53
1 Klimata pārmaiņas Klimata pārmaiņas

Klimata pārmaiņas

  • Upload
    byron

  • View
    102

  • Download
    0

Embed Size (px)

DESCRIPTION

Klimata pārmaiņas. Klimats un tā mainība. Klimats ir mums apkārt norisošo laika apstākļu, meteoroloģisko parādību un notikumu apkopojums ilgā laika posmā, kas var apvienot gan pāris gadus, gadu desmitus, un pat gadu tūkstošus. - PowerPoint PPT Presentation

Citation preview

Page 1: Klimata pārmaiņas

1

Klimata pārmaiņasKlimata pārmaiņas

Page 2: Klimata pārmaiņas

2

Klimats un tā mainībaKlimats un tā mainība

Klimats ir mums apkārt norisošo laika apstākļu, meteoroloģisko parādību un notikumu apkopojums ilgā laika posmā, kas var apvienot gan pāris gadus,

gadu desmitus, un pat gadu tūkstošus. Klimatu raksturo vidējotas un ilglaicīgas atmosfēras fizikālo rādītāju vērtības, kas raksturīgas

Zemei kopumā (globālais klimats) vai noteiktai teritorijai (valstij vai reģionam). Konkrētās teritorijas klimats ir daudz pastāvīgāks nekā laika apstākļi un klimatu nosaka Saules

starojuma daudzums un sadalījums gada laikā, atmosfēras cirkulācijas raksturs, zemes virsmas raksturs.

Zemes klimats ir ļoti sarežģīta sistēma un galvenais to veidojošais faktors ir enerģijas plūsmas, kuras Zeme saņem no Saules.

Klimats veidojas no Saules nākošajai enerģijai izkliedējoties un mijiedarbojoties ar Zemi, līdz ar to klimata sistēmu var definēt kā sastāvošu no atmosfēras, hidrosfēras, kriosfēras (Zemes ledāju un sniega segas, un mūžīgā sasaluma), litosfēras un biosfēras.

Atmosfēra ir klimata sistēmas visnestabilākā un straujāk mainīgā daļa, kuru veido gāzes, ūdens tvaiki, kā arī putekļi un aerosoli.

Izmaiņas var rasties piesārņojuma rezultātā, ko rada cilvēka darbības, piemēram, fosilā kurināmā sadedzināšana, rūpnīcu darbība, dažādu ķimikāliju izmantošana lauksaimniecībā,

tropisko lietusmežu izciršana.Klimata mainība notiek lēni un pakāpeniski, taču iespējams, ka kādu negaidītu procesu rezultātā (vulkāna izvirdumi, meteorītu krišana) klimata izmaiņas var norisināties strauji un

neparedzami. Pētot ilgtermiņā veiktus laika apstākļu novērojumus ir iespējams konstatēt klimata pārmaiņas,

tādas kā „mazais ledus laikmets”, kas pastāvēja Ziemeļeiropā starp 15. un 18. gs.

Page 3: Klimata pārmaiņas

3

ANO Vispārējā konvencija par klimata pārmaiņām

ANO Vispārējā konvencija par klimata pārmaiņām (The United Nations Framework Convention on Climate Change – UN FCCC) ir starptautisks daudzpusējs vides līgums, kas tika pieņemta ANO konferencē par vidi un attīstību (Riodežaneiro, 1992.).

Konvencija mērķis ir stabilizēt siltumnīcefekta gāzu koncentrāciju atmosfērā tādā līmenī, kas novērstu bīstamu antropogēnu iejaukšanos pasaules klimata sistēmā.

Pati konvencija neizvirza nekādus obligātus ierobežojumus attiecībā uz siltumnīcefekta gāzu emisiju atsevišķām valstīm un nesatur īstenošanas mehānismus. Juridiski saistošā daļa ir Kioto protokols, kas izriet no Konvencijas.

ANO Vispārējo konvenciju par klimata pārmaiņām ir parakstījušas un ratificējušas194 valstis.Viens no pirmajiem uzdevumiem bija izveidot valstu siltumnīcefekta gāzu uzskaiti - emisijas un piesaiste, kas tika izmantota, lai noteiktu1990. gadam atbilstošu bāzes līmeni, kā arī noteiktu dalībvalstu nepieciešamību samazināt SEG emisijas noteiktā apjomā.

Page 4: Klimata pārmaiņas

4

Konvencijas Sekretariāts atrodas Bonna, Vācijā.

No 2006. līdz 2010. gadam par Sekretariāta vadītājs bija Yvo de Boer no Nīderlandes.

2010. gadā viņu nomainīja Christiana Figueres no Kostarikas.

Sekretariāta mērķis ir sanāksmēs panākt vienprātību par problēmas stratēģisko risinājumu.

Konvencijas dalībvalstis katru gadu kopš 1995. gada organizē konferencēs (Conference of Parties - COP), lai novērtētu panākto progresu, klimata pārmaiņu jomā.

