8
JOURNAL OF RESE A RCH of the Natio na l B ure au of Standards - B. Mathem atic al Sciences Vol. 77 A , Nos. 3 4 , j ul y - Dec embe r 19 7 essel Functions of Real rgument and Integer Order or David J. Sookne J Institute for Basic Standards , National Bureau of Standards, Washington , D.C. 20234 (June 4, 1973) A comp ut er pr ogram is d es c ribed for ca lc ul ating Bessel Functions J x) and I x), for x real, and n a nonn egative int eg e r. Th e method used is th at of b ackward r ec ur sion, with str ict control of e rror . Key word s: Bac kward recur sion; Bessel functions; difference equat ion; e rror bound s; M ll er al go rithms . 1. Method G iv en a r e a l numb er x and a positive int eger NB, BESLRI calc ulat es eith er I x), n = 0, 1  . . ., NB - 1 } n X), n = 0, 1, . , NB - 1 using double-precision arit hmetic. The method, which is describ ed in ~ is based on alg orithms of Olver [2] and Miller [3], ap p li ed to the diff er e nce equat ion 2n Y - I = - Yll - S I GN YI I+ I x where SIGN is + 1 for} s, -1 for J s o 1) Th e pr ogram sets MAGX = [ I x I ], the integer part of I x I P MAGX = 0, P MAGX + I = 1, and th en s u ccess iv e ly calculat es 2n PI I +I = N PII - S I GN  - I n=MA GX + 1, MAGX + 2, 2) The sequ e nce is strictly increasin g. The prog ram takes N to be the least n such that Pit exce eds a number TEST defined in se c tions 2 and 3. It th e n sets yW) = 0, ~ ~ I = 1/ p v, and re c urs back ward us ing 1). The co mput e d sequence Y b V  , yl N),  is th e r ecess ive solution of 1) which satis fi es the b ou ndary condition YM AG X = 1. From this soluti on, th e I  s and} s are found by norma li zing n = 0, 1, ., NB - } n= 0,1 , ., N B- } AMS Sllbj ec t Cfn ss i jinJl i o fl ; 68 A 10. I Pre sent add r ess: W.U.J.S. Institute. Arad.lsra eL : Fi gures in br ackets in dicate the lit er a tur e ref er e lJ ces at the e nd uf this pap cc 125

jresv77Bn3-4p125

Embed Size (px)

Citation preview

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 1/8

JOURNAL

OF

RESE

A RCH

of

the Nationa l B

ure

a u of Standards - B.

Mathem

atic

al

Sciences

Vol. 77A , Nos.

3 4

, j u l

y-

Dec embe r 19

7

essel Functions

of

Real rgument and

Integer

Order

David

J.

Sookne

J

Institute for Basic Standards,

National

Bureau of

Standards, Washington

, D.C. 20234

(June 4,

1973)

A comp

ut

er program is desc ribed for

ca

lc ul ating Bessel Functions J x) and I x), for

x

real, and

n a

nonn

egative int

ege

r.

Th

e

method used

is th

at

of b

ackward

r

ec ur

sion , with st rict con trol

of

e

rror

.

Key word s: Bac

kward

recursion; Bessel func tions; difference equat ion; e rror

bound

s; M ll er al

go

rithms .

1. Method

G

iv

en a r

ea

l

number x

and a positive integer

NB, BESLRI

calc

ulat

es eith

er

I x),

n = 0, 1

  .

.

.,

NB - 1

} n X),

n

=

0, 1, . , NB - 1

arit

hmetic.

The

method,

which is described in is based on algorithms of

[2]

and Miller

[3], app lied

to the d iffer e

nce equat

ion

2n

Y

- I

= -

Yll

-

SIGN

YII+ I

x

SIGN

is +

1 for}

s ,

- 1

for

J s

o

1)

Th e program sets MAGX

= [ Ix I ],

the

integer

part of

Ix

I

P

MAGX

=

0,

P MAGX +

I

=

1, and

en s uccess iv e ly calculat

es

2n

PII +I

=

N PII - SIGN   - I

n=MAGX +

1,

MAGX +

2,

2)

e

nce

is strictly increasin

g.

The

prog

ram takes

N

to

be the least

n

such that

Pit

exce

eds a

TEST

defined in

sec

tions

2

and

3.

It th en sets yW) =

0,

~ ~ I =

1/p v,

and rec urs back ward

ing

1).

The computed sequence Y b

V

  ,

yl

N),

•  

is th e recessive solut ion of

1)

which satis fi

es

the

ndary condition YM AG X

= 1.

