Author
diahanggraini
View
222
Download
0
Embed Size (px)
8/9/2019 Komputasi Elektromagnetik
1/23
Electromagnetic Computationin Power System Engineering
Khairina Noor Astuti (2321430 !
"iel#
Constituti$e %elations
&eneral 'ector "iel#s
Electric Source "iel#
Electric an# agnetic 'orte) "iel#s
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic
"iel#
,ypes o/
'ector"iel#s
"lu) an# ensity o/ 'ector "iel#
8/9/2019 Komputasi Elektromagnetik
2/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
Function that has diferent value at every point inspace.
A nite or in nite set whose elements are assignedunique value o a certain quantity. Eg: pointcontinuum o the Euclidian Space
"iel#
Represented as S A!AR
F"E!#
$ass% water volume%
temperature
8/9/2019 Komputasi Elektromagnetik
3/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"iel#
&emperature o earth's sur ace
( )[ ] ( ) Rr eT T T r T +++= sin1sin),,( 2210
8/9/2019 Komputasi Elektromagnetik
4/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"iel#
Represented as (E &)R F"E!# (elocity% momentum% orce% etc
^^^
),,(),,(),,(),,( k z y x F j z y x F i z y x F z y x F z y x ++=
*+"& (E &)RS
8/9/2019 Komputasi Elektromagnetik
5/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
Electric eld e,ists -etweemparallel plate capacitor with
area A S
eV C .=
d V
E AB=
8/9/2019 Komputasi Elektromagnetik
6/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
"nside capacitor e,ists electric
eld strength E
d V
E e=
*ni ormontour
*nuni ormontour
SE d
V S V
d
S e
e ===
8/9/2019 Komputasi Elektromagnetik
7/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
$agnetic eld e,ists when the platesrepresents the pole o permanent magneto the magnetic gap -etween stator and
rotor
mV P .= 2 N
L P =
$agnetic eldstrength :
d V H M =
8/9/2019 Komputasi Elektromagnetik
8/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
d V H M =
*ni ormontour
*nuni orm ontour
8/9/2019 Komputasi Elektromagnetik
9/23
/*+,-.
NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
" the volume -etween -oth plates is lled withconductance and connected to constanvoltage% electrical current is o-served:
eV G I .=
Flu, line is a scalar eld -ut 0u, density is a vector eld.#irection # is diretion o the 0u, line at that point. $agnitudeis the num-er o 0u, lines crossing a sur ace divided -y S.
Flu, density is measured in coulom-s per square meter1#2
S D
=Electric density or
*ni orm eldElectric density or
nonuni orm eld dS d
D
=
*
8/9/2019 Komputasi Elektromagnetik
10/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
S D
=
Electric density or*ni orm eld
*
8/9/2019 Komputasi Elektromagnetik
11/23
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic"iel#
"lu) an# ensity o/ 'ector "iel#
Electric density or nonuni orm eld dS
d D
=
*
8/9/2019 Komputasi Elektromagnetik
12/23
and
and
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic
"iel#
"lu) an# ensity o/ 'ector "iel#
cos DS =
At any point 3 % # ma4e an angle %so the the value o 0u, 5
cosS D
=
cosdS
d D
=
= nDS
D cos
^
cosnD
dS d
D
=$ultiply those scalar # -y the unit
vector n #
*+
8/9/2019 Komputasi Elektromagnetik
13/23
Faraday's e,periment :
*+,-.NE
"un#amental ,ermso/ Electric
an#agnetic
"iel#
"lu) an# ensity o/ 'ector "iel#
)(cou om!"#=
Flu, density in a radial direction has value
^
2
^
2
^
2
4
4
4
$r r
# D
$r !
# D
$r $#
D
=
=
= "nner space
)utter space
!r $
*+
8/9/2019 Komputasi Elektromagnetik
14/23
"un#amental ,ermso/ Electric
an#agnetic
"iel#
"lu) an# ensity o/ 'ector "iel#
From the given 0u, density and area%0u, can -e calculatedany time -y means o sur ace integral
dS DS
. =
=S
dS B .