1997. gadā tika pieņemts Kioto protokols un noteikti juridiski saistoši pienākumi valstīm, lai samazinātu siltumnīcefekta gāzu emisijas.

Kioto protokols ietver trīs mehānismus:- kopīgi īstenojamie projekti,- starptautisko emisiju tirdzniecība, - tīras attīstības mehānisms.

ANO Vispārējā konvencija par klimata pārmaiņām

Page 5: Klimata pārmaiņas

5

The UN FCCC Secretariat,The UN FCCC Secretariat,Bonn, GermanyBonn, Germany

Page 6: Klimata pārmaiņas

6

Klimata pārmaiņu starpvaldību Padome (The Intergovernmental Panel on Climate Change - IPCC) ir galvenā starptautiskā

organizācija, kas izveidota klimata pārmaiņu seku mazināšanai. To izveidoja

ANO Vides Programma un Pasaules meteoroloģiskā organizācija 1988. gadā. Tās galvenais uzdevums ir veidot skaidru zinātnisku pasaules uzskatu par klimata

izmaiņām un to potenciālo ietekmi uz vidi un sociāli-ekonomiskajām sistēmām.

Pašlaik Padomē piedalās 195 ANO dalībvalstis.

Pasaules meteoroloģiskā organizācija Ženēvā, kur ir izvietojies arī IPPC Sekretariāts

Page 7: Klimata pārmaiņas

7

Connie Hedegaard, ANO Klimata kongresa galvenā organizatore

(2009. gada decembris, Kopenhāgena). Tagad ES Klimata komisāre.

Indijas premjers Manmohan Singh (zils turbāns) un Indijas Vides un mežu ministrs Jaraim Ramesh (aiz premjera) daudzpusējā sanāksmē ar ASV prezidentu Baraku Obamu, Ķīnas premjeru Wen

Jiabao, Brazīlijas prezidentu Lula da Silva un DĀR prezidentu Jacob Zuma ANO Klimata kongresā.

Page 8: Klimata pārmaiņas

8

Information

Date: 29 Nov.–10 Dec. 2010

Location: Cancún, Mexico

Participants: UNFCCC member countries

Ieguvumi:Vienošanās par “Zaļo Klimata fondu” ("Green Climate Fund“).

Vienošanās par “Klimata Tehnoloģiju centru” ("Climate Technology Center“). Turpināsies darbs, lai sagatavotu Otro Kioto protokola periodu.

Dalībvalstu centieni nepieļaut, lai globālā gada vidējā temperatuūra nepaaugstinātos vairāk kā par 2°C, salīdzinot ar pirmsindustriālo periodu.

Virzīšanās uz “zema oglekļa izmantošanas sabiedrības” (low-carbon society) modeli.Aicinājums attīstītām valstīm samazināt savas siltumnīcefektu izraisošo gāzu emisijas, bet attīstošām valstīm plānot to

emisiju samazināšanu.Vāji attīstītām valstīm paredzēt 100 miljardus ASV dolāru gadā, lai veicinātu siltumnīcefektu izraisošo gāzu emisiju

samazināšanu un adaptāciju.

Page 9: Klimata pārmaiņas

Durbanas platforma :

Līdz 2015. gadam jāsagatavo jauns starptautisks līgums, kas aizvietos Kioto protokolu un stāsies spēkā no 2020. gada.

Tiek iesaistītas attīstošās valstis (Ķīna, Indija), kā arī ASV, kura nav parakstījusi Kioto protokolu.

Tiek attīstīta ideja par “Zaļo klimata fondu” – tas nodrošinās 100 miljardus ASV dolāru gadā trūcīgām valstīm.

Date:28 November 2011 –11 December 2011

Location: Durban, South Africa

Webpage cop17-cmp7durban.com

From left to right: UN Secretary-General Ban Ki-mmon, President of South Africa Jacob Zuma, President of the Conference Maite Nkoana-Mashabane and UNFCC Deputy

Executive Secretary Richard Kinley

Page 10: Klimata pārmaiņas

Kioto protokola darbības laiks tiek pagarināts līdz 2020. gadam.

Diemžēl tas attiecas tikai uz 15 % no pasaules oglekļa dioksīda emisijām, jo dokumenta apstiprināšanā neiesaistījās Kanāda, Japāna, Krievija, Baltkrievija, Ukraina, Jaunzēlande un ASV.

Kioto protokols nekādi neattiecas uz emisiju samazinājumu jaunattīstības valstīs (Ķīna - pasaulē lielākais CO 2

emitētājs; Indija; Brazīlija).

Konferencē tika gūti nelieli panākumi par finansējumu “Zaļajam klimata fondam”.