From

this

solution, th e I  s and} s

are

found by normali zing

n= 0 , 1 ,

.,

NB - }

n =

0,1 ,

.,

NB- }

AMS Sllbject Cfnss i

jinJl

i o

fl

; 68 A10.

I Pre

sent add r

ess:

W.U.J.S. Institute. Arad. lsraeL

: Fi gures in br ackets in dicate the lit er atur e ref er e lJces at the e

nd

uf this pap cc

125

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 2/8

where

[ .V/ t [

J-t = y V) + 2 2:

for }  s

k = 1

for

[ s.

2.

Error ounds for the n

For n >

MAGX,

the truncation error

in

yi,-V)

is

' 1

T N )= y - = p .

L..

PrPr+

1

r=N

(3)

see [2], eqs 5.01) and 5 .02 ).

This

error is bounded

by using

Lemma 2 of [I], which states that for

s ~ r

p

= p d p s ~ min (Pr+I/Pr, r + l ) / l x l + v r + l ) t / l

x

I2- l ) .

The program

sets

(4 )

where L =

max MAGX

+

1, NB -

1)

,

and

NSIG is

the

maximum number

of

sign ificant

decimal

digits in a double· precision variable on

the

computer

being

used. Then N' is the least

n

such that

fJlI

> TEST

I. For} s, N

is

the least

N'

su

ch

that

{JII > TEST = - 0  - . TEST

1

.

p,

  - 1

(5)

In

conseque

nce

of 4) and 5),

the relative

truncation error I T(;;) I

Y

I is less than . lO

- NSJ ;

for all

n

in

the range MAGX <

n

L; see [1,

sec.

5]. For / s , N is taken to be N . Here a

glance

at I) shows

Pil i

P

- I > 2 for all

n

> MAGX, so the proof given in

[1,

sec. 5] for } s may also

be used

for [  s,

with

px repla

ced by 2 throughout.

In eq

1)

for

I s

2n

yIN)

and - SIGN· y N )

have the

same sign

since

if .x >

°

hen yIN) > 0 for

x

II 11+1 n

all n , and if x < 0, then

consecutive

~ ) S have

opposite

signs. Thus

relative

errors < E in Y ~ ~ I and

y \ ~ ) will pr

o

duce

a relative

error < E

in

Therefore, the

relative

truncation error

in all

/, ,(x),

o

x <

NB, is

bounded

by

1:

.

lO - NSJ ;.

2

For} I (x),

n MAGX,

the relative truncation

error

cannot

be

bounded, since

as = MAGX,

MAGX - 1, 1 in 1),

the

values} I (x)

oscillate,

and precision is lost owing to cancellation. In

this range

, JII(X) is accurate to

about

D

decimal places

,

where

D is the number

of decimals

in

J

MA(;X + 1 (x)

which

corresponds

to

NSIG

significant figures in

the same

quan

lity

[1, sec

. 5].

3. ormalization

and

Error ounds for

JA

The eqs 3)

were

chosen

to keep

cancellation under

contro

l. First,

1

I Jo x) 1 ~

I

J,,(x)

~ v 2

f o r n ~ l

(6)

126

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 3/8

] , so eac h te rm of the sum

3)

for

J

s is less than

V2

tim

es

the wh ole sum. S

in ce

6) is a

ca n

ce ll

ation is even less than this would indicate .

For

I

s, can

ce

llation is avoided altogether, sin ce all terms in the sum

(3)

for

I

s have the

sa

me

as

shown in sec tion 2.

Bes

id

es bo

undin

g th e

trun

cation e

rror

of th e algo rithm, the program pr

ov id

es an estimated

und for th e truncation e

rror

of th e normalization sum , de fin

ed

by eqs (3). For j s, this e rror is

'

=

- y ~ N + L ( Y 2 k Y ~ Z » )

1

For

2k

MAGX

,

a bound for

th

e error term yW - Y

2k

is un available.

For

MA

GX

<

2k

<

N ,

\ '

k - Y2

k I

<

PaP, 

- 1)

[1

,

s

ec

.

5].

To avoid storing all the PH',

the

program allows only

N

rm

s for which 2k ~

N

Here = and Y2k = /h k L l / PrPr +, ). Th erefore

1 1.

1 { 1

1

+-

2

/J 2 k + 1 Pu

sec tion 2 above. Now let

e n

P

2 x

R

(N)

~

L

- 1

k [ ' ; I]

I

Y2 k

I .

1

p

{

1 1 }

1+-? +-+ . , .

p

- 1) J \'+

1

p"" p t,

hk+ 1

7)

For

J

s the program se ts

TEST

1 ~ 2 . 10

NS1G

• The normaliza

ti

on factor fL is 1/1MACX (x) ,

sec.

