e (
sec)
Energy ( 10 -6 eV)
100 mK
150 mK
iQUIPS
Possibility of quantum gate formation by molecular transistors
Multi-qubit can be realized from specially designed molecules since the abundance of quantum states in molecules can be utilized for quantum computation. However, direct electrical contact to individual molecules is still a difficult task even though a few pioneering works exist with limited reliability. We developed a way of contacting molecules by capturing Au nanoparticles in nano-gap electrodes covered with self-assembled mono-layer (SAM). We used AC dielectrophoresis technique for the capture and a reliable and reproducible capture was successfully done.
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.30
5
10
15
20
25
30
VDS
= 2 mV
VDS
= 14 mVV
BG = 112 mV
T = 4.2 K
I D(p
A)
VBG
(V)
-0.10 -0.05 0.00 0.05 0.10
-0.2
0.0
0.2
0.4
VBG
= -0.2 V
VBG
= 0.2 V
I DS(n
A)
VDS
(V)
iQUIPS
Possibility of quantum gate formation by DNA molecules
Thiol-modified double strand DNA molecules were shown to be self-assembled in the nano-gap with the help of Au nanoparticle. This opens up a reliable fabrication of QDT with DNA molecules.
thiol modified DNA + Au nanoparticlethiol modified DNA + Au nanoparticle
-2 -1 0 1 2
-300
-200
-100
0
100
200
300
400
Thiol modified DNA+20 nm gold nanoparticlesTemperature=300 K
I (n
A)
V (V)
0
100
200
300
400
500
600
dI/d
V (
nS
)
iQUIPS
Doping of DNA molecules
DNA molecules are found to be doped with Au atoms. Doped DNA exhibits conductivity which is a strong function of the doping density.
-3 -2 -1 0 1 2 3
-30
-20
-10
0
10
20
30
40
Au Doped DNA Undoped DNA
Temperature = 300 KNumber of Base Pairs = ~2000
I(n
A)
V(V)
iQUIPS
To manufacture, manipulate and characterize arbitrary entangled systems.
To develop the fundamental theory of quantum entanglement.
To control decoherence and prove the scalability of quantum information processing.
To develop application of the few qubit quantum information processor.
To master quantum coherences and understand the quantum-classical boundary.
What are grand challenges in quantum information processing?
iQUIPS