10

Norises laiks: 2012. gada 26. novembris -

2012. gada 8. decembris

Norises vieta: Doha, Katara

Dalībnieku skaits: 17 000

10 million Facebook likesfor continuation of the Kyoto protocol

Page 11: Klimata pārmaiņas

11

Kioto mērķu izpildeKioto mērķu izpilde

SEG emisijas Eiropas SavienībāSEG emisijas Eiropas Savienībā

Page 12: Klimata pārmaiņas

12

Kioto protokola mērķis ir samazināt globālās Kioto protokola mērķis ir samazināt globālās siltumnīcefekta gāzu emisijassiltumnīcefekta gāzu emisijas

Page 13: Klimata pārmaiņas

13

Oglekļa emisijasOglekļa emisijas dažādos pasaules dažādos pasaules reģionos reģionos 18001800. . –– 20002000. gadā. gadā

Page 14: Klimata pārmaiņas

14

SEG emisiju sadalījums pa tautsaimniecības nozarēmSEG emisiju sadalījums pa tautsaimniecības nozarēm

Linda Leja, 2005

KanādāKanādāLatvijLatvij

āā

Page 15: Klimata pārmaiņas

15

SEG emisijas uz vienu iedzīvotājuSEG emisijas uz vienu iedzīvotāju

Page 16: Klimata pārmaiņas

16

Indikators Novērotās izmaiņas

Koncentrācijas indikatori

CO2 koncentrācija atmosfērā No 1000. līdz 1750.gadam CO2 koncentrācija atmosfērā ir 280 m.d., 2000. gadā - 368 m.d.

(31±4 % pieaugums )

CO2 saistīšanas spēja Zemes biosfērā No 1800. – 2000. gadam piesaistītā oglekļa dioksīda daudzums ir aptuveni 30 GtC; 1990 - ajos gados tas samazinājies par 14±7GtC

CH4 koncentrācija atmosfērā No 1000. līdz 1750. gadam - 700 mlrd.d., 2000. gadā - 1750 mlrd.d (151±25 % pieaugums )

N2O koncentrācija atmosfērā No 1000. līdz 1750. gadam - 270 mlrd.d., 2000 gadā – 316 mlrd.d. (17±5 % pieaugums )

Citas siltumnīcefekta gāzes Vispārējs pieaugums pēdējos piecdesmit gados

Laika apstākļu indikatori

Zemes virsmas temperatūra Divdesmitā gadsimta laikā pieaugusi par 0,6±0,2 % 0C pie tam vairāk sauszemē kā okeānā

Temperatūra Ziemeļu puslodē Salīdzinot ar citiem laika posmiem pēdējos 1000 gados, temperatūra divdesmitajā gadsimtā pieaugusi visvairāk

Diennakts temperatūras amplitūda 1950. -2000. gadam sauszemes teritorijā samazinājies. Temperatūras minimums naktī pieaudzis divas reizes salīdzinājumā ar dienas maksimālo temperatūru.

Karstās dienas/ karstuma indekss Pieaudzis

Aukstums/sals (dienas ar temperatūru zem 0 oC ) Samazinājies sauszemē divdesmitajā gadsimtā

Nokrišņi (kontinentāli) Divdesmitajā gadsimtā Ziemeļu puslodē pieauguši par 5-10%, tomēr dažos reģionos - Āfrikas rietumos un ziemeļos, Vidusjūras reģionos samazinājušies

Dabas kataklizmas ar palielinātu nokrišņu daudzumu

Pieaug vidējos un augstākajos ziemeļu platuma grādos

Sausuma periodu biežums un intensitāte Sausuma pieaugums vasaras mēnešos saistīts ar sausuma perioda biežuma palielināšanos dažos apgabalos. Dažos reģionos - teritorijās Āfrikā, Āzijā sausuma periodu intensitātes un biežuma pieaugums novērots pēdējā dekādē

Page 17: Klimata pārmaiņas

17

Indikators Novērotās izmaiņas

Bioloģiskie un fizikālie indikatori

Jūras līmenis Divdesmitajā gadsimtā pieaudzis vidēji par 1-2 mm gadā

Ledus segas pastāvēšanas perioda ilgums upēs un ezeros Divdesmitajā gadsimtā samazinājies aptuveni par 2 nedēļām vidējos un augstākajos platuma grādos Ziemeļu puslodē

Ledus segas biezums un platība Ziemeļu ledus okeānā Vasaras beigās un agros rudeņos pēdējā dekādē ledus segas biezums sarucis par 40 %. Kopš 1950.gada pavasara un vasaras par 10-15 % samazinājusies ar ledu klātā teritorija

Ledāji Plaši izplatīta ledāju atkāpšanās divdesmitajā gadsimtā

Sniega sega No 1960-ajiem gadiem, kad novērojumiem sāka izmantot satelītus, samazinājusies par 10 %.

Mūžīgais sasalums Sācis atkust un sarukt polārajos, subpolārajos un kalnu reģionos

Veģetācijas sezona Pēdējo 40 gadu laikā pagarinājusies par 1-4 dienām dekādē Ziemeļu puslodē, it īpaši augstākajos platuma grādos.