5],

1

5  .1 ) 1 I h 1 0

,S IC

is is a ra th er wea k uppe r bound , a nd the e rror

--; ;

turns out to be ess t a n 2' I -. '.

For I s, PII /

P

_ I > 2

so

the analog of (7) is

R (N)

-< 8 .

~ 9p  y cosh x

127

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 4/8

this

is

derived by

substituting 2 for PN in (7), and

introducin

g

the

factor cosh x; see 3).

10 -

NS  

;

By setting TEST ~ exp(0.461 . MAGX) the

program

insures

that

Here, fL is -1 1 x), so the relative error

I

R N)/fL

I

s bounded by

MA

GX

I

R

(N)

I ,,; 4

IMAGx x)

exp(0.461 ·MAGX)

fL 9

cosh x .

lO

- NS (; .

Now Kapteyn  s

inequality

[4,8.7] states that

lin nz)

I ,,; I

x p ~

I .

1

+ Z2

Ixl

.

Let

z = MAGX so for large x, z = 1, approximately.

Then

and

,,; I z

exp

IM A ;X.

1 ~

For

large

x,

the

approximate bound

for

M Gx x ) is

(

exp

V2

) MA(;X

1 + V2 < exp (0.533 . MAGX).

Substituting

this

in

(8), we obtain

I

N

I

<

4 .

exp

(0.533 MAGX) . exp (0.461 . MAGX)

fL 9

cosh

x

.

lO

-

NSI

.

<

. . lO

- NS G < 1 .

lO

-N

S«;

9 2

Besides this approximate upper bound,

the

strict

bounds

I

R .V) I

-;;- < 7.6 .

lO

-

NS

 (;

Ixl

1

I

V )

I

<

0.565 . lO

- NS G

Ixl <

1

may

be derived

by using

Kapteyn  s

inequality

to obtain a

strict

bound

for

IIMAGx+, x) I.

128

8)

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 5/8

UOOU01

000002

000003

UOOUO"

0000U5

000006

OUU007

UaUO{Jf3

00U009

0000

10

0000

11

0000

12

OOUO

D

00n014

000015

0000

16

001101

7

000018

000019

000020

00002

1

000022

000023

U0 0024

00U025

0

00020

000027

00002

8

·

OU0 029

0000 30

00

0U3

1

OU UO

32

000Uj3

O O O O . 3 ~

0000:\;

000036

000U37

UOOU38

uooo

39

000040

U00041

00UU 2

0000 3

OU00414

0000 5

OOOU4b

000U 7

CDODtjl}

000

049

U D O O ~ 1

UOOO;1

U00052

0000;3

000054

4. Appendix: Algorithm

BESLRI

WELT

BESLR

1 '1.730222 .

sR730

C

C

C

C

C

5UBI{OIJTINE

uESLR

I IX, Nij , rZE , Q,NC ALC)

THIS

ROU TI NE CALCULA

T

ES

'IESSEL

FUNC

TI

ONS

I J

OF

REAL

ARGUMENT

~ N D

I NT

EGER ORDER

.

EXPlANITI

ON OF

VIRIAALES I N THE

C

LLI

NG

SEQUENCE

C x

C

DOUU LE PllEc rSION HEAL A R G U ~ E N T FOR WHICH I S OR J S

I .E

TO BE CllCUlATED . IF

1

5

ARE

TO RE COLCULATlJ .

O

S (X)

MUST BE LE SS

T

HON

EX

PARG (WH

I

CH SEE BE

L

Ow ).

I NT

EGER TY PE

. 1 + HI

GHES

T ORDER TO

BE CALCULA

T

CO

.

IT

MUS

T

BE

POS

IT I

VE.

C

C NO

C IZE

I NTeGER

TY

PE . ZERO I F J . s ARE TO BE·CILCUlATED . 1

IF 1.5 ARE TO BE

CALCULATE D.

C B

C

DOUDLE PREC

I S

IO

N

VEC

T

OR

OF lENG TH

NR

.

NE

ED

NO

T

HE

I

IH

TI ALllED BY USER .

IF

T

HE ROU

T

H)E

T

ERMHIA

T

ES

NORMAll

Y (

NC

AlC=

NR)

.

IT RETURNS

J(OR

l ~ R O

T

HflOUGH

J(OR

I - SUB

-

NB

- MI

NUS

-

ONE OF x

I N THIS

VE

CT

OR

.

C

C

C

NCAlC

I NTEGER

TY PE

.