=S
dS % I .
and
= BnS
B cos
^
cos Bn
dS
d B
=
and
= % nS
I %
cos
^
cos % n
dS
d %
=
*+,-.NE
*+
8/9/2019 Komputasi Elektromagnetik
15/23
Farad m
henry m
"un#amental ,ermso/ Electric
an#agnetic
"iel#
Constituti$e %elations
&he electric magnetic 0u, density% #% 6 are related to theeld intensities E% 7% so 8called )+S&"&*&"(E RE!A&")+S
H B
E D
o
o
==
7
12
104
10854,8
==
o
o
"n vacuum condition% they ta4e their simplest
orm :
E %
H B
E D
=
==
For simple homogeneous isotropic dielectric andor magnetic materials:
)1(
)1(
mo
o
+=
+=
*+,-.NE
*+
8/9/2019 Komputasi Elektromagnetik
16/23
"un#amental ,ermso/ Electric
an#agnetic
"iel#
Constituti$e %elations
"n many inter acepro-lems% there are noe,ternally appliedsur ace on the-oundary% so the-oundary conditionsmay -e stated as
nn
nn
nn
% %
B B
D D
21
21
21
=
=
=
1source9 ree-oundarycondition2
&he eld strength depends on its conductivity.$aterial with the least permittivity sufer the highest electric stress
"n general% or electric% magnetic % and conductioneld %
nn
nn
nn
E E
H H
E E
21
21
21
21
21
2
1
=
=
=
*+,-.NE
*+
8/9/2019 Komputasi Elektromagnetik
17/23
"un#amental ,ermso/ Electric
an#agnetic
"iel#
Constituti$e %elations
*+,-.NE
*+
8/9/2019 Komputasi Elektromagnetik
18/23
*+,-.NE
,ypes o/'ector
"iel#s
(E &)R F"E!# is a region o space under the in0uenceo some vector quantity% such as magnetic eld or
electric eld strength% in which the quantity ta4es aunique vector value at every point o the region.
lassi edas
S)*R E F"E!# &he eld lines possessstarting and
terminating point
()R&E F"E!#
a mass o energy thatmoves in a rotary orwhirling motion% causing adepression or vacuum at
the center
*+
8/9/2019 Komputasi Elektromagnetik
19/23
*+,-.NE
,ypes o/'ector
"iel#sElectric Source "iel#
Electric source elds e,ist in the environment o electriccharges at rest 1electrostatic charges% ,ed or locali;ed charges2
3ure space
charge
6oundaryvalue
pro-lem
*+
8/9/2019 Komputasi Elektromagnetik
20/23
*+,-.NE
,ypes o/'ector
"iel#s
Electric vorte, e,ist in the environment o a time9varying magnetic 0u,
Electric 'orte) "iel#s
*+
8/9/2019 Komputasi Elektromagnetik
21/23
*+,-.NE
,ypes o/'ector
"iel#sagnetic 'orte) "iel#
$agnetic vorte, elds e,ist in the environment o a time9varying orconstant current 0u,
#irection o magnetic eld lines always ollow the right hand rule
*+ -
8/9/2019 Komputasi Elektromagnetik
22/23
+,-.NE
,ypes o/'ector
"iel#s
&eneral 'ector "iel#s
"n general% a vector eld% e.g. E1,%y%;2% can -ecomposed o -oth a source eld and a vorte, eld
E(x,y,z) = E S (x,y,z) + E V (x,y,z)
s = sourcev = vortex
An ar-itrary vector eld is uniquely speci ed only i itssources and vortices can -e identi ed% in other words%i its source density and vortex density are given
8/9/2019 Komputasi Elektromagnetik
23/23
REFERE+ ES
Schwa-% Adol ??. @ermany: Springer 8 (erlag 6erlin7eidel-erg +ew or4.
)r anidis% Sophocles