Augu un dzīvnieku izplatība Augu, kukaiņu, putnu un zivju izplatības areāls paplašinājies uz ziemeļiem un augstkalnu rajoniem

Ziedēšanas, vairošanās un migrācijas sezona Ātrāka augu ziedēšana un putnu atceļošana, ātrāka vairošanās sezona, kā arī kukaiņu strauja savairošanās Ziemeļu puslodē

Koraļļu rifu izbalošana Palielinās, īpaši El Niño efekta ietekmē

Ekonomiskie indikatori

Ar klimatu saistītie ekonomiskie zaudējumi Pēdējos četrdesmit gados pieaudzis klimata pārmaiņu un ekstremālu klimatisko parādību radīto zaudējumu apjoms un nozīme.

Page 18: Klimata pārmaiņas

18

Globālās klimata sistēmas galvenie elementi un to Globālās klimata sistēmas galvenie elementi un to mainību ietekmējošie procesimainību ietekmējošie procesi

Page 19: Klimata pārmaiņas

19

Zemes klimatsZemes klimats

Zemes klimats ir sarežģīta sistēma, ko galvenokārt veido enerģijas plūsma, kuru Zemes virsma saņem no Saules.

Enerģijas daudzums, kas sasniedz Zemes virsmu, ir 342 W/m2. Aptuveni trešā daļa no Saules plūstošā starojuma enerģijas tiek atstarota atpakaļ

kosmiskajā telpā gan no mākoņu segas un Zemes virsmas, gan arī atmosfērā esošo putekļu un aerosolu ietekmē.

Zemes klimata veidošanā liela nozīme ir dabiski pastāvošam siltumnīcefektam. Oglekļa dioksīds absorbē (tāpat kā ūdens molekulas, ozons, metāns un citas vielas) un atstaro

infrasarkano starojumu, kuru emitē Zemes virsma.Temperatūru uz Zemes nosaka līdzsvars starp ienākošo Saules starojuma enerģiju un no Zemes

virsmas atstaroto enerģiju. Saules enerģijas daļu, kas tiek atstarota, sauc par albedo. Vispirms no Zemes virsmas tiek

atstarots infrasarkanais starojums (starojums ar lielu viļņa garumu), un šo procesu var aprakstīt ar Stefana-Bolcmaņa likumu:

J = ε σ T2

ε – konstante, kas apraksta atstarošanas intensitāti no Zemes virsmas (vidēji 0,97 ūdens virsmai);

σ – absolūti melna ķermeņa starojuma konstante 5,7 × 10-12 W/cm2K4;T – absolūtā temperatūra.

Page 20: Klimata pārmaiņas

20

Zemes enerģijas bilanceZemes enerģijas bilance

Page 21: Klimata pārmaiņas

21

Page 22: Klimata pārmaiņas

22

Zemes enerģijas bilanceZemes enerģijas bilancePēc Stefana-Bolcmaņa formulas aprēķinātā Zemes temperatūra ir

ievērojami zemāka nekā faktiskā temperatūra. Tātad uz Zemes esošā temperatūra, kas nodrošina dzīvības pastāvēšanu, lielā mērā ir atkarīga no siltumnīcefekta.

Dažādas siltumnīcefektu veidojošās vielas var atšķirīgi ietekmēt Zemes klimatu, ņemot vēra gan šo vielu spēju atstarot atpakaļ infrasarkano starojumu, gan arī to koncentrāciju atmosfērā.

Ja Zemes atmosfēru veidotu tikai slāpeklis un skābeklis, Zemes vidējā temperatūra būtu tikai 6 °C, jo šīs gāzes nespēj aktīvi iekļauties Zemes siltuma plūsmā (faktiski Zemes vidējā temperatūra ir aptuveni 15 °C).

Ogļskābā gāze (CO2), metāns (CH4), ka arī ūdens tvaiki, nonākot atmosfērā, var darboties līdzīgi kā siltumnīcas stikls, - tas ir caurlaidīgs ienākošajam starojumam, bet aiztur no Zemes virsmas atstaroto infrasarkano (siltuma) starojumu.

Ņemot vērā šādu iedarbības efektu, šīs gāzes sauc par siltumnīcefekta gāzēm. Jo augstāka to koncentrācija atmosfērā, jo vairāk infrasarkanā starojuma (siltuma) tiek aizturēts Zemes atmosfērā un vairāk pieaug Zemes temperatūra.

Hipotēzi par siltumnīcefektu veidojošo gāzu un galvenokārt par CO2 nozīmi Zemes klimata izmaiņās izvirzīja zviedru ķīmiķis Svante Areniuss jau 1896. gadā.

Mūsdienās pilnībā apstiprinājušies viņa aprēķini, ka CO2 koncentrācijas dubultošanās var izraisīt Zemes vidējās temperatūras pieaugumu par 5–6 °C.