NEED

BE I N

IT I AL

I ZED ny USER.

BEFORE US l

t\J

THE

RESULTS

, THE USEH SHOULD

CHECK

T ri

  l

NCALC =

NO

.

I.

E.

~ l L O R D E ~ S

HAVE A E E ~

C A l . C U l ~

TO

T

HE DES

I RED

ACC URACY

. SEE

ERROR

RE TURIJS

R ~ L O .

C

C

C

EIPllNA TI

ON OF MACH

I

NE-DEPENDEN

T CONST'NTS

C

NS

I G

DEC IMAL S I GN I FI

CANCE DES

I RED .

SHOU

LD RE

SE

T

TO

I FIX ALOGlnC2) +rJQIT +   . f HERE 'Jf1 IT IS

TH

E -IUr

1HEH OF

B

IT

S IN

TH

E

MANTISSA OF

A

DOURLE

PRECISION

V A I < I A U l ~

SETTING

NS

IG

lOWER WIll

RESULT

I N

nECREASED

A

CCUkACY

WdlLE

o;ETTHJG

NS

IG

HIGHER

WILL

I

NCREASE CPU e

WI

THOUT

I

NCREAS

I

NG

_CCURACY.

THE TRUNC

ATI

ON

ERWOR

IS LIN

ITED

TO T=. 5

+I

O

 

NSIG

FO

R J . S OF ORDER LESS

THAN

A P G U ~ f N AND

TO A

RELA

TIVE ERROR OF T FOR

r+

s A

Nn

T

H€

OTHER

J 5 .

f'JTE J LARGEST I NTEGER K SllCH

THAT

t o•• K I S MI\CHINE -

REPRE5DJTA LE

D O L I ~ L E

PRECISION .

LARGO UPPEH OI J T

HE M ~ G N

L J D E OF X. nEAR

IN

M I;U

THAT

IF ABSIX) =N. THEN AT

LEAST

N IT ERA TI

ONS OF THE

BACK ,A

RD

RECUR SI

ON

WI

LL BE

EXECU T

ED

.

EXPORG

L

ARGES

T

DOURlE PREC

I SI

ON ~ R G U M E N

THAT T

HE

LI

BR  HY

DEXP ROUTI NE

CAN

H ' ~ D L E

ERROR U R ~ S

LET

G

nENOTE

EIT HER I

OR

J

I N

CASE OF AN ERROR

,

NCALC

.NE.NR ,

AN

D

ALL

G*S

ARE

C ~ L C U l A

TO THE

DESIRED

ACCURACY.

IF

IKALC .L l .

O.

N

ARGU" EN

T IS

OUT OF RANGE

.

NB

.

Ll

. O

OR I ZE IS NE IT

HER

0

NOR

J

OR

I

ZE=

l

ND

A n S I X ) E . r A k ~ .

IN THI S

CASE

. THE U- VECTOR I S NOT CALCUL

AT

ED . A

ND

NCALC

IS

SET

TO MI

NO

( N8 . 0

)-1 50 NCA

l C.NE .

NB

.

129

O()l)(]O 1 00

00U00200

001100300

UIlU004DO

00000500

00000600

OOU00700

Oll

UOUHOO

01l00U9UO

001)0 101)0

0000 11

00

OUU01200

00u013no

OU001400

OU

00 1

SUO

00U016UO

OUU0

1700

00U011l00

000019UO

OOU02UUO

00U02100

00U02200

00U 0230U

OUU02

l

l

00

OU00251 0

00u

0

2hUO

OuU027(10

OU002AOU

00CJ0210U

OUU0300U

00U03 1

(10

OUuOj20U

0000331)0

01 U034UO

Ouu03 oO

00003000

00003700

O J H ~

Ouu03< 00

OUU04000

01)0D41UO

OU004200

OUU0430U

OUu044tlO

Ouu045UO

4hOO

00u04700

OUfJn4BllO

00U04YOU

OOuOSI OO

U0005 1

UO

OUUOS200

00U053UO

00005400

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 6/8

UULl(J5'l

5 ~ ,

U O l l J ~ 7

llU UO S

l

\

U O U O ~ Y

UU

LJ(16

0

UOJ fJ bl

(JU

OlJ62

UU OOh3

UO

:W bl+

(lOOGuS

UOI.

1U 6

0

UUOllb7

OU tH1GIJ

tJ

Ul,(jGq

OU

(1(

17U

UonU 71

UO

Ull 72

OuUJ

73

OU

l

I0 7

U U 7 ~

00 0076

U JllU

LtJu 0 7 :3

Uu

uU 79

Llu(

lfl HlJ

i)Uul U l

UU iJO H2

llOUOH3

uar)UHI.