Svante August Arrhenius (1859–1927)

Page 23: Klimata pārmaiņas

23

SiltumnīcefektsSiltumnīcefektsKlimats ir atkarīgs no Saules aktivitātes. Saules aktivitāte ir lielā mērā mainīga, bet tā nav atkarīga no cilvēka darbības. Vienkāršākais Saules aktivitātes mainību raksturojošo procesu kopums ir “Saules plankumi”. To veidošanos uz Saules raksturo 11 gadu atkārtošanās cikls. Saules plankumu veidošanās laikā ievērojami mainās enerģijas daudzums, ko saņem atmosfēra un Zemes virsma. Saules aktivitātes izmaiņas var ietekmēt globālo temperatūru no 0,33 °C līdz 0,45 °C. Tas ir temperatūras mainības intervāls, kas salīdzināms ar novēroto temperatūras pieauguma vērtību pēdējo 100 gadu laikā (0,4 °C). Tajā pašā laikā enerģija, ko saņem Zemes virsma, protams, var mainīties arī ilgākā laika posmā.

Page 24: Klimata pārmaiņas

24

SiltumnīcefektsSiltumnīcefekts

Serbu klimatologs Milutins Milankovičs ir izvirzījis hipotēzi, mēģinot izskaidrot klimata mainību desmitu gadu tūkstošu laikā (ledus laikmetu veidošanās, klimata optimuma periodi). Pēc šīs hipotēzes, klimata izmaiņas saistītas ar Zemes ass novietojuma mainību attiecībā pret Sauli. Zemes kustību ap Sauli raksturo periodiskas orbītas izmaiņas un Zemes rotācijas ass izmaiņas, bet ir pierādītas arī būtiskas pašas Saules aktivitātes izmaiņas, kas rada atšķirības enerģijas daudzuma, ko saņem Zemes virsma. Saules aktivitātei ir raksturīgs izmainu biežums (frekvence) – 11, 36 un 180 gadi, un līdz ar to arī Zemes klimats ir pakļauts ievērojamai dabiskai mainībai.

Page 25: Klimata pārmaiņas

25

Lielākie siltumnīcefekta gāzu emitētāji pasaulē Lielākie siltumnīcefekta gāzu emitētāji pasaulē Pirmais cipars – valsts vai reģiona emisiju proporcionālā daļa.

Otrais cipars - valsts vai reģiona emisijas uz iedzīvotāju skaitu (SEG tonnas uz vienu iedzīvotāju).

Ķīna – 17 %; 5,8 ASV – 16 %; 24,1 ES – 11 %; 10,6 Indonēzija – 6 %; 12,9 Indija – 5 %; 2,1 Krievija – 5 %; 14,9 Brazīlija – 4 %; 10,0 Japāna – 3 %; 10,6 Kanāda – 2 %; 23,2 Meksika – 2 %; 6,4

Page 26: Klimata pārmaiņas

26

TamboraTamboravulkānsvulkāns, ,

IndonIndonēzijaēzija

Vulkāna izvirdums ar sprādzienu un milzīgu pelnu daudzuma izvadīšanu atmosfērā

notika 1815. gadā. Sarkanā zona parāda pelnu slāņa biezumu.

Page 27: Klimata pārmaiņas

27

SiltumnīcefektsSiltumnīcefekts Pasaules okeāna ūdeņu plūsmu mainība var ievērojami ietekmēt Zemes klimatu. To, iespējams, var saistīt arī ar ledus laikmetu iestāšanos. Okeānu ūdeņos izšķīdušo sāļu koncentrācija un līdz ar to arī ūdeņu blīvums uzskatams par vienu no galvenajiem faktoriem, kas nosaka okeānu ūdeņu cirkulācijas raksturu, veidojot “okeānu konveijeru”. Okeānu ūdeņu globālo plūsmu raksturu nosaka mazāka blīvuma augšējās ūdens plūsmas un dziļākās ūdens plūsmas. Augšējās ūdens plūsmas veidojošie ūdeņi ir siltāki, bet ar ievērojami zemāku sāļu koncentrāciju, ko nosaka atmosfēras nokrišņu izkrišana un virszemes notece. Augšējo ūdens plūsmu sāļums ir ievērojami augstāks, bet, dzīvajai organiskajai vielai nogrimstot, ūdeņi bagātinās ar biogēnajiem elementiem.

Jūru un okeānu ūdeņu plūsmu raksturs:

sarkans – siltas augšējās ūdens plūsmas;

zils – dziļākās ūdens plūsmas; zaļš – okeānu reģioni, kur

ir paaugstināts ūdens sāļums; gaiši zils – okeānu reģioni, kur ir

pazemināts ūdens sāļums; dzelteni aplīši – reģioni, kur dzelteni aplīši – reģioni, kur

notiek ūdens straumju nomaiņa.notiek ūdens straumju nomaiņa.

Page 28: Klimata pārmaiņas

28

Golfa straumeGolfa straume

Okeānu ūdeņu plūsmas raksturo izteikts to aprites cikls (1400–1600 gadi), un to raksturs būtiski ietekmē klimatu. Vēl ir nozīmīgi, ka zemūdens plūsmas veidojošais ūdens ir piesātināts ar CO2

un ūdeņu plūsmu mainība var ievērojami ietekmēt šīs gāzes koncentrāciju atmosfērā.

Page 29: Klimata pārmaiņas

29

Klimata pārmaiņas ietekmējošie dabiskie un Klimata pārmaiņas ietekmējošie dabiskie un antropogēnie procesiantropogēnie procesi

Page 30: Klimata pārmaiņas

30

Zemes vidējās Zemes vidējās temperatūras temperatūras

mainības rakstursmainības raksturspēdējo 1 000 000 pēdējo 1 000 000

gadu laikāgadu laikā

Page 31: Klimata pārmaiņas

31

Klimata mainību iespējams analizēt arī ilgākos laika posmos, izmantojot ledājusastāva analīzi. Ledāji (kalnos, Grenlandē, Antarktīdā) veidojas, sablīvējoties sniegamasai, un to vecums var sasniegt vairākus simtus tūkstošus gadu. Veidojoties ledus masai, tajā paliek iekļautas gaisā esošās putekļu daļiņas, ka arī atmosfēru veidojošas gāzes. Līdz ar to, veicot ledus sastāva analīzi, ir iespējams rekonstruēt arī klimatiskos apstākļus, kādi ir pastāvējuši ledāju veidošanās laikā. Pētījumi liecina, ka klimats ir ievērojami mainījies un to ir noteikuši dabiski noritoši procesi. Rekonstruētās temperatūras vērtības ciešikorelē ar siltumnīcefektu gāzu, vispirms CO2, koncentrācijas vērtībām. Tas apstiprina pieņēmumu, ka siltumnīcefektu veidojošo gāzu nozīme Zemes klimata izmaiņā ir būtiska un to koncentrācijas pieaugums ir jāsaista ar klimata pasiltināšanos.

Page 32: Klimata pārmaiņas

32

Cilvēka darbības izraisītā klimata mainībaCilvēka darbības izraisītā klimata mainība

Klimats pēdējo simts gadu laikā ir ievērojami mainījies. Šīs izmaiņas ir ne tikai ļotistraujas, bet arī saistītas ar Zemes vidējās temperatūras pieaugumu.

Page 33: Klimata pārmaiņas

33

COCO22 koncentrācijas pieaugums koncentrācijas pieaugums

Klimata izmaiņas ietekmē ne tikai temperatūras pieaugums, bet arī izmaiņas nokrišņu daudzuma, klimata kā sistēmas stabilitāte, ekstremālo klimatisko parādību biežums.

Liela daļa pētījumu klimata izmaiņas saista ar gāzu emisijas pieaugumu pēdējā gadsimta laikā cilvēka darbības dēļ. Ir pierādīts, ka pēdējo 100 gadu laikā gaisā ir ievērojami pieaugusi galvenokārt to gāzu koncentrācija, kuras izraisa siltumnīcefektu.

To vislabāk pierāda CO2 koncentrācijas pieauguma tendences, kas konstatētas Mauna Loa observatorijā (Havaju salas, ASV). Tur konstatēts, ka vide, kuras tuvumā nav piesārņojuma avotu, vērojams pastāvīgs un ievērojams ogļskābās gāzes koncentrācijas pieaugums.

Page 34: Klimata pārmaiņas

34

Gāzes, kas rada siltumnīcefektuGāzes, kas rada siltumnīcefektu

Ņemot vērā CO2 emisijas apjomu pieaugumu, tiek vērtēts, ka līdz gadsimta vidum oglekļa dioksīda saturs dubultosies, salīdzinot ar mūsdienām. Tas var novest pie Zemes vidējas gada temperatūras palielināšanās par 1,5–4,5 °C.

Ja CO2 potenciālo ietekmi uz Zemes klimatu pieņem par 1, tad citu siltumnīcefektu izraisošo vielu relatīvā potenciāla spēja ietekmēt Zemes siltuma bilanci var būt ievērojami lielāka: metānam tā ir 11, N 2O – 270,

bet freonam CF3Cl – 3400.

* Lielums ΔQ parāda tās atstarotās enerģijas izmaiņas pie troposfēras augšējās robežas, kuras notiktu, ja attiecīgais komponents tiktu pilnīgi aizvākts no atmosfēras.

Page 35: Klimata pārmaiņas

35

COCO2 2 emisijas tagad un nākotnēemisijas tagad un nākotnē

COCO22 izmešu daudzumi izmešu daudzumi

dažādos pasaules reģionos dažādos pasaules reģionos 2000. gadā2000. gadā

Iespējamie COIespējamie CO22 izmešu izmešu

daudzumi dažādos pasaules daudzumi dažādos pasaules reģionos 2025. gadāreģionos 2025. gadā

Page 36: Klimata pārmaiņas

36Arctic sea ice loss

Page 37: Klimata pārmaiņas

37

Prognozētais Prognozētais temperatūras temperatūras un nokrišņu un nokrišņu daudzuma daudzuma mainības mainības rakstursraksturslīdz 2050. līdz 2050. gadam.gadam.