UO,)O

O 1

uu nOtH ,

00l1U07

u OuOtH

Ll OUO Bg

LlU

()09()

iJUlJ09l

LlUUOY2

UO,}(iQ3

OOOU -)4

U()uOYo

OU(10 97

l J ( 1 I 1 U 9 ~

[jOuu9Q

(lOCI

I

Ol)

UOU l Ol

000 102

OOOIU}

001J 10 ...

U O ( )

Ouu

1116

OUlllU7

ou r)l

O,J

OOO I OY

OUt)

110

000

111

( j O O

N . GT. NCALC . GT.O wILL

OC

CUR

IF

~ ~ G X ~ N D

SU:3-N f3- 0F- X/ G - SUf3 - \1AGX - ( )F - X) • LT. l O. *. (NTF.N/?), I E . Nti

IS ~ U C ~ G R [ ~ THAN \1AGX . IN THIS CASE , R{NI IS CA L

CU

L ~ T E D

TO T

HE DES

IRE

D

ACCURACY

F

DR

N.LE .

NCALC

.

BU

T

FON

NCALC .L

T. N. LE.N . PRECISI ON

IS

L

OS

T. IF

N C A L C NU

A U S ( R ( ~ C A L C I /

I ) ) . E Q

~ . - ~ . THEN

OML Y T

H[

FIRST NSIG-K

SI G

N IFICA NT

FIGU

RES OF ~ ( ~ )

BE IF

T H ~ USER

WlSH£:S

TO ( , \LC ULATE R (NI T O HIGHER ACC:URr.CY, HE

SHOULD

USE

AN

/\Sy\1f>T

OTIC

Fl.W

1ULA FO R

LARGE ORDER

.

DOUdlE

PRECI S

IOn

1

T E ~ P A

T E ~ P 9

E M P C

X P A R G

O V E H ,

2 PLA S T, r OLD , rSAVE , PS AVEL

~ I \ 1 E

  \ j S I O ~ J

[JOJB I

DATA

L A R G ~ X , E X P A R G / 1 3 0 7 , 1 0 0 0 0 0 7 . D 2 /

E M p r = D . \ ~ l S ( X )

~ A G ~ = l F I Y ( S N ~ E M P A ) )

IF GT . 0 . A tD . ·..,AGX . Lt: A ~ G E X AND . { 17E . EO . (l . OR.

E ~ P A E X P A R G ) ) GO TO 1

E H H 3 ~

R E T U f f ~ - - X.

N8

,

OR

I 1E IS

OU

T OF RANGE

N C A L ( ) - l

H . E T U Q ~ J

S I G,J = Dt iLE(FLOA T ( 1- 2 *I

lE

)

NC

ALC=N

:3

USE

2

-T l. ASCENnING

SERIES

FOR

X

IF(T

fViP

A.*

  l

T

•• I 0 0 · . ~ J S I G }

GO

T O 30

INITI ALIZ

E

THE C U L A OF

POS

NRViX=iJR

- /llAG ;-t.

N= ·1AGX+ l

PLA,T=I . DO

r = :JJL[ (FLOAT(2*hl )

)/TE\1PA

CA L CU

LATE

E H A L

SIGNIFICANCE

TES T

TEsr=2. Df *I .

Jl  

NSIG

IFII ZE . LO.

I.ftNO.2·.A

G

.GT.soNSIG)

TES T=OSQR TITES TO P)

E Q . 1 . A N ~ A G X . L E ~ S I G ) T E S T = T E S T / 8 S * *

ol =n

IF P>lf \'-1X . L l . j ) GO T O 4

C 0 L ~ T P *S u ~ T r N H - l . CHECK FOR POSSI BLE

O V E R F L O ~ .

TOV ER

= l. JI

• • (N T EN -

NSIG)

T A f n =

~ 1 A G X

N E N l J ~ J t i

DO 3 S T A R T N E N O

P

OLU

=rLAS T

PlI\S T=P

P : OR LE(FLOAT ( 2 *N) ) . PLA ST/TEMPA - SIGN*POLO

IF(P-

TOVER)

3 , 3 , 5

CONT I JUE

= ~ E I D

CALC U

LAT

E SP ECIA L SIGNIF I

CANCE

TEST FOR >lRMX.G T.

2.