Page 38: Klimata pārmaiņas

38

Klimata mainības ietekme uz piekrastes joslas procesiemKlimata mainības ietekme uz piekrastes joslas procesiem

Page 39: Klimata pārmaiņas

39

Klimata mainības Klimata mainības iespējamā ietekme uz iespējamā ietekme uz

lauksaimniecībaslauksaimniecībaskultūru ražībukultūru ražību

Page 40: Klimata pārmaiņas

40

Klimata mainības sekasKlimata mainības sekasGlobālā pasiltināšanās nozīmē ne tikai temperatūras pieaugumu: ir iespējama arī

reģionāla temperatūras pazemināšanās, okeānu līmeņa paaugstināšanās, krasta joslas erozijas pastiprināšanās, mitrzemju pārplūšana, veģetācijas mainība, upju un ezeru līmeņa un noteces mainība.

Ietekmes var skart cilvēka veselību, sabiedrībā noritošos procesus un ražošanu, vispirms – lauksaimniecību, zivsaimniecību, mežsaimniecību

un var arī ietekmēt ostu sektoru.

Īpaši dramatiska klimata maiņas ietekme var būt zemieņu reģionos, pie kuriem pieskaitāma arī Latvija, bet galvenokārt Zemes tropiskajos reģionos, kur tuksneša zonas ievērojama paplašināšanās var būtiski ietekmēt cilvēku izdzīvošanu.

Baltijas jūras reģionā gaisa temperatūra var pieaugt par 2–4 grādiem 100 gadu laikā.

Klimata mainības iespējamās sekas var būt biežāka “karstuma viļņu” izplatība, - situācijas, kad gaisa temperatūra ilgāku laiku ievērojami pārsniedz sezonai tipiskas vērtības. Piemēram, karstuma vilnis Francijā 2002. gadā bija iedzīvotāju mirstības pieauguma cēlonis.

Page 41: Klimata pārmaiņas

41

Dienas maksimālās temperatūras un nāves gadījumu skaita Dienas maksimālās temperatūras un nāves gadījumu skaita kopsakarības karstuma viļņa laikā Parīzē 2003. gada vasarākopsakarības karstuma viļņa laikā Parīzē 2003. gada vasarā

Page 42: Klimata pārmaiņas

42

Gada vidējā temperatūra Baltijas jūras reģionā: A – esošā (1961.–1990.);

B – prognozētā 2100. gadā.

T, oC

0

0,5

1

1,5

2

2,5Janvāris

Februāris

Marts

Aprīlis

Maijs

Jūnijs

Jūlijs

Augusts

Septembris

Oktobris

Novembris

Decembris

Mēneša vidējās temperatūras ikmēneša Mēneša vidējās temperatūras ikmēneša (janvāris līdz decembris) pieaugums Rīgā (janvāris līdz decembris) pieaugums Rīgā

(1851. – 2008.).(1851. – 2008.).

Page 43: Klimata pārmaiņas

43

Globālās pasiltināšanās ietekmesGlobālās pasiltināšanās ietekmes

Page 44: Klimata pārmaiņas

44

Sasilstot Zemei sāk kust polāro apgabalu ledāji, un „mūžīgā” sasaluma robeža izrādās nemaz nav tik mūžīga. Tas ietekmē ūdens daudzumu okeānā.

Klimata mainības modeļi paredz, ka līdz 2100. gadam ūdens līmenis jūrās un okeānos būs pieaudzis par 0,09 līdz 0,88 m.

Pierādītās un prognozētās jūras un okeānu ūdens līmeņa Pierādītās un prognozētās jūras un okeānu ūdens līmeņa izmaiņas no 2000. līdz 2100. gadam.izmaiņas no 2000. līdz 2100. gadam.

Page 45: Klimata pārmaiņas

45

Jūras pamatkrasta summārās pārmaiņas pēdējo 70 Jūras pamatkrasta summārās pārmaiņas pēdējo 70 gadu laikā, gadu laikā, G. Eberhards, 2004.G. Eberhards, 2004.

Page 46: Klimata pārmaiņas

46

Jūras līmeņa izmaiņasJūras līmeņa izmaiņas

Maksimālās ūdens līmeņa svārstības Maksimālās ūdens līmeņa svārstības Baltijas jūrā pie Ventspils un Liepājas laikā Baltijas jūrā pie Ventspils un Liepājas laikā

no 1890. līdz 2000. gadam.no 1890. līdz 2000. gadam.

Ūdens līmeņa izmaiņas Baltijas jūrā pie Ūdens līmeņa izmaiņas Baltijas jūrā pie Stokholmas pēdējo 180 gadu laikā.Stokholmas pēdējo 180 gadu laikā.

Page 47: Klimata pārmaiņas

47

Nākotnes prognozesNākotnes prognozes• Vidējā temperatūra turpinās paaugstināties par ātrumu 0,1 – 0,4 grādi/10 gados.Vidējā temperatūra turpinās paaugstināties par ātrumu 0,1 – 0,4 grādi/10 gados.• Laika gaitā kļūs siltākas ziemas, vasarā temperatūra paaugstināsies lēnāk.Laika gaitā kļūs siltākas ziemas, vasarā temperatūra paaugstināsies lēnāk.• Gada nokrišņu daudzums palielināsies par 1–2 % 10 gados, gan vasarās, gan Gada nokrišņu daudzums palielināsies par 1–2 % 10 gados, gan vasarās, gan

ziemās.ziemās.• Biežāki un intensīvāki karstuma periodi, vētras, lietusgāzes.Biežāki un intensīvāki karstuma periodi, vētras, lietusgāzes.• Mainīsies upju caurteces režīms.Mainīsies upju caurteces režīms.• Globālais vidējais jūras līmenis celsies par 13 – 68 cm.Globālais vidējais jūras līmenis celsies par 13 – 68 cm.• Klimatisko zonu virzīšanās uz ziemeļiem un pagarināsies augu veģetācijas Klimatisko zonu virzīšanās uz ziemeļiem un pagarināsies augu veģetācijas

periods.periods.• Klimats kļūs labvēlīgāks mežu augšanai, taču karstuma periodi vasarās palielinās Klimats kļūs labvēlīgāks mežu augšanai, taču karstuma periodi vasarās palielinās

mežu degšanas iespējas.mežu degšanas iespējas.• 21. gs. beigās Baltijas jūru ziemā neklās ledus. 21. gs. beigās Baltijas jūru ziemā neklās ledus. • Ūdens temperatūras un sāļuma izmaiņas varētu izmainīt bioloģiskos procesus, Ūdens temperatūras un sāļuma izmaiņas varētu izmainīt bioloģiskos procesus,

t.sk., zivju sugu izmaiņas.t.sk., zivju sugu izmaiņas.• Migrējošo putnu uzvedības maiņas (agrāk atlido, agrāk dēj olas).Migrējošo putnu uzvedības maiņas (agrāk atlido, agrāk dēj olas).• Biežākas vētras izraisīs krastu joslas noskalošanos un zemāko vietu applūšanu.Biežākas vētras izraisīs krastu joslas noskalošanos un zemāko vietu applūšanu.• Samazināsies kurināmā patēriņš telpu apsildei ziemā, palielināsies elektrības Samazināsies kurināmā patēriņš telpu apsildei ziemā, palielināsies elektrības

patēriņš gaisa kondicionēšanai vasarā.patēriņš gaisa kondicionēšanai vasarā.• Vasarās pasliktināsies vides apstākļi sirds un asinsvadu slimniekiem.Vasarās pasliktināsies vides apstākļi sirds un asinsvadu slimniekiem.• Palielināsies kukaiņu un ar tiem saistīto slimību izplatība.Palielināsies kukaiņu un ar tiem saistīto slimību izplatība.• Iespējama Golfa straumes apsīkšana. Iespējama Golfa straumes apsīkšana.

Page 48: Klimata pārmaiņas

48

Putekļu vētrasPutekļu vētras

ASV, 1935.-1936.

Page 49: Klimata pārmaiņas

49

Kalnu ledāju kušana Whitechuck ledājs, Kaskādu kalni, ASV

1973.

2006., ledājs atkāpies par 1,9 km

Page 50: Klimata pārmaiņas

50

KilimandžaroKilimandžaro

Page 51: Klimata pārmaiņas

51

Ziemeļeiropa un Baltijas Ziemeļeiropa un Baltijas jūra ziemājūra ziemā

Page 52: Klimata pārmaiņas

52

Arī Latvijā vērojams temperatūras pieaugums, izmainās atmosfēras

nokrišņu daudzums un šos procesus var aprakstīt kā lineāras

izmaiņas.

Ņemot vērā klimata mainības iespējamās negatīvās ietekmes, pasaules valstis ir vienojušās par nepieciešamību ierobežot CO2 emisijas apjomu, vispirms ierobežojot fosilā kurināmā patēriņu. Šie uzdevumi vispirms nozīmīgi ir Rietumeiropas valstīm, ASV, Japānai un citām attīstītajām valstīm, kur CO2 emisijas apjoms, pārrēķinot to uz vienu cilvēku, vairākus simtus reižu pārsniedz emisijas apjomu attīstošās pasaules valstīs un arī Latvijā. Ogļskābās gāzes emisijas ierobežošanu var veikt, racionalizējot degvielas patēriņu autotransportā, veicot enerģijas taupīšanas pasākumus ēku siltināšanā. Nozīmīga iespēja, ierobežot ogļskābās gāzes emisiju, ir atteikšanās no fosilā kurināmā izmantošanas, to aizvietojot ar bioloģiski atjaunojamo kurināmo, piemēram, koksni. Koks augot patērē to pašu ogļskābās gāzes daudzumu, kas izdalās, šo koksni sadedzinot – tās daudzums vidē nepieaug.

Page 53: Klimata pārmaiņas