~ A X 1 (

D S Q H T

T · l . I G ) · n S Q R

T ( 2 . D O ·

C

L

CU

L

ftTE

pos

UNTI

L SIGNIFICANCE

TE

ST

PASSES

4

i J =Nt

1

POLD =PL ST

r L I I ~ T : p

P=DllLE IFLOA T (2 0N )° LftST I TE MP - S IGN OPOLO

IF

P . LT . TESTl GO TO l

IFII7E

.

E0

ol . 0 R. M

EO ol) GO

TO 12

C

FOR JOS

• •

STRONG

V R I

  N

T OF

THE

TE ST IS NECESSARY .

130

00005500

00005600

00005700

0()005800

00005900

00006000

00006100

0 ( ) 0 0 6 ~ 0 0

00006300

00006400

UOtl06500

00006hOO

00006700

OUQ06BOQ

OU006900

00u07000

ouun7

1

00

00007200

000073UO

OUU07/HID

OOU07S00

001107600

00007700

000071\00

00()07900

00008000

00008100

0000(\200

00008300

ouuOH400

00U08500

OU00860CJ

OU008700

000081\00

OOOOll900

00009000

OOUOgl[}O

OU009200

00009300

00009400

o u o o g ~ n o

00009600

00009700

00009000

00009900

000 1 0000

000 10100

000 1 0200

000 10300

000

10400

000105UO

000

1 0600

000 1 0700

00010800

00010900

00IJI1000

00011100

000 11 200

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 7/8

OUO

113

00 0 11

OUlI II

UUl) 1 16

OUI)1

17

UUU

l I

S

0011

119

0

00

12U

00U I2 1

00 0

122

U0 0123

00

0 12'4

0 0U 12<;

00

UI 26

00U I27

00 0 128

OUUI29

OUOl30

ouu 13

1

OO U132

000133

00 0 134

000

000136

OOU

13?

UOOl38

00U139

OOUl U

O

OU

I l

U

00

142

00 0 143

O O U 1 4 ' ~

0 0 0 1 ~

OUOI

6

OO UI47

OOO I   S

OUO I

  9

UUUI

50

00

0 1 , 1

0

00

1 ,2

00

0 153

UU0154

00U I

55

O

OD

l

Sh

0 0U I

57

0 011 160

Oll(l l e l

0

00

162

01.lIl163

QO C) if) l,

00 (1 1(':'

00U

166

000167

00 0 1

61l

00 0

109

00

0

17

0

CA

LCU

LA

TE IT .

AND CALCULATE

poS

UN

TI L THIS T

EST IS P A S S ~ 0

'.

\:

1

~ P l = P / P L A S T

T E ~ P C

=OIILE

F

LOA T N+ 1 ) ) TE\1PA

T E ~ p ~ / T E ~ P B . G T . 2 0 0 * T E \ 1 P C ) T E ~ P R T E \ 1 P

D ~ Q H

1 TE

MPC

  2 - 1 .

nO )

TEST=TEST/OS QRTITE

MPB

- I .

OO/TEMPOI

IF ( P-T ESTl 4r l 2d2

TO AVO

I U

OVEPF

LOW . DIVI DE poS

BY

TOVER .

CALCULA

TE

UN

TIL

AO

S IPI . GT'}.

5 TOVER = l. Ql* . NTE N

P=P/TOvER

PLAS T=PLAST/TOVER

PSAV;:

=P

PSAV

EL=

PLAS

T

NSTART=N+l

6

= ~ J +

1

POLO

=PL

AS

T

PLAST

=P

O ~ L E I F L O A T I 2 0 I I ' P L A S T / T E M P A - S I G N o P O L O

IFt P. LE . l . DO) GO TO n

E M P ~ O A T I 2 N I I /

IFllZE .

EO '}1 GO

TO

H

E M P ~

P ~ = P l n S T / r O L D

IFI TF  P'

1 •DO

IT EMPli. GT. 2. 00* T

EMPC

I

TE PR=TEMPC+DSQRT

1

(TE l

PC   ' · 2 - 1 . [) O)

CALC

ULnT E

BACKWARD

TES T, A

ND

FINO NeAle , THE

HTGHE

ST N

SUCH

TII AT T

HE

TE

ST

I S

PASSED

.

8 TE5 T=.500 +POLO *PL AS

r:t(1. OO

- 1 . OO / T

E\1PB **2) / l .

n l .*

NS

I G

p: PLflS

r+r

O

VE

R

N=N- l

NEND :: I I I N(1 ( Nl J , N J

DO Nc nLC =NS TA

RT

,

NEND

POLO =

PSAVEL

P ~ A V E L P S A V E

PSt . VE =OULE F LOA T 2 . r

J)

) " PSAVEL/ TEMPI\- S I r;I\J*POLD

IFI

PS AV

E.

PS AVEL

-T

ES

TI

9 . 9

01

0

9 COf4T I

I\J\)

E

C A L C = N E ~

10 'IOLC=NCALC - I

TH E SU

V

1 } 2 H ( 3 ) + 2 B ( • IS USED TO NORMAL I ZE . M fHI:..

COEFF ICieNT OF H(N I . I S I NITIALIZED TO 2 OR O.

12

rJ=N t-t

'1

=2 ·

'J

- 4

·

f'J/21

INITI

ALI ZE

T

HE UO CKWOR

D

RECURS

I

ON

A

ND

T

HE NORMAL

I Z

ATION

TE "1PA= 1 • Q

O/P

SU I::

[) f lL E (FLOI I T L VII

)

.T E  1PA

NF ',J D::tj-

J\

JB

I F

I

II

E

rJ;» 17. 15 ,

1:3

l f ~ n

,\ CK

wl'l RO VIA DIFFERE

NCE EO

UATION . CA L

CU

LATING

(

ou

r

NO

T ST

OR

I

NG

) HI NI .

UN

TIL

N=NR

.

1 3

00

14 L=

I. NEND

N=r ,J

  l

C = T E M P

TE' ,P B=T EMPA

131

01

1

0 11 3 0 0

OUU I1 4

0U

00

11

50

0

0 00 11 0uO

00 0

11 700

OU0 11 1..\00

000

11

  0 0

00

0 1

2000

0 0 0 1 2 1 0 0

OL

U1 22 UO

0

00

1;?j

OO

0 00 1240U

OU

0 12 :' 0 0

DU O

12 6 00

OOOl 2 7 il O

0 00 12(\OU

00012 90

U

00

0

13

0

00

Ou u

l3 1

0 0

OUU 13

2UO

OU 0 13 300

0 00 13

l

t (J O

1 3 ~ 1 1 0

OOU13()OO

Quu l

Ji

u o

OOo

1

3HUO

OU0 13

9U

O

o00140no

OOu1

41

UO

OLJo

t 4

2Q

O

OU0

14 3

0Q

OU0

14 4

00

OOu 14:, OU

0

00

1

4600

OnO

I 7 00

O

Ou

14

/IOU

OOO

l' t

t)O O

00u l 5UoO

o u o l

o l

r

,O

0011 10 200

n OI)  

OO  J IC)4 (JO

O

U0

1

5500

~ ( l O O

Ou

Ot

57  )

O

OOO J o Un O

OU\l l

00

u l

60 0

0

UllU 161

IJU

OUO l h 2u O

OU U16jOO

OUII1 6

1

111

U

OUU l o0 0 U

000l67 1 U

000J6110 0

OOU

16 g

00

OUO l7

0

00

8/20/2019 jresv77Bn3-4p125

http://slidepdf.com/reader/full/jresv77bn3-4p125 8/8

OUU171

OUUI7<

00J 17 3

u i d 174

LlO1J

17  J

UlJ0

17

h

\.JUlIl 7 7

au o1 7 1J

OO[)17g

UOtllen

II Ulll/ ;1

II 01) 1 ~ 2

J l t }

UU tJ UJ 4

U

Ull

l 3'J

U

U,1

1 Mh

U IJlI l fJ 7

U(Jl)

l

o

uUIl I

B9

iJ UI) 190

OUu19 1

OUI)

1

<)?

UUIl I YJ

000194

U l ~ 1

19S

OUll196

UU (

. lC)7

U O i J 1 9 ~ ~

UUl)199

U l lu20 0

OJu2L1 1

lJOU.2U2

OOu2U 3

o ut l? O .

0 00

;' 0

'.)

UU \12 lt)

UU ll2U 7

Qo e

20t\

) ~ U Y

001)2 1 0

uun21 1

uUJ.21 2

lJUtl2 1 j

OOU2 14

U U 1 1 2

OU l'2 1 b

0002 1 7

UUiJ? l d

OUu2 1

u

DU,J220

00

U2 21

0 0

02

2 2

3 .

E . r A

I D B L r I

L o . T

) ' T E X - S J ' T E ~ P C

'<1 =2-1,1

14 S U ' ~ = S U M O B L E ( F ) I * T

STORE

y ( " j l ~

1 5 ~ J l = T E ~ r

T . l l (,0

TO

16

t Jq= t .

SPJCE

2

..

T E lPA

WAS

f\ODED TO THE SU ,

TF

MPA MU S T 5t:

C SUBTRflCTFn

SUI.1=C, ll'4 -TU·\Pfl.

GO

TO 23

CA:""CtILl\ r r:

f\.

...jD STORE

B(NU

- l l

t 6 \1='-:-

t

  r - . . ) ) = ( W ~ "'T E;...,P A) / X-S I Gt...l *T F.:,-,pq

IF( :L [Q . lI GO TO 22

=2-

v

,

S U ~ = 5 U \ 1 M ) ) .

GO

T0 1 9

· L T .

SO

S T O R

O(N)

AND

SE

T HI GH

ER

OROERS

TO

Z

ERO

17 U<NJ

:: TE   'P A

N[rJ.J::

- :\I[ND

JO 1 A L

= l

,

) ,( ' /0

l R n( 'PL): :O .

un

19 I ~ = : J - ?

TFliJ:: rJ D. f t"L U)

GO

TO 2 1

CAL CILf l fE VIfl

D I ~ F E n E

EQU ATIO N A

ND

ST OR E B (N) ,

lI  ·JT l L

'

J::?

DO 20 L= l

, NE'ID

' J=  J - 1

1

( J ) : : (DflL:::

(FLOAT

) * R ( N+l) ) 5 1

GN

*n 0.

J+2)

1 =

; >-

 

.,

20

S U ~ = S U V D ~ L E ( F L O A

C CAL::ULAT E de l )

2 1

Uf

lJ

=?OO

.

[ l

( ? 1

/X-S

I G tl *

i1 (3

J

2 2 SU\1 = SU\1 i n( 1)

O R ~ A Z F - - I IZ

E=I. D

IV

lOE

SLIM BY

COSHln. DIVI

DE ALL

[J

n y

SUV1 .

23 IF II

7E

.

EQ

. U) GO TO 25

TE" Pft=OE I P IDftSSI X))

S U \ 1 = 2 S U ~ / 0 0 / T M P A l

2')

00 2(,

-1 =1 ' ~ H

26

Q(II) :: i l {NI /SU\1

F<Elu ... U

T

WO-

T

ERV1

ASCENU I NG SER I ES FOR SMALL X

3 0 TE '1pl\= 1. no

r E v p n =

D O · X .

( t ) :: 1 • On TE '}PR

II="(,J ;

.E J

. l l GO TO

32

')0 3 1 ~ J l 1

T E V ) A = T [ ~ P A

X / O ~ L [ ( ~

31

~ ( ~ ) T E . P A E ~ P A

L E I F ) ) )

32

RETURN

[r ID

END CUR LCC 11

02

- 0038 L8

S. References

00 0

17100

D00 17 20 0

OUO

I7 3

00

Q00 17 4 00

00 0

17

S00

001l

17

60U

OOU 17 7 00

00 0 1 7HOO

00 0 179UO

Don

1

uooo

OOOIAIOO

OUolB200

OOU18300

OO()lHI,OO

00tllR500

00010hOO

00U 18700

OOUltillOO

00018

0

00

OUU l 9000

OU0 19 100

OUu 192fJO

00 0 19300

00 0

19QOO

00 0

1

9500

OUlJ1 9hOO

00019700

00 0 19000

00U 199 0 0

00020000

OU020 1

0D

00020200

OOLl203 ()O

OUu2 0 4 0 0

0

00

2 0SIlD

D

0020(lO

a

0 00 2

f)

700

0 0020000

D002 0'lOD

0002

1DOO

D002

1100

0002 1

200

D002 D uO

0

002

14 00

0

002

1

S0(

OOu2 1hOO

D002

17 00

0002lUO O

0002 1

900

0 002200 0

OU0221 00

0 00 22 2 0 U

[11

Olver, F. W. J . and

Sookne

, D ./.. A note on

ba

ckward

recurrence

algorithm

s,

Mathema

ti

cs

of

Computation. Vo

l. 26,

No.

120 (O

c

t. 1972).

pp.

941 - 947.

[2J Olver. F. W. J..

Numer

ical solu

ti

on of second-order linear difference eq uations.

J. Re

s. Nat. Bur. Stand. (U .S.). 71B,

(Math. and Math. Phys .). Nos 2&3. 111 - 129 (Apr.- Se p

t.

1967).

[3] British Assoc. f

or

the Advancement

of

Sc ien ce. Bes se l Functions - Part ll . Mathematical Tables. Vol. lO

(C

am bridge

Un iv er s

it

y Press, Cambridge, 1952).

[4] Watson. C. N .. A

Tr

e

atis

e on the Th eory of Bessel Func

tions

(Second Edition.

Camhrid

ge Univers

il

y

Pr

ess, Cambrid ge,

1944

).

(

Paper

77B3&4-387)

132